1
|
Fu X, Xiong Y, Tang R, Li X, Liu H, Ren X. Association of hTERT Gene Polymorphism and Colorectal Cancer (CRC) Risk in the Chinese Han Population. TOHOKU J EXP MED 2024; 263:89-95. [PMID: 38296486 DOI: 10.1620/tjem.2024.j008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The catalytic subunit telomerase reverse transcriptase (hTERT) is a prerequisite for malignant transformation of human cells. Colorectal cancer (CRC) is a common malignant tumor. The genetic association of hTERT gene rs2853669 and rs2736098 polymorphisms with CRC was surveyed in the Chinese population. Two hundreds patients with CRC and 200 healthy controls were taken for blood sample collection. Sanger sequencing was applied for genotyping. Multiple logistic regression analysis was performed, and odds ratio (OR) together with confidence interval (CI) were calculated to obtain the corresponding association power. Among CRC cases (49.50%), hTERT gene rs2736098 GA genotype carriers were more prevalent compared with the control group (41.00%, P = 0.035), which increased the risk of CRC by 1.576 times (95% CI, 1.031-2.409). Distribution of the rs2736098 genotypes was significantly associated with TNM stage, tumor differentiation, tumor size and lymph node metastasis (P < 0.05). The frequencies of hTERT gene rs2853669 polymorphism were not significantly different between CRC patients and healthy controls. Logistic regression analysis indicated that both body mass index (BMI) and hTERT gene rs2736098 polymorphism remained significantly correlated with CRC susceptibility. The frequencies of hTERT gene rs2853669 polymorphism did not differ significantly between CRC patients and control group (P > 0.05). The hTERT gene rs2736098 polymorphism was correlated with CRC risk in the Chinese Han population, and the GA genotype was a risk element for the onset of CRC.
Collapse
Affiliation(s)
- Xianxian Fu
- Department of Laboratory, Haikou People's Hospital
| | - Yanyan Xiong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University
| | - Renjin Tang
- Department of Integrated Traditional Chinese and Western Medicine, Chengdu Shangjin Nanfu Hospital
| | - Xuelin Li
- Department of Integrated Traditional Chinese and Western Medicine, Chengdu Shangjin Nanfu Hospital
| | - Hong Liu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University
| | - Xiaowei Ren
- Department of Anorectal, Fuling Hospital of Chinese Medicine
| |
Collapse
|
2
|
Nousiainen A, Schenkwein D, Ylä-Herttuala S. Characterization of a new IN-I-PpoI fusion protein and a homology-arm containing transgene cassette that improve transgene expression persistence and 28S rRNA gene-targeted insertion of lentiviral vectors. PLoS One 2023; 18:e0280894. [PMID: 36662822 PMCID: PMC9858087 DOI: 10.1371/journal.pone.0280894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Targeting transgene integration into a safe genomic locus would be very important for gene therapy. We have generated lentivirus vectors containing the ribosomal RNA-recognising I-PpoI endonuclease fused to viral integrase, and transgene cassettes with target site homology arms to enhance insertion targeting. These new vectors were characterised with respect to the persistence of transgene expression, insertion targeting efficiency and chromosomal integrity of the transduced cells. The aim was to find an optimally safe and effective vector for human gene therapy. Fusion protein vectors with high endonuclease activity were the most effective in the accurate targeting of transgene insertion. The homology construct increased the insertion targeting efficiency to 28% in MRC-5 cells. However, karyotyping analysis showed that the high endonuclease activity induced the formation of derivative chromosomes in as many as 24% of the analysed primary T lymphocytes. The persistence of transgene expression was excellent in homology arm-containing fusion protein vectors with reduced endonuclease activity, and these fusion proteins did not cause any detectable chromosomal rearrangements attributable to the endonuclease activity. We thus conclude that instead of the fusion protein vectors that carry a highly active endonuclease, our vectors with the ability to tether the lentivirus preintegration complex to benign loci in the genome without high ribosomal DNA cleavage activity are better suited for lentivirus-based gene therapy applications.
Collapse
Affiliation(s)
- Alisa Nousiainen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Diana Schenkwein
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
3
|
Liu Y, Betori RC, Pagacz J, Frost GB, Efimova EV, Wu D, Wolfgeher DJ, Bryan TM, Cohen SB, Scheidt KA, Kron SJ. Targeting telomerase reverse transcriptase with the covalent inhibitor NU-1 confers immunogenic radiation sensitization. Cell Chem Biol 2022; 29:1517-1531.e7. [PMID: 36206753 PMCID: PMC9588800 DOI: 10.1016/j.chembiol.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Beyond synthesizing telomere repeats, the telomerase reverse transcriptase (TERT) also serves multiple other roles supporting cancer growth. Blocking telomerase to drive telomere erosion appears impractical, but TERT's non-canonical activities have yet to be fully explored as cancer targets. Here, we used an irreversible TERT inhibitor, NU-1, to examine impacts on resistance to conventional cancer therapies. In vitro, inhibiting TERT sensitized cells to chemotherapy and radiation. NU-1 delayed repair of double-strand breaks, resulting in persistent DNA damage signaling and cellular senescence. Although NU-1 alone did not impact growth of syngeneic CT26 tumors in BALB/c mice, it dramatically enhanced the effects of radiation, leading to immune-dependent tumor elimination. Tumors displayed persistent DNA damage, suppressed proliferation, and increased activated immune infiltrate. Our studies confirm TERT's role in limiting genotoxic effects of conventional therapy but also implicate TERT as a determinant of immune evasion and therapy resistance.
