1
|
Schilling M, Unterberg-Buchwald C, Lotz J, Uecker M. Assessment of deep learning segmentation for real-time free-breathing cardiac magnetic resonance imaging at rest and under exercise stress. Sci Rep 2024; 14:3754. [PMID: 38355969 PMCID: PMC10866998 DOI: 10.1038/s41598-024-54164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, a variety of deep learning networks for cardiac MRI (CMR) segmentation have been developed and analyzed. However, nearly all of them are focused on cine CMR under breathold. In this work, accuracy of deep learning methods is assessed for volumetric analysis (via segmentation) of the left ventricle in real-time free-breathing CMR at rest and under exercise stress. Data from healthy volunteers (n = 15) for cine and real-time free-breathing CMR at rest and under exercise stress were analyzed retrospectively. Exercise stress was performed using an ergometer in the supine position. Segmentations of two deep learning methods, a commercially available technique (comDL) and an openly available network (nnU-Net), were compared to a reference model created via the manual correction of segmentations obtained with comDL. Segmentations of left ventricular endocardium (LV), left ventricular myocardium (MYO), and right ventricle (RV) are compared for both end-systolic and end-diastolic phases and analyzed with Dice's coefficient. The volumetric analysis includes the cardiac function parameters LV end-diastolic volume (EDV), LV end-systolic volume (ESV), and LV ejection fraction (EF), evaluated with respect to both absolute and relative differences. For cine CMR, nnU-Net and comDL achieve Dice's coefficients above 0.95 for LV and 0.9 for MYO, and RV. For real-time CMR, the accuracy of nnU-Net exceeds that of comDL overall. For real-time CMR at rest, nnU-Net achieves Dice's coefficients of 0.94 for LV, 0.89 for MYO, and 0.90 for RV and the mean absolute differences between nnU-Net and the reference are 2.9 mL for EDV, 3.5 mL for ESV, and 2.6% for EF. For real-time CMR under exercise stress, nnU-Net achieves Dice's coefficients of 0.92 for LV, 0.85 for MYO, and 0.83 for RV and the mean absolute differences between nnU-Net and reference are 11.4 mL for EDV, 2.9 mL for ESV, and 3.6% for EF. Deep learning methods designed or trained for cine CMR segmentation can perform well on real-time CMR. For real-time free-breathing CMR at rest, the performance of deep learning methods is comparable to inter-observer variability in cine CMR and is usable for fully automatic segmentation. For real-time CMR under exercise stress, the performance of nnU-Net could promise a higher degree of automation in the future.
Collapse
Affiliation(s)
- Martin Schilling
- Institute for Diagnostic and Interventional Radiology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christina Unterberg-Buchwald
- Institute for Diagnostic and Interventional Radiology, Universitätsmedizin Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Clinic of Cardiology and Pneumology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Joachim Lotz
- Institute for Diagnostic and Interventional Radiology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, Universitätsmedizin Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria.
| |
Collapse
|
2
|
Franson D, Ahad J, Liu Y, Fyrdahl A, Truesdell W, Hamilton J, Seiberlich N. Self-calibrated through-time spiral GRAPPA for real-time, free-breathing evaluation of left ventricular function. Magn Reson Med 2023; 89:536-549. [PMID: 36198001 PMCID: PMC10092570 DOI: 10.1002/mrm.29462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Through-time spiral GRAPPA is a real-time imaging technique that enables ungated, free-breathing evaluation of the left ventricle. However, it requires a separate fully-sampled calibration scan to calculate GRAPPA weights. A self-calibrated through-time spiral GRAPPA method is proposed that uses a specially designed spiral trajectory with interleaved arm ordering such that consecutive undersampled frames can be merged to form calibration data, eliminating the separate fully-sampled acquisition. THEORY AND METHODS The proposed method considers the time needed to acquire data at all points in a GRAPPA calibration kernel when using interleaved arm ordering. Using this metric, simulations were performed to design a spiral trajectory for self-calibrated GRAPPA. Data were acquired in healthy volunteers using the proposed method and a comparison electrocardiogram-gated and breath-held cine scan. Left ventricular functional values and image quality are compared. RESULTS A 12-arm spiral trajectory was designed with a temporal resolution of 32.72 ms/cardiac phase with an acceleration factor of 3. Functional values calculated using the proposed method and the gold-standard method were not statistically significantly different (paired t-test, p < 0.05). Image quality ratings were lower for the proposed method, with statistically significantly different ratings (Wilcoxon signed rank test, p < 0.05) for two of five image quality aspects rated (level of artifact, blood-myocardium contrast). CONCLUSIONS A self-calibrated through-time spiral GRAPPA reconstruction can enable ungated, free-breathing evaluation of the left ventricle in 71 s. Functional values are equivalent to a gold-standard cine technique, although some aspects of image quality may be inferior due to the real-time nature of the data collection.
