1
|
Emu Y, Chen Y, Chen Z, Gao J, Yuan J, Lu H, Jin H, Hu C. Simultaneous multislice cardiac multimapping based on locally low-rank and sparsity constraints. J Cardiovasc Magn Reson 2024; 26:101125. [PMID: 39547314 DOI: 10.1016/j.jocmr.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Although quantitative myocardial T1 and T2 mappings are clinically used to evaluate myocardial diseases, their application needs a minimum of six breath-holds to cover three short-axis slices. The purpose of this work is to simultaneously quantify multislice myocardial T1 and T2 across three short-axis slices in one breath-hold by combining simultaneous multislice (SMS) with multimapping. METHODS An SMS-Multimapping sequence with multiband radiofrequency (RF) excitations and Cartesian fast low-angle shot readouts was developed for data acquisition. When 3 slices are simultaneously acquired, the acceleration rate is around 12-fold, causing a highly ill-conditioned reconstruction problem. To mitigate image artifacts and noise caused by the ill-conditioning, a reconstruction algorithm based on locally low-rank and sparsity (LLRS) constraints was developed. Validation was performed in phantoms and in vivo imaging, with 20 healthy subjects and 4 patients, regarding regional mean, precision, and scan-rescan reproducibility. RESULTS The phantom imaging shows that SMS-Multimapping with locally low-rank (LLRS) accurately reconstructed multislice T1 and T2 maps despite a six-fold acceleration of scan time. Healthy subject imaging shows that the proposed LLRS algorithm substantially improved image quality relative to split slice-generalized autocalibrating partially parallel acquisition. Compared with modified look-locker inversion recovery (MOLLI), SMS-Multimapping exhibited higher T1 mean (1118 ± 43 ms vs 1190 ± 49 ms, P < 0.01), lower precision (67 ± 17 ms vs 90 ± 17 ms, P < 0.01), and acceptable scan-rescan reproducibility measured by 2 scans 10-min apart (bias = 1.4 ms for MOLLI and 9.0 ms for SMS-Multimapping). Compared with balanced steady-state free precession (bSSFP) T2 mapping, SMS-Multimapping exhibited similar T2 mean (43.5 ± 3.3 ms vs 43.0 ± 3.5 ms, P = 0.64), similar precision (4.9 ± 2.1 ms vs 5.1 ± 1.0 ms, P = 0.93), and acceptable scan-rescan reproducibility (bias = 0.13 ms for bSSFP T2 mapping and 0.55 ms for SMS-Multimapping). In patients, SMS-Multimapping clearly showed the abnormality in a similar fashion as the reference methods despite using only one breath-hold. CONCLUSION SMS-Multimapping with the proposed LLRS reconstruction can measure multislice T1 and T2 maps in one breath-hold with good accuracy, reasonable precision, and acceptable reproducibility, achieving a six-fold reduction of scan time and an improvement of patient comfort.
Collapse
Affiliation(s)
- Yixin Emu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yinyin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Shanghai, China
| | - Zhuo Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Gao
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, UIH Group, Shanghai, China
| | - Hongfei Lu
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Shanghai, China
| | - Hang Jin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Shanghai, China
| | - Chenxi Hu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Wang X, Pu J. Recent Advances in Cardiac Magnetic Resonance for Imaging of Acute Myocardial Infarction. SMALL METHODS 2024; 8:e2301170. [PMID: 37992241 DOI: 10.1002/smtd.202301170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Indexed: 11/24/2023]
Abstract
Acute myocardial infarction (AMI) is one of the primary causes of death worldwide, with a high incidence and mortality rate. Assessment of the infarcted and surviving myocardium, along with microvascular obstruction, is crucial for risk stratification, treatment, and prognosis in patients with AMI. Nonionizing radiation, excellent soft tissue contrast resolution, a large field of view, and multiplane imaging make cardiac magnetic resonance (CMR) a "one-stop" method for assessing cardiac structure, function, perfusion, and metabolism. Hence, this imaging technology is considered the "gold standard" for evaluating myocardial function and viability in AMI. This review critically compares the advantages and disadvantages of CMR with other cardiac imaging technologies, and relates the imaging findings to the underlying pathophysiological processes in AMI. A more thorough understanding of CMR technology will clarify their advanced clinical diagnosis and prognostic assessment applications, and assess the future approaches and challenges of CMR in the setting of AMI.