Collapse
Affiliation(s)
- Yue Liu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Rick C Betori
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Joanna Pagacz
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Grant B Frost
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Elena V Efimova
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ding Wu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Scott B Cohen
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Stephen J Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Moreno-Acosta P, Molano MÓ, Morales N, Acosta J, GonzÁlez-Prieto C, Mayorga D, Buitrago L, Gamboa O, MejÍa JC, Castro J, Romero-Rojas A, Espenel S, Murray GL, Garland SM, Vallard A, MagnÉ N. hTERT Protein Expression in Cytoplasm and Nucleus and its Association With HPV Infection in Patients With Cervical Cancer. Cancer Genomics Proteomics 2021; 17:615-625. [PMID: 32859640 DOI: 10.21873/cgp.20218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Few studies have analyzed the association between human telomerase reverse transcriptase (hTERT) protein expression (nuclear and cytoplasmic localization), hTERT methylation status, and human papillomavirus (HPV) genotype infection in cervical cancer. PATIENTS AND METHODS One hundred seventy-three patients with cervical cancer were analyzed. hTERT protein expression was detected by immunohistochemistry. hTERT DNA methylation analysis was performed using a PCR-RLB-hTERT assay, targeting two regions of the hTERT promoter. Type specific HPV infection was detected by using GP5+/GP6+PCR-RLB. RESULTS hTERT protein expression was found in both cytoplasm and nucleus (78.0% of the samples showed a cytoplasmic localization and 79.8% had a nuclear localization). A statistically significant association was found between alpha 9 and 7 HPV species with a non-methylation pattern of the hTERT promoter and between these species and high expression of hTERT protein with nuclear localization. CONCLUSION hTERT protein is found in both the nucleus and cytoplasm of patients with cervical cancer and confirm the relationship between the non-methylated status of hTERT promoter and some HPV species as well as the relationship between these species and hTERT protein expression.
Collapse
Affiliation(s)
- Pablo Moreno-Acosta
- Research Group in Radiobiology Clinical, Molecular and Cellular, National Cancer Institute, Bogotá, Colombia .,Research Group in Cancer Biology, National Cancer Institute, Bogotá, Colombia
| | - MÓnica Molano
- Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Melbourne, Australia
| | - Nicolas Morales
- Research Group in Cancer Biology, National Cancer Institute, Bogotá, Colombia
| | - Jinneth Acosta
- Pathology Group, National University of Colombia, Bogotá, Colombia
| | | | - Diana Mayorga
- Research Group in Radiobiology Clinical, Molecular and Cellular, National Cancer Institute, Bogotá, Colombia
| | - Lina Buitrago
- Unit of Analysis, National Cancer Institute, Bogotá, Colombia
| | - Oscar Gamboa
- Unit of Analysis, National Cancer Institute, Bogotá, Colombia
| | - Juan Carlos MejÍa
- Group of Pathology Oncology, National Cancer Institute, Bogotá, Colombia
| | - July Castro
- Group of Pathology Oncology, National Cancer Institute, Bogotá, Colombia
| | | | - Sophie Espenel
- Department of Radiation Oncology, Institut de Cancérologie de la Loire-Lucien Neuwirth, Saint-Priest en Jarez, France
| | - Gerald L Murray
- Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Suzanne M Garland
- Centre Women's Infectious Diseases Research, The Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Alexis Vallard
- Department of Radiation Oncology, Institut de Cancérologie de la Loire-Lucien Neuwirth, Saint-Priest en Jarez, France
| | - Nicolas MagnÉ
- Department of Radiation Oncology, Institut de Cancérologie de la Loire-Lucien Neuwirth, Saint-Priest en Jarez, France
| |
Collapse
|
5
|
Li Z, Zhang Y, Sui S, Hua Y, Zhao A, Tian X, Wang R, Guo W, Yu W, Zou K, Deng W, He L, Zou L. Targeting HMGB3/hTERT axis for radioresistance in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:243. [PMID: 33187536 PMCID: PMC7664109 DOI: 10.1186/s13046-020-01737-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Radiotherapy is regarded as a milestone for the cure of cervical cancer. However, clinical outcome heavily be hindered by radioresistance. So, exploring the underlying mechanism of radioresistance, and find potential target, well deserve fully emphasis. METHODS In this study, we developed two novel radiation resistance cervical cancer cell lines, which could mimic clinical radioresistance. In order to find new potential targets, RNA-Seq, database analysis, streptavidin-agarose and LC/MS were used. Pull-down, luciferase and rescue assays were conducted to explore the regulatory mechanisms. To further evaluate the correlation between therapeutic responses and HMGB3/hTERT expression, 172 cervical cancer patients were recruited. RESULTS Knockdown of HMGB3 significantly inhibit the DNA damage repair and induced more γH2AX foci, leading to enhanced chemo- and radio-sensitivity in vitro and in vivo, whereas HMGB3 overexpression has the opposite effects. HMGB3 promotes cell growth and radioresistance by transcriptionally up-regulating hTERT via the specifical binding of HMGB3 at the hTERT promoter region from - 902 to - 321. HMGB3 knockdown-mediated radiosensitization could be reversed by the overexpressed hTERT in both cervical cancer cell lines and xenograft tumor mouse model. Furthermore, clinical data from 172 cervical cancer patients proved that there was a positive correlation between HMGB3 and hTERT expression, and high expression of HMGB3/hTERT predicted poor response to radiotherapy, worse TNM stages and shorter survival time. CONCLUSION Here, we have identified HMGB3/hTERT signaling axis as a new target for cervical cancer radioresistance. Our results provide new insights into the mechanism of cervical cancer radioresistance and indicate that targeting the HMGB3/hTERT signaling axis may benefit cervical cancer patients.