Collapse
Affiliation(s)
- Dominique Franson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - James Ahad
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yuchi Liu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Fyrdahl
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - William Truesdell
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jesse Hamilton
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Ahad J, Cummings E, Franson D, Hamilton J, Seiberlich N. Optimization of through-time radial GRAPPA with coil compression and weight sharing. Magn Reson Med 2022; 88:1244-1254. [PMID: 35426473 PMCID: PMC9246858 DOI: 10.1002/mrm.29258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE This work proposes principal component analysis (PCA) coil compression and weight sharing to reduce acquisition and reconstruction time of through-time radial GRAPPA. METHODS Through-time radial GRAPPA enables ungated free-breathing motion-resolved cardiac imaging but requires a long calibration acquisition and GRAPPA weight calculation time. PCA coil compression reduces calibration data requirements and associated acquisition time, and weight sharing reduces the number of unique GRAPPA weight sets and associated weight computation time. In vivo cardiac data reconstructed with coil compression and weight sharing are compared to a gold standard to demonstrate improvement in calibration acquisition and reconstruction performance with minimal loss of image quality. RESULTS Coil compression from 30 physical to 12 virtual coils (90% of signal variance) decreases requisite calibration data by 60%, reducing calibration acquisition time to 6.7 s/slice from 31.5 s/slice reported in original through-time radial GRAPPA work. Resulting images have small increase in RMS error (RMSE). Reconstruction with a weight sharing factor of 8 results in eight-fold reduction in GRAPPA weight calculation time with a comparable RMSE to reconstructions with no weight sharing. Optimized parameters for coil compression and weight sharing applied to reconstructions enables images to be collected with a temporal resolution of 66 ms/frame and spatial resolution of 2.34 × 2.34 mm while reducing calibration acquisition time from 34 to 6.7 s, weight calculation time from 200 to 3 s, and weight application time 18 to 5 s. CONCLUSION Coil compression and weight sharing applied to through-time radial GRAPPA enables fast free-breathing ungated cardiac cine without compromising image quality.
Collapse
Affiliation(s)
- James Ahad
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Evan Cummings
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Dominique Franson
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Jesse Hamilton
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
4
|
Nita N, Kersten J, Pott A, Weber F, Tesfay T, Benea MT, Metze P, Li H, Rottbauer W, Rasche V, Buckert D. Real-Time Spiral CMR Is Superior to Conventional Segmented Cine-Imaging for Left-Ventricular Functional Assessment in Patients with Arrhythmia. J Clin Med 2022; 11:jcm11082088. [PMID: 35456181 PMCID: PMC9025940 DOI: 10.3390/jcm11082088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Segmented Cartesian Cardiovascular magnetic resonance (CMR) often fails to deliver robust assessment of cardiac function in patients with arrhythmia. We aimed to assess the performance of a tiny golden-angle spiral real-time CMR sequence at 1.5 T for left-ventricular (LV) volumetry in patients with irregular heart rhythm; (2) Methods: We validated the real-time sequence against the standard breath-hold segmented Cartesian sequence in 32 patients, of whom 11 presented with arrhythmia. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) were assessed. In arrhythmic patients, real-time and standard Cartesian acquisitions were compared against a reference echocardiographic modality; (3) Results: In patients with sinus rhythm, good agreements and correlations were found between the segmented and real-time methods, with only minor, non-significant underestimation of EDV for the real-time sequence (135.95 ± 30 mL vs. 137.15 ± 31, p = 0.164). In patients with arrhythmia, spiral real-time CMR yielded superior image quality to the conventional segmented imaging, allowing for excellent agreement with the reference echocardiographic volumetry. In contrast, in this cohort, standard Cartesian CMR showed significant underestimation of LV-ESV (106.72 ± 63.51 mL vs. 125.47 ± 72.41 mL, p = 0.026) and overestimation of LVEF (42.96 ± 10.81% vs. 39.02 ± 11.72%, p = 0.039); (4) Conclusions: Real-time spiral CMR improves image quality in arrhythmic patients, allowing reliable assessment of LV volumetry.