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Jiao Tong University, School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Jun Pu
- Shanghai Jiao Tong University, School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| |
Collapse
|
3
|
Sheagren CD, Cao T, Patel JH, Chen Z, Lee HL, Wang N, Christodoulou AG, Wright GA. Motion-compensated T 1 mapping in cardiovascular magnetic resonance imaging: a technical review. Front Cardiovasc Med 2023; 10:1160183. [PMID: 37790594 PMCID: PMC10542904 DOI: 10.3389/fcvm.2023.1160183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
T 1 mapping is becoming a staple magnetic resonance imaging method for diagnosing myocardial diseases such as ischemic cardiomyopathy, hypertrophic cardiomyopathy, myocarditis, and more. Clinically, most T 1 mapping sequences acquire a single slice at a single cardiac phase across a 10 to 15-heartbeat breath-hold, with one to three slices acquired in total. This leaves opportunities for improving patient comfort and information density by acquiring data across multiple cardiac phases in free-running acquisitions and across multiple respiratory phases in free-breathing acquisitions. Scanning in the presence of cardiac and respiratory motion requires more complex motion characterization and compensation. Most clinical mapping sequences use 2D single-slice acquisitions; however newer techniques allow for motion-compensated reconstructions in three dimensions and beyond. To further address confounding factors and improve measurement accuracy, T 1 maps can be acquired jointly with other quantitative parameters such as T 2 , T 2 ∗ , fat fraction, and more. These multiparametric acquisitions allow for constrained reconstruction approaches that isolate contributions to T 1 from other motion and relaxation mechanisms. In this review, we examine the state of the literature in motion-corrected and motion-resolved T 1 mapping, with potential future directions for further technical development and clinical translation.
Collapse
Affiliation(s)
- Calder D. Sheagren
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Jaykumar H. Patel
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Zihao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, CA, United States
| | - Graham A. Wright
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
4
|
Weingärtner S, Demirel ÖB, Gama F, Pierce I, Treibel TA, Schulz-Menger J, Akçakaya M. Cardiac phase-resolved late gadolinium enhancement imaging. Front Cardiovasc Med 2022; 9:917180. [PMID: 36247474 PMCID: PMC9557076 DOI: 10.3389/fcvm.2022.917180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is the clinical reference for assessment of myocardial scar and focal fibrosis. However, current LGE techniques are confined to imaging of a single cardiac phase, which hampers assessment of scar motility and does not allow cross-comparison between multiple phases. In this work, we investigate a three step approach to obtain cardiac phase-resolved LGE images: (1) Acquisition of cardiac phase-resolved imaging data with varying T1 weighting. (2) Generation of semi-quantitative T1* maps for each cardiac phase. (3) Synthetization of LGE contrast to obtain functional LGE images. The proposed method is evaluated in phantom imaging, six healthy subjects at 3T and 20 patients at 1.5T. Phantom imaging at 3T demonstrates consistent contrast throughout the cardiac cycle with a coefficient of variation of 2.55 ± 0.42%. In-vivo results show reliable LGE contrast with thorough suppression of the myocardial tissue is healthy subjects. The contrast between blood and myocardium showed moderate variation throughout the cardiac cycle in healthy subjects (coefficient of variation 18.2 ± 3.51%). Images were acquired at 40–60 ms and 80 ms temporal resolution, at 3T and 1.5, respectively. Functional LGE images acquired in patients with myocardial scar visualized scar tissue throughout the cardiac cycle, albeit at noticeably lower imaging resolution and noise resilience than the reference technique. The proposed technique bears the promise of integrating the advantages of phase-resolved CMR with LGE imaging, but further improvements in the acquisition quality are warranted for clinical use.