Collapse
Affiliation(s)
- Zongjuan Li
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Zhang
- Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Silei Sui
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yijun Hua
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Anshi Zhao
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaoyuan Tian
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruonan Wang
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Guo
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wendan Yu
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kun Zou
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Liru He
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Lijuan Zou
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
6
|
Zataria multiflora methanolic extract has antitumor properties on U266 multiple myeloma cell line. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Häfner SJ. The body's integrated repair kit: Studying mesenchymal stem cells for better ligament repair. Biomed J 2019; 42:365-370. [PMID: 31948600 PMCID: PMC6962754 DOI: 10.1016/j.bj.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
In this issue of the Biomedical Journal, we learn that the sport injury-prone knee ligaments might harbour their own repair kit in the form of mesenchymal stem cells, and that TERT transformation helps to keep these cells longer in culture for more extensive studies. In addition, we get a demonstration that diffusion tensor imaging can reliably show the activity of specific neural circuits, that rheumatoid arthritis patients are more prone to insulin resistance, and that platelet-enriched plasma gels significantly improve wound healing after pilonidal sinus surgery. Furthermore, two procreation-related articles inform us that growth hormone treatment improves endometrial receptivity in older women, and that elevated maternal liver enzymes do not impact on the outcome of laser therapy for twin-twin transfusion syndrome. Finally, our attention is brought to the importance of subjective well-being evaluation for orthodontic correction needs, as well as the possibility that exercise could maybe increase sperm telomere length.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Copenhagen, Denmark.
| |
Collapse
|
8
|
Short-Term Dietary Intervention with Cooked but Not Raw Brassica Leafy Vegetables Increases Telomerase Activity in CD8+ Lymphocytes in a Randomized Human Trial. Nutrients 2019; 11:nu11040786. [PMID: 30959753 PMCID: PMC6520774 DOI: 10.3390/nu11040786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Telomerase in T lymphocytes is dynamic and limited evidence from epidemiological studies indicates that the enzyme can be modulated in peripheral lymphocytes by dietary and lifestyle factors. The differential effect of dietary intervention on T cell subsets has not been investigated so far. Brassica vegetables are known for their multiple beneficial effects on human health, and here, the effect of a five-day short-term intervention with raw or cooked leaves of Brassica carinata on telomerase activity in CD4+ and CD8+ T cells from 22 healthy volunteers was investigated in a randomized single-blind, controlled crossover study. Blood samples were collected before and after intervention, and CD4+/CD8+ T lymphocytes were isolated. Telomerase activity was quantified using the TRAP-ELISA assay. Intervention with both preparations led to a marginal increase in telomerase activity of CD4+ cells compared to the baseline level. In CD8+ cells, a significant increase in telomerase activity (25%, p < 0.05) was seen after intervention with the cooked material. An increase in telomerase activity in CD8+ cells of healthy volunteers could be regarded as beneficial in terms of helping with the cell-mediated immune response. Whether a Brassica intervention has long-term effects on telomere extension in specific T cell subsets needs to be determined.
Collapse
|
9
|
Dilshara MG, Jayasooriya RGPT, Choi YH, Kim GY. Camptothecin induces c-Myc- and Sp1-mediated hTERT expression in LNCaP cells: Involvement of reactive oxygen species and PI3K/Akt. Food Chem Toxicol 2019; 127:53-60. [PMID: 30851366 DOI: 10.1016/j.fct.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 02/14/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023]
Abstract
Camptothecin (CPT), a quinoline alkaloid isolated from Camptotheca acuminate, targets topoisomerase I, which is continuously expressed in cancer cells. However, the molecular mechanisms responsible for CPT-induced telomerase inhibition remain unclear. Unexpectedly, we found that CPT upregulates hTERT expression and concomitantly increases telomerase activity. However, transfection of hTERT-targeting siRNA had no effect on CPT-induced G2/M phase arrest, suggesting that CPT-induced telomerase activation was not related to G2/M phase arrest. CPT simultaneously increased Nrf2 expression and the level of intracellular reactive oxygen species (ROS), whereas pretreatment with the antioxidants N-acetyl-cysteine (NAC) or glutathione (GSH) strongly attenuated ROS production, which was accompanied by hTERT downregulation. Additionally, transient Nrf2 knockdown enhanced CPT-induced ROS production and hTERT promoter activity. CPT also upregulated hTERT expression and telomerase activity by inducing c-Myc and Sp1 expression and activity. Moreover, c-Myc stimulated ROS production in response to CPT, leading to Sp1 activation, which promoted hTERT expression and telomerase activity. CPT treatment enhanced the phosphorylation of PI3K and Akt, which led to hTERT phosphorylation into the nucleus. These findings demonstrate that CPT positively regulates telomerase activity by upregulating hTERT expression and phosphorylation via the c-Myc/ROS/Sp1 and PI3K/Akt axis.