Collapse
Affiliation(s)
- Nicoleta Nita
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
- Correspondence:
| | - Johannes Kersten
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Alexander Pott
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Fabian Weber
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Temsgen Tesfay
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | | | - Patrick Metze
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Hao Li
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Volker Rasche
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Dominik Buckert
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| |
Collapse
|
5
|
Franson D, Dupuis A, Gulani V, Griswold M, Seiberlich N. A System for Real-Time, Online Mixed-Reality Visualization of Cardiac Magnetic Resonance Images. J Imaging 2021; 7:jimaging7120274. [PMID: 34940741 PMCID: PMC8709155 DOI: 10.3390/jimaging7120274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Image-guided cardiovascular interventions are rapidly evolving procedures that necessitate imaging systems capable of rapid data acquisition and low-latency image reconstruction and visualization. Compared to alternative modalities, Magnetic Resonance Imaging (MRI) is attractive for guidance in complex interventional settings thanks to excellent soft tissue contrast and large fields-of-view without exposure to ionizing radiation. However, most clinically deployed MRI sequences and visualization pipelines exhibit poor latency characteristics, and spatial integration of complex anatomy and device orientation can be challenging on conventional 2D displays. This work demonstrates a proof-of-concept system linking real-time cardiac MR image acquisition, online low-latency reconstruction, and a stereoscopic display to support further development in real-time MR-guided intervention. Data are acquired using an undersampled, radial trajectory and reconstructed via parallelized through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) implemented on graphics processing units. Images are rendered for display in a stereoscopic mixed-reality head-mounted display. The system is successfully tested by imaging standard cardiac views in healthy volunteers. Datasets comprised of one slice (46 ms), two slices (92 ms), and three slices (138 ms) are collected, with the acquisition time of each listed in parentheses. Images are displayed with latencies of 42 ms/frame or less for all three conditions. Volumetric data are acquired at one volume per heartbeat with acquisition times of 467 ms and 588 ms when 8 and 12 partitions are acquired, respectively. Volumes are displayed with a latency of 286 ms or less. The faster-than-acquisition latencies for both planar and volumetric display enable real-time 3D visualization of the heart.
Collapse
Affiliation(s)
- Dominique Franson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Correspondence: (D.F.); (A.D.)
| | - Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Correspondence: (D.F.); (A.D.)
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (V.G.); (N.S.)
| | - Mark Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (V.G.); (N.S.)
| |
Collapse
|
6
|
Jaubert O, Montalt‐Tordera J, Knight D, Coghlan GJ, Arridge S, Steeden JA, Muthurangu V. Real-time deep artifact suppression using recurrent U-Nets for low-latency cardiac MRI. Magn Reson Med 2021; 86:1904-1916. [PMID: 34032308 PMCID: PMC8613539 DOI: 10.1002/mrm.28834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Real-time low latency MRI is performed to guide various cardiac interventions. Real-time acquisitions often require iterative image reconstruction strategies, which lead to long reconstruction times. In this study, we aim to reconstruct highly undersampled radial real-time data with low latency using deep learning. METHODS A 2D U-Net with convolutional long short-term memory layers is proposed to exploit spatial and preceding temporal information to reconstruct highly accelerated tiny golden radial data with low latency. The network was trained using a dataset of breath-hold CINE data (including 770 time series from 7 different orientations). Synthetic paired data were created by retrospectively undersampling the magnitude images, and the network was trained to recover the target images. In the spirit of interventional imaging, the network was trained and tested for varying acceleration rates and orientations. Data were prospectively acquired and reconstructed in real time in 1 healthy subject interactively and in 3 patients who underwent catheterization. Images were visually compared to sliding window and compressed sensing reconstructions and a conventional Cartesian real-time sequence. RESULTS The proposed network generalized well to different acceleration rates and unseen orientations for all considered metrics in simulated data (less than 4% reduction in structural similarity index compared to similar acceleration and orientation-specific networks). The proposed reconstruction was demonstrated interactively, successfully depicting catheters in vivo with low latency (39 ms, including 19 ms for deep artifact suppression) and an image quality comparing favorably to other reconstructions. CONCLUSION Deep artifact suppression was successfully demonstrated in the time-critical application of non-Cartesian real-time interventional cardiac MR.
Collapse
Affiliation(s)
- Olivier Jaubert
- Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
| | - Javier Montalt‐Tordera
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
| | - Dan Knight
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
- Department of CardiologyRoyal Free London NHS Foundation TrustLondonUnited Kingdom
| | - Gerry J. Coghlan
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
- Department of CardiologyRoyal Free London NHS Foundation TrustLondonUnited Kingdom
| | - Simon Arridge
- Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Jennifer A. Steeden
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
| | - Vivek Muthurangu
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Chieh SW, Kaveh M, Akçakaya M, Moeller S. Self-calibrated interpolation of non-Cartesian data with GRAPPA in parallel imaging. Magn Reson Med 2019; 83:1837-1850. [PMID: 31722128 DOI: 10.1002/mrm.28033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop a non-Cartesian k-space reconstruction method using self-calibrated region-specific interpolation kernels for highly accelerated acquisitions. METHODS In conventional non-Cartesian GRAPPA with through-time GRAPPA (TT-GRAPPA), the use of region-specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT-GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self-calibrated Interpolation of Non-Cartesian data with GRAPPA (SING) to self-calibrate region-specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region-specific interpolation kernel geometry, and uses a novel local k-space regularization through an extension of TT-GRAPPA. This calibration approach is used to reconstruct non-Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate-gradient SENSE and TT-GRAPPA in numerical phantoms and in vivo cine data sets. RESULTS In both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT-GRAPPA, and provides improved reconstruction quality over conjugate-gradient SENSE. Furthermore, temporal fidelity in SING and TT-GRAPPA is similar for the same acceleration rates. G-factor evaluation over the heart shows that SING and TT-GRAPPA provide similar noise amplification at moderate and high rates. CONCLUSION The proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT-GRAPPA.