Collapse
Affiliation(s)
- Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
- *Correspondence: Sebastian Weingärtner
| | - Ömer B. Demirel
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Francisco Gama
- Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Iain Pierce
- Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Thomas A. Treibel
- Bart's Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance Imaging, Experimental and Clinical Research Center, Joint Cooperation of the Max-Delbrück-Centrum and Charite-Medical University Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch and DZHK, Berlin, Germany
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Gao F, Wen Z, Dou S, Kan X, Wei S, Ge Y. High-Resolution Simultaneous Multi-Slice Accelerated Turbo Spin-Echo Musculoskeletal Imaging: A Head-to-Head Comparison With Routine Turbo Spin-Echo Imaging. Front Physiol 2022; 12:759888. [PMID: 34992546 PMCID: PMC8724040 DOI: 10.3389/fphys.2021.759888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background/Aim: The turbo spin-echo (TSE) sequence is widely used for musculoskeletal (MSK) imaging; however, its acquisition speed is limited and can be easily affected by motion artifacts. We aimed to evaluate whether the use of a simultaneous multi-slice TSE (SMS-TSE) sequence can accelerate MSK imaging while maintaining image quality when compared with the routine TSE sequence. Methods: We prospectively enrolled 71 patients [mean age, 37.43 ± 12.56 (range, 20–67) years], including 37 men and 34 women, to undergo TSE and SMS sequences. The total scanning times for the wrist, ankle and knee joint with routine sequence were 14.92, 13.97, and 13.48 min, respectively. For the SMS-TSE sequence, they were 7.52, 7.20, and 6.87 min. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), were measured. Three experienced MSK imaging radiologists qualitatively evaluated the image quality of bone texture, cartilage, tendons, ligament, meniscus, and artifact using a 5-point evaluation system, and the diagnostic performance of the SMS-TSE sequences was evaluated. Results: Compared with the routine TSE sequences, the scanning time was lower by 49.60, 48.46, and 49.04% using SMS-TSE sequences for the wrist, ankle, and knee joints, respectively. For the SNR comparison, the SMS-TSE sequences were significantly higher than the routine TSE sequence for wrist (except for Axial-T2WI-FS), ankle, and knee joint MR imaging (all p < 0.05), but no statistical significance was obtained for the CNR measurement (all p > 0.05, except for Sag-PDWI-FS in ankle joint). For the wrist joint, the diagnostic sensitivity, specificity, and accuracy were 88.24, 100, and 92%. For the ankle joint, they were 100, 75, and 93.33%. For the knee joint, they were 87.50, 85.71, and 87.10%. Conclusion: The use of the SMS-TSE sequence in the wrist, ankle, and knee joints can significantly reduce the scanning time and show similar image quality when compared with the routine TSE sequence.
Collapse
Affiliation(s)
- Feifei Gao
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zejun Wen
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shewei Dou
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaojing Kan
- Department of Radiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Shufang Wei
- Department of Radiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yinghui Ge
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Radiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Demirel OB, Weingärtner S, Moeller S, Akçakaya M. Improved simultaneous multislice cardiac MRI using readout concatenated k-space SPIRiT (ROCK-SPIRiT). Magn Reson Med 2021; 85:3036-3048. [PMID: 33566378 DOI: 10.1002/mrm.28680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE To develop and evaluate a simultaneous multislice (SMS) reconstruction technique that provides noise reduction and leakage blocking for highly accelerated cardiac MRI. METHODS ReadOut Concatenated k-space SPIRiT (ROCK-SPIRiT) uses the concept of readout concatenation in image domain to represent SMS encoding, and performs coil self-consistency as in SPIRiT-type reconstruction in an extended k-space, while allowing regularization for further denoising. The proposed method is implemented with and without regularization, and validated on retrospectively SMS-accelerated cine imaging with three-fold SMS and two-fold in-plane acceleration. ROCK-SPIRiT is compared with two leakage-blocking SMS reconstruction methods: readout-SENSE-GRAPPA and split slice-GRAPPA. Further evaluation and comparisons are performed using prospectively SMS-accelerated cine imaging. RESULTS Results on retrospectively three-fold SMS and two-fold in-plane accelerated cine imaging show that ROCK-SPIRiT without regularization significantly improves on existing methods in terms of PSNR (readout-SENSE-GRAPPA: 33.5 ± 3.2, split slice-GRAPPA: 34.1 ± 3.8, ROCK-SPIRiT: 35.0 ± 3.3) and SSIM (readout-SENSE-GRAPPA: 84.4 ± 8.9, split slice-GRAPPA: 85.0 ± 8.9, ROCK-SPIRiT: 88.2 ± 6.6 [in percentage]). Regularized ROCK-SPIRiT significantly outperforms all methods, as characterized by these quantitative metrics (PSNR: 37.6 ± 3.8, SSIM: 94.2 ± 4.1 [in percentage]). The prospectively five-fold SMS and two-fold in-plane accelerated data show that ROCK-SPIRiT and regularized ROCK-SPIRiT have visually improved image quality compared with existing methods. CONCLUSION The proposed ROCK-SPIRiT technique reduces noise and interslice leakage in accelerated SMS cardiac cine MRI, improving on existing methods both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Omer Burak Demirel
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebastian Weingärtner
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|