Collapse
Affiliation(s)
| | | | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
10
|
Chen S, Yang L, Dong H, Guo H. Human telomerase reverse transcriptase recruits the β-catenin/TCF-4 complex to transactivate chemokine (C-C motif) ligand 2 expression in colorectal cancer. Biomed Pharmacother 2019; 112:108700. [PMID: 30970512 DOI: 10.1016/j.biopha.2019.108700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM Various molecular mechanisms are involved in the pathogenesis of colorectal cancer (CRC), one of the leading fatal diseases. Although human telomerase reverse transcriptase (hTERT) is critical in promoting CRC development, its regulatory mechanism is still elusive. Chemokine (C-C motif) ligand 2 (CCL2) is important to CRC pathogenesis, but the upstream regulation of CCL2 requires further investigation. Therefore, we aim to investigate the crosstalk mechanism between hTERT and CCL2 and its involvement in the pathogenesis of CRC. METHODS The expression relationship between hTERT and CCL2 was verified in CRC and adjacent tissues by immunohistochemistry. Lentiviruses or plasmids were used to regulate hTERT and CCL2 expression. The roles of hTERT and CCL2 in cell growth and migration were studied using CCK8 and transwell assays. The interaction between hTERT and CCL2 was detected by a luciferase reporter assay, immunofluorescence and ChIP assays. The β-catenin/TCF-4 complex was confirmed by COIP. RESULTS Both hTERT and CCL2 expression levels were markedly increased in CRC tissues compared to the adjacent stroma. Moreover, myeloid-derived suppressor cells (MDSCs) were found in tumor areas with higher expression levels of hTERT and CCL2. hTERT promoted HCT116 cell migration and invasion by increasing CCL2 expression. Mechanistically, ectopic hTERT facilitated the nuclear translocation of canonical β-catenin and the formation of a complex with downstream effector TCF-4, which eventually activated the CCL2 promoter. CONCLUSIONS hTERT may promote CRC by recruiting β-catenin/TCF-4 complex to transactivate CCL2 expression, which is a novel crosstalk mechanism likely involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Li Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hong Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
11
|
Martín-Beltrán C, Sánchez-Peris M, Conesa-Milián L, Falomir E, Murga J, Carda M, Marco JA. Arylpyridines, arylpyrimidines and related compounds as potential modulator agents of the VEGF, hTERT and c-Myc oncogenes. Bioorg Med Chem 2019; 27:880-887. [PMID: 30733086 DOI: 10.1016/j.bmc.2019.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
Twenty-four derivatives structurally related to honokiol have been synthesized and biologically evaluated. IC50 values were determined towards the HT-29, MCF-7 and HEK-293 cell lines. Some of these derivatives exhibited comparable or lower IC50 values than honokiol towards the HT-29 and MCF-7 cell lines or else higher selectivity indexes than the natural product. Twelve selected derivatives were evaluated for their ability to inhibit the expression of the VEGFA, hTERT and c-Myc genes and also to inhibit the production of total c-Myc protein and the secretion of the VEGF protein. One of the most promising compounds, 3-(2,4-dimethoxyphenyl)pyridine, may be a good candidate for further studies as an anticancer agent as it is able to improve the effect shown by honokiol in downregulating all gene expression and protein production at a safe concentration for non-tumor cells.
Collapse
Affiliation(s)
- Celia Martín-Beltrán
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - María Sánchez-Peris
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Laura Conesa-Milián
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Eva Falomir
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - Juan Murga
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain.
| | - Miguel Carda
- Dept. de Química Inorgánica y Orgánica, Universidad Jaume I, E-12071 Castellón, Spain
| | - J Alberto Marco
- Dept. de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
12
|
Hadzic M, Haveric S, Haveric A, Lojo-Kadric N, Galic B, Ramic J, Pojskic L. Bioflavonoids protect cells against halogenated boroxine-induced genotoxic damage by upregulation of hTERT expression. ACTA ACUST UNITED AC 2018; 74:125-129. [DOI: 10.1515/znc-2018-0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Plant bioflavonoids are widely present in the human diet and have various protective properties. In this study, we have demonstrated the capacity of delphinidin and luteolin to increase human telomerase reverse transcriptase (hTERT) expression level and act as protective agents against halogenated boroxine-induced genotoxic damage. Halogenated boroxine K2(B3O3F4OH) (HB), is a novel compound with potential for the treatment of both benign and malignant skin changes. In vivo and in vitro studies have confirmed the inhibitory effects of HB on carcinoma cell proliferation and cell cycle progression as well as enzyme inhibition. However, minor genotoxic effects of HB are registered in higher applied concentrations, but those can be suppressed by in vitro addition of delphinidin and luteolin in appropriate concentrations. Fresh peripheral blood samples were cultivated for 72 h followed by independent and concomitant treatments of HB with luteolin or delphinidin. We analyzed the differences in relative hTERT expression between series of treatments compared with controls, which were based on normalized ratios with housekeeping genes. The obtained results have shown that selected bioflavonoids induce upregulation of hTERT that may contribute to the repair of genotoxic damage in vitro.