Collapse
Affiliation(s)
- Seng-Wei Chieh
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mostafa Kaveh
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
8
|
Borman PTS, Raaymakers BW, Glitzner M. ReconSocket: a low-latency raw data streaming interface for real-time MRI-guided radiotherapy. Phys Med Biol 2019; 64:185008. [PMID: 31461412 DOI: 10.1088/1361-6560/ab3e99] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the recent advent of hybrid MRI-guided radiotherapy systems, continuous intra-fraction MR imaging for motion monitoring has become feasible. The ability to perform real-time custom image reconstructions is however often lacking. In this work we present a low-latency streaming solution, ReconSocket, which provides a real-time stream of k-space data from the magnetic resonance imaging (MRI) to custom reconstruction servers. We determined the performance of the data streaming by measuring the streaming latency (i.e. non-zero time delay due to data transfer and processing) and jitter (i.e. deviations from periodicity) using an ultra-fast 1D MRI acquisition of a moving phantom. Simultaneously, its position was recorded with near-zero time delay. The feasibility of low-latency custom reconstructions was tested by measuring the imaging latency (i.e. time delay between physical change and appearance of that change on the image) for several non-Cartesian 2D and 3D acquisitions using an in-house implemented reconstruction server. The measured streaming latency of the ReconSocket interface was [Formula: see text] ms. 98% of the incoming data packets arrived within a jitter range of 367 [Formula: see text]s. This shows that the ReconSocket interface can provide reliable real-time access to MRI data, acquired during the course of a MRI-guided radiotherapy fraction. The total imaging latency was measured to be 221 ms (2D) and 3889 ms (3D) for exemplary acquisitions, using the custom image reconstruction server. These imaging latencies are approximately equal to half of the temporal footprint (T acq /2) of the respective 2D and 3D golden-angle radial sequences. For radial sequences, it was previously showed that T acq /2 is the expected contribution of only the data acquisition to the total imaging latency. Indeed, the contribution of the non-Cartesian reconstruction to the total imaging latency was minor (<10%): 21 ms for 2D, 300 ms for 3D, indicating that the acquisition, i.e. the physical encoding of the image itself is the major contributor to the total imaging latency.
Collapse
Affiliation(s)
- P T S Borman
- Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
9
|
Knowles BR, Friedrich F, Fischer C, Paech D, Ladd ME. Beyond T2 and 3T: New MRI techniques for clinicians. Clin Transl Radiat Oncol 2019; 18:87-97. [PMID: 31341982 PMCID: PMC6630188 DOI: 10.1016/j.ctro.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Technological advances in Magnetic Resonance Imaging (MRI) in terms of field strength and hybrid MR systems have led to improvements in tumor imaging in terms of anatomy and functionality. This review paper discusses the applications of such advances in the field of radiation oncology with regards to treatment planning, therapy guidance and monitoring tumor response and predicting outcome.
Collapse
Affiliation(s)
- Benjamin R. Knowles
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Friedrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Carola Fischer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Ruthven M, Freitas AC, Boubertakh R, Miquel ME. Application of radial GRAPPA techniques to single- and multislice dynamic speech MRI using a 16-channel neurovascular coil. Magn Reson Med 2019; 82:948-958. [PMID: 31016802 DOI: 10.1002/mrm.27779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate: (1) the feasibility of using through-time radial GeneRalized Autocalibrating Partially Parallel Acquisitions (rGRAPPA) and hybrid radial GRAPPA (h-rGRAPPA) in single- and multislice dynamic speech MRI; (2) whether single-slice dynamic speech MRI at a rate of 15 frames per second (fps) or higher and with adequate image quality can be achieved using these radial GRAPPA techniques. METHODS Seven healthy adult volunteers were imaged at 3T using a 16-channel neurovascular coil and 2 spoiled gradient echo sequences (radial trajectory, field of view = 192 × 192 mm2 , acquired pixel size = 2.4 × 2.4 mm2 ). One sequence imaged a single slice at 16.8 fps, the other imaged 2 interleaved slices at 7.8 fps per slice. Image sets were reconstructed using rGRAPPA and h-rGRAPPA, and their image quality was compared using the root mean square error, structural similarity index, and visual assessments. RESULTS Image quality deteriorated when fewer than 170 calibration frames were used in the rGRAPPA reconstruction. rGRAPPA image sets demonstrated: (1) in 97% of cases, a similar image quality to h-rGRAPPA image sets reconstructed using a k-space segment size of 4, (2) in 98% of cases, a better image quality than h-rGRAPPA image sets reconstructed using a k-space segment size of 32. CONCLUSION This study confirmed: (1) the feasibility of using rGRAPPA and h-rGRAPPA in single- and multislice dynamic speech MRI, (2) that single-slice speech imaging at a frame rate higher than 15 fps and with adequate image quality can be achieved using these radial GRAPPA techniques.