Collapse
Affiliation(s)
- Maida Hadzic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Sanin Haveric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Naida Lojo-Kadric
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Borivoj Galic
- Faculty of Science, Department for Chemistry , University of Sarajevo , Zmaja od Bosne 33-35 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Jasmin Ramic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology , University of Sarajevo , Zmaja od Bosne 8 , 71000 Sarajevo , Bosnia and Herzegovina
| |
Collapse
|
13
|
Fang H, Niu K, Mo D, Zhu Y, Tan Q, Wei D, Li Y, Chen Z, Yang S, Balajee AS, Zhao Y. RecQL4-Aurora B kinase axis is essential for cellular proliferation, cell cycle progression, and mitotic integrity. Oncogenesis 2018; 7:68. [PMID: 30206236 PMCID: PMC6134139 DOI: 10.1038/s41389-018-0080-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/06/2018] [Accepted: 04/28/2018] [Indexed: 01/22/2023] Open
Abstract
Human RecQL4 helicase plays critical roles in the maintenance of genomic stability. Mutations in RecQL4 helicase results in three clinically related autosomal recessive disorders: Rothmund–Thomson syndrome (RTS), RAPADILINO, and Baller–Gerold syndrome. In addition to several premature aging features, RTS patients are characterized by aneuploidy involving either loss or gain of a single chromosome. Chromosome mosaicism and isochromosomes involving chromosomes 2, 7, and 8 have been reported in RecQL4-deficient RTS patients, but the precise role of RecQL4 in chromosome segregation/stability remains to be elucidated. Here, we demonstrate that RecQL4 physically and functionally interacts with Aurora B kinase (AURKB) and stabilizes its expression by inhibiting its ubiquitination process. Our study indicates that the N-terminus of RecQL4 interacts with the catalytic domain of AURKB. Strikingly, RecQL4 suppression reduces the expression of AURKB leading to mitotic irregularities and apoptotic cell death. RecQL4 suppression increases the proportion of cells at the G2/M phase followed by an extensive cell death, presumably owing to the accumulation of mitotic irregularities. Both these defects (accumulation of cells at G2/M phase and an improper mitotic exit to sub-G1) are complemented by the ectopic expression of AURKB. Finally, evidence is provided for the requirement of both human telomerase reverse transcriptase and RecQL4 for stable immortalization and longevity of RTS fibroblasts. Collectively, our study suggests that the RecQL4–AURKB axis is essential for cellular proliferation, cell cycle progression, and mitotic stability in human cells.
Collapse
Affiliation(s)
- Hongbo Fang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kaifeng Niu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongliang Mo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuqi Zhu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qunsong Tan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Di Wei
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yueyang Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zixiang Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuchen Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Adayabalam S Balajee
- Cytogenetics Biodosimetry Laboratory, REACTS, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
| | - Yongliang Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
14
|
KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway. Cell Death Dis 2017; 8:e2940. [PMID: 28726783 PMCID: PMC5550845 DOI: 10.1038/cddis.2017.285] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023]
Abstract
Melanoma is an aggressive cutaneous malignancy, illuminating the exact mechanisms and finding novel therapeutic targets are urgently needed. In this study, we identified KMT2A as a potential target, which promoted the growth of human melanoma cells. KMT2A knockdown significantly inhibited cell viability and cell migration and induced apoptosis, whereas KMT2A overexpression effectively promoted cell proliferation in various melanoma cell lines. Further study showed that KMT2A regulated melanoma cell growth by targeting the hTERT-dependent signal pathway. Knockdown of KMT2A markedly inhibited the promoter activity and expression of hTERT, and hTERT overexpression rescued the viability inhibition caused by KMT2A knockdown. Moreover, KMT2A knockdown suppressed tumorsphere formation and the expression of cancer stem cell markers, which was also reversed by hTERT overexpression. In addition, the results from a xenograft mouse model confirmed that KMT2A promoted melanoma growth via hTERT signaling. Finally, analyses of clinical samples demonstrated that the expression of KMT2A and hTERT were positively correlated in melanoma tumor tissues, and KMT2A high expression predicted poor prognosis in melanoma patients. Collectively, our results indicate that KMT2A promotes melanoma growth by activating the hTERT signaling, suggesting that the KMT2A/hTERT signaling pathway may be a potential therapeutic target for melanoma.