Collapse
Affiliation(s)
- Matthieu Ruthven
- Clinical Physics, Barts Health NHS Trust, St Bartholomew's Hospital, London, United Kingdom
| | - Andreia C Freitas
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom.,ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Redha Boubertakh
- Clinical Physics, Barts Health NHS Trust, St Bartholomew's Hospital, London, United Kingdom.,William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Marc E Miquel
- Clinical Physics, Barts Health NHS Trust, St Bartholomew's Hospital, London, United Kingdom.,William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| |
Collapse
|
11
|
Park S, Chen L, Beckett A, Feinberg DA. Virtual slice concept for improved simultaneous multi-slice MRI employing an extended leakage constraint. Magn Reson Med 2019; 82:377-386. [PMID: 30883901 DOI: 10.1002/mrm.27741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a novel, simultaneous multi-slice (SMS) reconstruction that extends an inter-slice leakage constraint to intra-slice aliasing with a virtual slice concept for artifact reduction. METHODS Inter-slice leakage constraint has been used for SMS reconstruction that mitigates leakage artifacts from the adjacent slices. In this work, the leakage constraint is extended to more general framework that includes SMS and parallel MRI as special cases by viewing intra-slice aliasing artifacts from undersampling as virtual slices while imposing data fidelity to ensure the measurement consistency. In this way, the reconstruction makes it feasible to directly estimate the individual slices from the undersampled SMS acquisition as a one-step method. The performance of the extended method is evaluated with data acquired using 2D GRE and EPI sequences. RESULTS Compared to a two-step method that performs slice unaliasing followed by inplane unaliasing, the proposed one-step method reduces aliasing artifacts by employing the extended leakage constraint while lowering the noise amplification by improving the conditioning for the inverse problem. CONCLUSIONS The proposed one-step method takes advantage of virtual slices as additional encoding power for improved image quality. We successfully demonstrated that the proposed one-step method minimizes a trade-off between aliasing artifacts and amplified noises over the two-step method.
Collapse
Affiliation(s)
- Suhyung Park
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Liyong Chen
- Advanced MRI Technologies, Sebastopol, California
| | - Alexander Beckett
- Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Advanced MRI Technologies, Sebastopol, California
| | - David A Feinberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Advanced MRI Technologies, Sebastopol, California
| |
Collapse
|
12
|
Benkert T, Tian Y, Huang C, DiBella EVR, Chandarana H, Feng L. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding. Magn Reson Med 2017; 80:286-293. [PMID: 29193380 DOI: 10.1002/mrm.27030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. METHODS GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. RESULTS GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. CONCLUSION The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Thomas Benkert
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ye Tian
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.,Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - Chenchan Huang
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Edward V R DiBella
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Siddiqui MF, Reza AW, Shafique A, Omer H, Kanesan J. FPGA implementation of real-time SENSE reconstruction using pre-scan and Emaps sensitivities. Magn Reson Imaging 2017; 44:82-91. [PMID: 28855113 DOI: 10.1016/j.mri.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/22/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
Abstract
Sensitivity Encoding (SENSE) is a widely used technique in Parallel Magnetic Resonance Imaging (MRI) to reduce scan time. Reconfigurable hardware based architecture for SENSE can potentially provide image reconstruction with much less computation time. Application specific hardware platform for SENSE may dramatically increase the power efficiency of the system and can decrease the execution time to obtain MR images. A new implementation of SENSE on Field Programmable Gate Array (FPGA) is presented in this study, which provides real-time SENSE reconstruction right on the receiver coil data acquisition system with no need to transfer the raw data to the MRI server, thereby minimizing the transmission noise and memory usage. The proposed SENSE architecture can reconstruct MR images using receiver coil sensitivity maps obtained using pre-scan and eigenvector (E-maps) methods. The results show that the proposed system consumes remarkably less computation time for SENSE reconstruction, i.e., 0.164ms @ 200MHz, while maintaining the quality of the reconstructed images with good mean SNR (29+ dB), less RMSE (<5×10-2) and comparable artefact power (<9×10-4) to conventional SENSE reconstruction. A comparison of the center line profiles of the reconstructed and reference images also indicates a good quality of the reconstructed images. Furthermore, the results indicate that the proposed architectural design can prove to be a significant tool for SENSE reconstruction in modern MRI scanners and its low power consumption feature can be remarkable for portable MRI scanners.
Collapse
Affiliation(s)
- Muhammad Faisal Siddiqui
- Faculty of Engineering, Department of Electrical Engineering, University of Malaya, Kuala Lumpur, Malaysia; Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad, Pakistan.
| | - Ahmed Wasif Reza
- Department of Computer Science & Engineering, Faculty of Science & Engineering, East West University, Dhaka 1212, Bangladesh.
| | - Abubakr Shafique
- Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad, Pakistan.
| | - Hammad Omer
- Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad, Pakistan.