Collapse
|
15
|
Herz C, Tran HTT, Landerer S, Gaus J, Schlotz N, Lehr L, Schäfer WR, Treeck O, Odongo GA, Skatchkov I, Lamy E. Normal human immune cells are sensitive to telomerase inhibition by Brassica-derived 3,3-diindolylmethane,partly mediated via ERα/β-AP1 signaling. Mol Nutr Food Res 2017; 61. [PMID: 28267258 DOI: 10.1002/mnfr.201600524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 11/07/2022]
Abstract
SCOPE Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) from Brassica plants are regarded as promising anticancer phytochemicals. The enzyme telomerase is a very attractive target for cancer therapeutics; in normal cells such as lymphocytes, it plays a decisive role for cell maintenance. The effect of I3C and DIM on telomerase in normal human immune cells (PBMC) was studied compared to leukaemia cells (HL-60). Signalling of telomerase regulation via estrogen receptor (ER) was addressed. METHODS AND RESULTS Short-term treatment with I3C and DIM inhibited telomerase activity in leukaemia cells (>30 μM I3C; >3 μM DIM). In CD3/CD28 activated PBMC, inhibition was stronger, though (>3 μM I3C; >1 μM DIM). DIM long-term treatment resulted in DNA damage induction and proliferation inhibition in PBMC as determined by the comet assay and CFSE staining, respectively. A relevance of ERα/β-AP1 signaling for telomerase inhibition on enzyme activity, but not transcription level became evident indicating a nonclassical mode for ER regulation of telomerase by DIM. CONCLUSION Although desired in cancer cells, this study identified a potential adverse impact of I3C and DIM on telomerase action in normal human immune cells, partly mediated by an ER-dependent mechanism. These new findings should be considered for potential chronic high-dose chemoprevention strategies using these compounds.
Collapse
Affiliation(s)
- Corinna Herz
- Molecular Preventive Medicine, Institute of Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Hoai Thi Thu Tran
- Molecular Preventive Medicine, Institute of Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Steffen Landerer
- Institute of Environmental Health Sciences, University Medical Center Freiburg, Freiburg, Germany
| | - Johanna Gaus
- Molecular Preventive Medicine, Institute of Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Nina Schlotz
- Molecular Preventive Medicine, Institute of Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Lia Lehr
- Molecular Preventive Medicine, Institute of Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Wolfgang R Schäfer
- Department of Obstetrics & Gynecology, University Medical Center Freiburg, Freiburg, Germany
| | - Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Grace Akinyi Odongo
- Molecular Preventive Medicine, Institute of Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Ivan Skatchkov
- Molecular Preventive Medicine, Institute of Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, Institute of Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Sánchez-Peris M, Murga J, Falomir E, Carda M, Marco JA. Synthesis of honokiol analogues and evaluation of their modulating action on VEGF protein secretion and telomerase-related gene expressions. Chem Biol Drug Des 2016; 89:577-584. [DOI: 10.1111/cbdd.12880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Affiliation(s)
- María Sánchez-Peris
- Department of Inorganic and Organic Chemistry; University Jaume I; Castellón Spain
| | - Juan Murga
- Department of Inorganic and Organic Chemistry; University Jaume I; Castellón Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry; University Jaume I; Castellón Spain
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry; University Jaume I; Castellón Spain
| | - Juan Alberto Marco
- Department of Organic Chemistry; University of Valencia; Burjassot Spain
| |
Collapse
|
17
|
Chen R, Zhu J, Dong Y, He C, Hu X. Suppressor of Ty homolog-5, a novel tumor-specific human telomerase reverse transcriptase promoter-binding protein and activator in colon cancer cells. Oncotarget 2016; 6:32841-55. [PMID: 26418880 PMCID: PMC4741733 DOI: 10.18632/oncotarget.5301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/05/2015] [Indexed: 12/14/2022] Open
Abstract
The human telomerase reverse transcriptase (hTERT) promoter promotes differential hTERT gene expression in tumor cells and normal cells. However, information on the mechanisms underlying the differential hTERT transcription and induction of telomerase activity in tumor cells is limited. In the present study, suppressor of Ty homolog-5 (SPT5), a protein encoded by the SUPT5H gene, was identified as a novel tumor-specific hTERT promoter-binding protein and activator in colon cancer cells. We verified the tumor-specific binding activity of SPT5 to the hTERT promoter in vitro and in vivo and detected high expression levels of SUPT5H in colorectal cancer cell lines and primary human colorectal cancer tissues. SUPT5H was more highly expressed in colorectal cancer cases with distant metastasis than in cases without distant metastasis. Inhibition of endogenous SUPT5H expression by SUPT5H gene-specific short hairpin RNAs effectively attenuated hTERT promoter-driven green fluorescent protein (GFP) expression, whereas no detectable effects on CMV promoter-driven GFP expression in the same cells were observed. In addition, inhibition of SUPT5H expression not only effectively repressed telomerase activity, accelerated telomere shortening, and promoted cell senescence in colon cancer cells, but also suppressed cancer cell growth and migration. Our results demonstrated that SPT5 contributes to the up-regulation of hTERT expression and tumor development, and SUPT5H may potentially be used as a novel tumor biomarker and/or cancer therapeutic target.
Collapse
Affiliation(s)
- Rui Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jing Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Yong Dong
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Chao He
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
18
|
Yong KW, Safwani WKZW, Xu F, Zhang X, Choi JR, Abas WABW, Omar SZ, Azmi MAN, Chua KH, Pingguan-Murphy B. Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells. J Tissue Eng Regen Med 2016; 11:2217-2226. [PMID: 26756982 DOI: 10.1002/term.2120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022]
Abstract
Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off-the-shelf use in clinical applications, e.g. cell-based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose-derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long-term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long-term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long-term cryopreserved hASCs for future clinical applications. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.,Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
| | | | - Feng Xu
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China.,Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, People's Republic of China
| | - Xiaohui Zhang
- Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China.,Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, People's Republic of China
| | - Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.,Bioinspired Engineering and Biomechanics Centre (BEBC), Xi'an Jiaotong University, People's Republic of China
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mat Adenan Noor Azmi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Wang Z, Chang S, Zhao X, Chen D, Li K. Enhancement of anti-tumor immune responses induced by ligand-mediated biomimetic Texosomes. RSC Adv 2016. [DOI: 10.1039/c6ra05444g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In order to overcome the immune tolerance and awake the tumor patients’ self immune response, hTERT-HSP70 as a universal tumor antigen is specifically transferred to dendritic cells by DEC205McAb Texosomes as the carriers of a tumor vaccine.
Collapse
Affiliation(s)
- Zhongyan Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Liaoning Province
- China
| | - Shasha Chang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Liaoning Province
- China
| | - Xiuli Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Liaoning Province
- China
| | - Dawei Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- Liaoning Province
- China
| | - Kexin Li
- School of Pharmacy
- Shenyang Pharmaceutical University
- Liaoning Province
- China
| |
Collapse
|
20
|
Bufalin Induces Mitochondria-Dependent Apoptosis in Pancreatic and Oral Cancer Cells by Downregulating hTERT Expression via Activation of the JNK/p38 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:546210. [PMID: 26783410 PMCID: PMC4689913 DOI: 10.1155/2015/546210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022]
Abstract
Bufalin, a digoxin-like active component of the traditional Chinese medicine Chan Su, exhibits potent antitumor activities in many human cancers. Bufalin induces mitochondria-dependent apoptosis in cancer cells, but the detailed molecular mechanisms are largely unknown. hTERT, the catalytic subunit of telomerase, protects against mitochondrial damage by binding to mitochondrial DNA and reducing mitochondrial ROS production. In the present study, we investigated the effects of bufalin on the cell viability, ROS production, DNA damage, and apoptosis of CAPAN-2 human pancreatic and CAL-27 human oral cancer cells. Bufalin reduced CAPAN-2 and CAL-27 cell viability with IC50 values of 159.2 nM and 122.6 nM, respectively. The reduced cell viability was accompanied by increased ROS production, DNA damage, and apoptosis and decreased expression of hTERT. hTERT silencing in CAPAN-2 and CAL-27 cells by siRNA resulted in increased caspase-9/-3 cleavage and DNA damage and decreased cell viability. Collectively, these data suggest that bufalin downregulates hTERT to induce mitochondria-dependent apoptosis in CAPAN-2 and CAL-27 cells. Moreover, bufalin increased the phosphorylation of JNK and p38-MAPK in CAPAN-2 and CAL-27 cells, and blocking the JNK/p38-MAPK pathway using the JNK inhibitor SP600125 or the p38-MAPK inhibitor SB203580 reversed bufalin-induced hTERT downregulation. Thus, the JNK/p38 pathway is involved in bufalin-induced hTERT downregulation and subsequent induction of apoptosis by the mitochondrial pathway.
Collapse
|
21
|
Gene therapy and imaging in preclinical and clinical oncology: recent developments in therapy and theranostics. Ther Deliv 2014; 5:1275-96. [DOI: 10.4155/tde.14.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the case of disseminated cancer, current treatment options reach their limit. Gene theranostics emerge as an innovative route in the treatment and diagnosis of cancer and might pave the way towards development of an efficacious treatment of currently incurable cancer. Various gene vectors have been developed to realize tumor-specific nucleic acid delivery and are considered crucial for the successful application of cancer gene therapy. By adding reporter genes and imaging agents, these systems gain an additional diagnostic function, thereby advancing the theranostic paradigm into cancer gene therapy. Numerous preclinical studies have demonstrated the feasibility of combined tumor gene therapy and diagnostic imaging, and clinical trials in human and veterinary oncology have been executed with partly encouraging results.
Collapse
|
22
|
Miles SL, McFarland M, Niles RM. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr Rev 2014; 72:720-34. [PMID: 25323953 DOI: 10.1111/nure.12152] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Sarah L Miles
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| | - Margaret McFarland
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| | - Richard M Niles
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| |
Collapse
|
23
|
Herz C, Hertrampf A, Zimmermann S, Stetter N, Wagner M, Kleinhans C, Erlacher M, Schüler J, Platz S, Rohn S, Mersch-Sundermann V, Lamy E. The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC. J Cell Mol Med 2014; 18:2393-403. [PMID: 25256442 PMCID: PMC4302645 DOI: 10.1111/jcmm.12412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/30/2014] [Indexed: 11/28/2022] Open
Abstract
In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level.