| | - Jeevan Kanesan
- Faculty of Engineering, Department of Electrical Engineering, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Hamilton J, Franson D, Seiberlich N. Recent advances in parallel imaging for MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 101:71-95. [PMID: 28844222 PMCID: PMC5927614 DOI: 10.1016/j.pnmrs.2017.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/09/2017] [Accepted: 04/17/2017] [Indexed: 05/22/2023]
Abstract
Magnetic Resonance Imaging (MRI) is an essential technology in modern medicine. However, one of its main drawbacks is the long scan time needed to localize the MR signal in space to generate an image. This review article summarizes some basic principles and recent developments in parallel imaging, a class of image reconstruction techniques for shortening scan time. First, the fundamentals of MRI data acquisition are covered, including the concepts of k-space, undersampling, and aliasing. It is demonstrated that scan time can be reduced by sampling a smaller number of phase encoding lines in k-space; however, without further processing, the resulting images will be degraded by aliasing artifacts. Nearly all modern clinical scanners acquire data from multiple independent receiver coil arrays. Parallel imaging methods exploit properties of these coil arrays to separate aliased pixels in the image domain or to estimate missing k-space data using knowledge of nearby acquired k-space points. Three parallel imaging methods-SENSE, GRAPPA, and SPIRiT-are described in detail, since they are employed clinically and form the foundation for more advanced methods. These techniques can be extended to non-Cartesian sampling patterns, where the collected k-space points do not fall on a rectangular grid. Non-Cartesian acquisitions have several beneficial properties, the most important being the appearance of incoherent aliasing artifacts. Recent advances in simultaneous multi-slice imaging are presented next, which use parallel imaging to disentangle images of several slices that have been acquired at once. Parallel imaging can also be employed to accelerate 3D MRI, in which a contiguous volume is scanned rather than sequential slices. Another class of phase-constrained parallel imaging methods takes advantage of both image magnitude and phase to achieve better reconstruction performance. Finally, some applications are presented of parallel imaging being used to accelerate MR Spectroscopic Imaging.
Collapse
Affiliation(s)
- Jesse Hamilton
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Dominique Franson
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Nicole Seiberlich
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
15
|
Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, Mochizuki T. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson 2016; 18:50. [PMID: 27553656 PMCID: PMC4995641 DOI: 10.1186/s12968-016-0271-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/29/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cardiovascular cine magnetic resonance (CMR) accelerated by compressed sensing (CS) is used to assess left ventricular (LV) function. However, it is difficult for prospective CS cine CMR to capture the complete end-diastolic phase, which can lead to underestimation of the end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF), compared to retrospective standard cine CMR. This prospective study aimed to evaluate the diagnostic quality and accuracy of single-breath-hold full cardiac cycle CS cine CMR, acquired over two heart beats, to quantify LV volume in comparison to multi-breath-hold standard cine CMR. METHODS Eighty-one participants underwent standard segmented breath-hold cine and CS real-time cine CMR examinations to obtain a stack of eight contiguous short-axis images with same high spatial (1.7 × 1.7 mm(2)) and temporal resolution (41 ms). Two radiologists independently performed qualitative analysis of image quality (score, 1 [i.e., "nondiagnostic"] to 5 [i.e., "excellent"]) and quantitative analysis of the LV volume measurements. RESULTS The total examination time was 113 ± 7 s for standard cine CMR and 24 ± 4 s for CS cine CMR (p < 0.0001). The CS cine image quality was slightly lower than standard cine (4.8 ± 0.5 for standard vs. 4.4 ± 0.5 for CS; p < 0.0001). However, all image quality scores for CS cine were above 4 (i.e., good). No significant differences existed between standard and CS cine MR for all quantitative LV measurements. The mean differences with 95 % confidence interval (CI), based on Bland-Altman analysis, were 1.3 mL (95 % CI, -14.6 - 17.2) for LV end-diastolic volume, 0.2 mL (95 % CI, -9.8 to10.3) for LV end-systolic volume, 1.1 mL (95 % CI, -10.5 to 12.7) for LV stroke volume, 1.0 g (95 % CI, -11.2 to 13.3) for LV mass, and 0.4 % (95 % CI, -4.8 - 5.6) for LV ejection fraction. The interobserver and intraobserver variability for CS cine MR ranged from -4.8 - 1.6 % and from -7.3 - 9.3 %, respectively, with slopes of the regressions ranging 0.88-1.0 and 0.86-1.03, respectively. CONCLUSIONS Single-breath-hold full cardiac cycle CS real-time cine CMR could evaluate LV volume with excellent accuracy. It may replace multi-breath-hold standard cine CMR.