Collapse
Affiliation(s)
- Corinna Herz
- Institute for Environmental Health Sciences and Hospital Infection Control, Freiburg University Medical Center, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shi YA, Zhao Q, Zhang LH, Du W, Wang XY, He X, Wu S, Li YL. Knockdown of hTERT by siRNA inhibits cervical cancer cell growth in vitro and in vivo. Int J Oncol 2014; 45:1216-24. [PMID: 24920549 DOI: 10.3892/ijo.2014.2493] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/15/2014] [Indexed: 11/05/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. It has been reported that telomerase and hTERT are significantly upregulated in majority of cancers including cervical cancer, thus, downregulation of hTERT is a promising target in malignant tumor treatment. We established a short interfering RNA (siRNA) targeting hTERT, and transfected it into HeLa cells (a cervical cancer cell line) to investi-gate the effect of cell proliferation, apoptosis, migration and invasion in cervical cancer cells. The results showed that siRNA targeting hTERT could effectively knock down hTERT expression, remarkably suppress telomerase activity, cell proliferation, migration and invasion, and induced cell apoptosis of cervical cancers cells in vitro. In addition, we evaluated whether siRNA targeting hTERT affects tumor growth in nude mice, and found that it dramatically inhibited tumorigenesis and growth of mice injected with siRNA targeting hTERT. Furthermore, we also found that knockdown of hTERT was able to significantly suppress constitutive phosphorylation of Akt, PI3K, which might imply that reduction of hTERT inhibited tumor growth via the PI3K/Akt signaling pathway to some extent. These results suggest that the suppression of hTERT expression by siRNA inhibits cervical cancer cell growth in vitro and in vivo, and may provide a novel target for anticancer gene therapy.
Collapse
Affiliation(s)
- Ying-Ai Shi
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun 130021, P.R. China
| | - Qiang Zhao
- Department of Pediatric Surgery, The First Hospital, Jilin University, Changchun 130021, P.R. China
| | - Li-Hong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun 130021, P.R. China
| | - Wei Du
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun 130021, P.R. China
| | - Xue-Yao Wang
- Norman Bethune College of Medical Sciences, Jilin University, Changchun 130021, P.R. China
| | - Xu He
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun 130021, P.R. China
| | - Shan Wu
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun 130021, P.R. China
| | - Yu-Lin Li
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
25
|
Qian Y, Yang L, Cao S. Telomeres and telomerase in T cells of tumor immunity. Cell Immunol 2014; 289:63-9. [PMID: 24727158 DOI: 10.1016/j.cellimm.2014.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 02/08/2023]
Abstract
Telomeres are specific nucleoprotein structures at the end of a eukaryotic chromosomes characterized by repeats of the sequence TTAGGG and regulated by the enzyme telomerase which prevents their degradation, loss, rearrangement and end-to-end fusion. During activation, T lymphocytes actively divide, albeit through only a finite number of cell divisions due to shortening of telomeres. However, studies have demonstrated that human telomerase reverse transcriptase (hTERT), thought to be the major component regulating telomerase activity, can enhance the proliferation of T cells when overexpressed. There are many treatments for cancers, most of which are targeting the telomere and telomerase of tumor cells. However, the hTERT-transduced T cells improve their potential for proliferation, making them an appropriate cell resource for tumor adoptive immunotherapy, a procedure whereby T cells are isolated from patients, expanded ex vivo and eventually delivered back into the patients, provides a new approach for tumor therapy through improved overall survival rates in cancer patients. In this review, we will focus on the telomerase activity in T cells, the regulation of telomerase activity, and hTERT-transduced T cells used in adoptive immunotherapy for cancer.
Collapse
Affiliation(s)
- Yaqin Qian
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China.
| | - Shui Cao
- Department of Immunology, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China; National Clinical Research Center of Cancer, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China; Research Center of Lung Cancer, Tianjin, China.
| |
Collapse
|
26
|
The DNMT1/PCNA/UHRF1 disruption induces tumorigenesis characterized by similar genetic and epigenetic signatures. Sci Rep 2014; 4:4230. [PMID: 24637615 PMCID: PMC3957150 DOI: 10.1038/srep04230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 02/03/2014] [Indexed: 01/21/2023] Open
Abstract
Several genetic and epigenetic signatures characterize cancer cells. However, the relationships (causal or consequence link, existence due to a same origin) between these 2 types of signatures were not fully elucidated. In the present work, we reported that the disruption of the DNMT1/PCNA/UHRF1 complex acts as an oncogenic event of the tumor transformation of brain (astrocytes), breast, lung and mesothelial cells. We also show that these tumor transformation processes were associated with the acquisition of cancer hallmark and common genetic and epigenetic signatures. Thus, our data revealed that the global DNA hypomethylation induced by the DNMT1/PCNA/UHRF1 disruption is an oncogenic event of human tumorigenesis, an inducer of epigenetic and genetic signatures frequently observed in several human cancers, and is an initiator of oncogenic events.
Collapse
|
27
|
Telomerase activation as a repair response to radiation-induced DNA damage in Y79 retinoblastoma cells. Cancer Lett 2013; 340:82-7. [DOI: 10.1016/j.canlet.2013.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/11/2013] [Accepted: 07/05/2013] [Indexed: 01/09/2023]
|