Collapse
Affiliation(s)
- Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Masashi Nakamura
- Department of Radiology, Saiseikai Matsuyama Hospital, 880-2, Yamanishi, Matsuyama, Ehime 791-8026 Japan
| | - Kouki Watanabe
- Department of Cardiology, Saiseikai Matsuyama Hospital, 880-2, Yamanishi, Matsuyama, Ehime 791-8026 Japan
| | - Michaela Schmidt
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Christoph Forman
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| |
Collapse
|
16
|
Pierre EY, Ma D, Chen Y, Badve C, Griswold MA. Multiscale reconstruction for MR fingerprinting. Magn Reson Med 2016; 75:2481-92. [PMID: 26132462 PMCID: PMC4696924 DOI: 10.1002/mrm.25776] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/31/2015] [Accepted: 04/25/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. METHODS An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. RESULTS The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. CONCLUSION The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eric Y Pierre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University & University Hospitals, Cleveland, Ohio, USA
| | - Chaitra Badve
- Department of Radiology, Case Western Reserve University & University Hospitals, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University & University Hospitals, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Sayin O, Saybasili H, Zviman MM, Griswold M, Halperin H, Seiberlich N, Herzka DA. Real-time free-breathing cardiac imaging with self-calibrated through-time radial GRAPPA. Magn Reson Med 2016; 77:250-264. [PMID: 26969611 DOI: 10.1002/mrm.26112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/29/2015] [Accepted: 12/12/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Real-time free-breathing cardiac imaging with highly undersampled radial trajectories has previously been successfully demonstrated using calibrated radial generalized autocalibrating partially parallel acquisition (rGRAPPA). A self-calibrated approach for rGRAPPA is proposed that removes the need for the calibration prescan. METHODS To investigate the effect of various parameters on image quality, a comprehensive imaging study on one normal swine was performed. Root mean squared errors (RMSEs) were computed with respect to gold standard acquisitions, and several acquisition/reconstruction strategies were compared. Additionally, the method was tested on 13 human subjects, and RMSEs relative to standard through-time radial GRAPPA were computed. RESULTS Real-time images with high spatiotemporal resolution were obtained. Image quality was comparable to calibrated through-time rGRAPPA with endocardial and epicardial borders clearly delineated. In the swine, the average RMSE between self-calibrated and gold-standard calibrated images was 5.18 ± 0.84%. In normal human subjects, the average RMSE between self-calibrated and calibrated through-time rGRAPPA was 3.79 ± 0.64%. For lower accelerations rates (R = 6-8) image quality was similar to comparable calibrated scans though RMSE increased for higher degrees of undersampling (R = 12-16). CONCLUSION Highly accelerated real-time imaging with undersampled radial trajectories without additional calibration data is feasible. Image quality was acceptable for real-time cardiac MRI applications demanding high speed. Magn Reson Med 77:250-264, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ozan Sayin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - M Muz Zviman
- Department of Medicine, Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Henry Halperin
- Department of Medicine, Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel A Herzka
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Free-breathing liver perfusion imaging using 3-dimensional through-time spiral generalized autocalibrating partially parallel acquisition acceleration. Invest Radiol 2016; 50:367-75. [PMID: 25946703 DOI: 10.1097/rli.0000000000000135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The goal of this study was to develop free-breathing high-spatiotemporal resolution dynamic contrast-enhanced liver magnetic resonance imaging using non-Cartesian parallel imaging acceleration, and quantitative liver perfusion mapping. MATERIALS AND METHODS This study was approved by the local institutional review board and written informed consent was obtained from all participants. Ten healthy subjects and 5 patients were scanned on a Siemens 3-T Skyra scanner. A stack-of-spirals trajectory was undersampled in-plane with a reduction factor of 6 and reconstructed using 3-dimensional (3D) through-time non-Cartesian generalized autocalibrating partially parallel acquisition. High-resolution 3D images were acquired with a true temporal resolution of 1.6 to 1.9 seconds while the subjects were breathing freely. A dual-input single-compartment model was used to retrieve liver perfusion parameters from dynamic contrast-enhanced magnetic resonance imaging data, which were coregistered using an algorithm designed to reduce the effects of dynamic contrast changes on registration. Image quality evaluation was performed on spiral images and conventional images from 5 healthy subjects. RESULTS Images with a spatial resolution of 1.9 × 1.9 × 3 mm3 were obtained with whole-liver coverage. With an imaging speed of better than 2 s/vol, free-breathing scans were achieved and dynamic changes in enhancement were captured. The overall image quality of free-breathing spiral images was slightly lower than that of conventional long breath-hold Cartesian images, but it provided clinically acceptable or better image quality. The free-breathing 3D images were registered with almost no residual motion in liver tissue. After the registration, quantitative whole-liver 3D perfusion maps were obtained and the perfusion parameters are all in good agreement with the literature. CONCLUSIONS This high-spatiotemporal resolution free-breathing 3D liver imaging technique allows voxelwise quantification of liver perfusion.
Collapse
|
19
|
Lin JM, Patterson AJ, Chang HC, Gillard JH, Graves MJ. An iterative reduced field-of-view reconstruction for periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. Med Phys 2015; 42:5757-67. [DOI: 10.1118/1.4929560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Chen Y, Lee GR, Aandal G, Badve C, Wright KL, Griswold MA, Seiberlich N, Gulani V. Rapid volumetric T1 mapping of the abdomen using three-dimensional through-time spiral GRAPPA. Magn Reson Med 2015; 75:1457-65. [PMID: 25980949 DOI: 10.1002/mrm.25693] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Accepted: 02/20/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE To develop an ultrafast T1 mapping method for high-resolution, volumetric T1 measurements in the abdomen. METHODS The Look-Locker method was combined with a stack-of-spirals acquisition accelerated using three-dimensional (3D) through-time spiral GRAPPA reconstruction for fast data acquisition. A segmented k-space acquisition scheme was proposed and the time delay between segments for the recovery of longitudinal magnetization was optimized using Bloch equation simulations. The accuracy of this method was validated in a phantom experiment and in vivo T1 measurements were performed with 35 asymptomatic subjects on both 1.5 Tesla (T) and 3T MRI systems. RESULTS Phantom experiments yielded close agreement between the proposed method and gold standard measurements for a large range of T1 values (200 to 1600 ms). The in vivo results further demonstrate that high-resolution T1 maps (2 × 2 × 4 mm(3)) for 32 slices can be achieved in a single clinically feasible breath-hold of approximately 20 s. The T1 values for multiple organs and tissues in the abdomen are in agreement with the published literature. CONCLUSION A high-resolution 3D abdominal T1 mapping technique was developed, which allows fast and accurate T1 mapping of multiple abdominal organs and tissues in a single breath-hold.
Collapse
Affiliation(s)
- Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gregory R Lee
- Pediatric Neuroimaging Research Consortium, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Chaitra Badve
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Katherine L Wright
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Aandal G, Nadig V, Yeh V, Rajiah P, Jenkins T, Sattar A, Griswold M, Gulani V, Gilkeson RC, Seiberlich N. Evaluation of left ventricular ejection fraction using through-time radial GRAPPA. J Cardiovasc Magn Reson 2014; 16:79. [PMID: 25315256 PMCID: PMC4180954 DOI: 10.1186/s12968-014-0079-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/01/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The determination of left ventricular ejection fraction using cardiovascular magnetic resonance (CMR) requires a steady cardiac rhythm for electrocardiogram (ECG) gating and multiple breathholds to minimize respiratory motion artifacts, which often leads to scan times of several minutes. The need for gating and breathholding can be eliminated by employing real-time CMR methods such as through-time radial GRAPPA. The aim of this study is to compare left ventricular cardiac functional parameters obtained using current gold-standard breathhold ECG-gated functional scans with non-gated free-breathing real-time imaging using radial GRAPPA, and to determine whether scan time or the occurrence of artifacts are reduced when using this real-time approach. METHODS 63 patients were scanned on a 1.5T CMR scanner using both the standard cardiac functional examination with gating and breathholding and the real-time method. Total scan durations were noted. Through-time radial GRAPPA was employed to reconstruct images from the highly accelerated real-time data. The blood volume in the left ventricle was assessed to determine the end systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) for both methods, and images were rated for the presence of artifacts and quality of specific image features by two cardiac readers. Linear regression analysis, Bland-Altman plots and two-sided t-tests were performed to compare the quantitative parameters. A two-sample t-test was performed to compare the scan durations, and a two-sample test of proportion was used to analyze the presence of artifacts. For the reviewers´ ratings the Wilcoxon test for the equality of the scores' distributions was employed. RESULTS The differences in EF, EDV, and ESV between the gold-standard and real-time methods were not statistically significant (p-values of 0.77, 0.82, and 0.97, respectively). Additionally, the scan time was significantly shorter for the real-time data collection (p<0.001) and fewer artifacts were reported in the real-time images (p<0.01). In the qualitative image analysis, reviewers marginally preferred the standard images although some features including cardiac motion were equivalently rated. CONCLUSION Real-time functional CMR with through-time radial GRAPPA performed without ECG-gating under free-breathing can be considered as an alternative to gold-standard breathhold cine imaging for the evaluation of ejection fraction in patients.
Collapse
Affiliation(s)
- Gunhild Aandal
- Radiology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, USA.
- Haraldsplass Deaconess Hospital, Bergen, Norway.
| | - Vidya Nadig
- Cardiology, MetroHealth Medical Center at Case Western University, Cleveland, OH, USA.
| | - Victoria Yeh
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Prabhakar Rajiah
- Radiology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, USA.
| | - Trevor Jenkins
- Division of Cardiovascular Medicine, Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Abdus Sattar
- Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
| | - Mark Griswold
- Radiology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, USA.
- Biomedical Engineering, Case Western Reserve University, Room 309 Wickenden Building 2071 Martin Luther King Jr. Drive, Cleveland, OH, 44106-7207, USA.
| | - Vikas Gulani
- Radiology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, USA.
- Biomedical Engineering, Case Western Reserve University, Room 309 Wickenden Building 2071 Martin Luther King Jr. Drive, Cleveland, OH, 44106-7207, USA.
| | - Robert C Gilkeson
- Radiology, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, USA.
| | - Nicole Seiberlich
- Biomedical Engineering, Case Western Reserve University, Room 309 Wickenden Building 2071 Martin Luther King Jr. Drive, Cleveland, OH, 44106-7207, USA.
| |
Collapse
|