1
|
Keerthiga R, Xie Y, Pei DS, Fu A. The multifaceted modulation of mitochondrial metabolism in tumorigenesis. Mitochondrion 2025; 80:101977. [PMID: 39505244 DOI: 10.1016/j.mito.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Changes in mitochondrial metabolism produce a malignant transformation from normal cells to tumor cells. Mitochondrial metabolism, comprising bioenergetic metabolism, biosynthetic process, biomolecular decomposition, and metabolic signal conversion, obviously forms a unique sign in the process of tumorigenesis. Several oncometabolites produced by mitochondrial metabolism maintain tumor phenotype, which are recognized as tumor indicators. The mitochondrial metabolism synchronizes the metabolic and genetic outcome to the potent tumor microenvironmental signals, thereby further promoting tumor initiation. Moreover, the bioenergetic and biosynthetic metabolism within tumor mitochondria orchestrates dynamic contributions toward cancer progression and invasion. In this review, we describe the contribution of mitochondrial metabolism in tumorigenesis through shaping several hallmarks such as microenvironment modulation, plasticity, mitochondrial calcium, mitochondrial dynamics, and epithelial-mesenchymal transition. The review will provide a new insight into the abnormal mitochondrial metabolism in tumorigenesis, which will be conducive to tumor prevention and therapy through targeting tumor mitochondria.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
2
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Aminuddin A, Ng PY, Leong CO, Makpol S, Chua EW. Potential role of heteroplasmic mitochondrial DNA mutations in modulating the subtype-specific adaptation of oral squamous cell carcinoma to cisplatin therapy. Discov Oncol 2024; 15:573. [PMID: 39425872 PMCID: PMC11490477 DOI: 10.1007/s12672-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Cancer cells are constantly evolving to adapt to environmental changes, particularly during exposure to drug treatment. In this work, we aimed to characterize genetic and epigenetic changes in mitochondrial DNA (mtDNA) that may increase the resistance of oral squamous cell carcinoma (OSCC) to cisplatin. We first derived drug-resistant cells from two human OSCC cell lines, namely SAS and H103, by continual cisplatin treatments for about 4 months. To determine mtDNA changes induced by cisplatin, we performed nanopore sequencing and quantitative polymerase chain reaction analysis of mtDNA extracted from the cells pre- and post-treatment. We also assessed the mitochondrial functions of the cells and their capacity to generate intracellular reactive oxygen species (ROS). We found that in the cisplatin-resistant cells derived from SAS, there was a reduction in mtDNA content and significant enrichment of a m.3910G > C mutation in the MT-ND1 gene. However, such changes were not detected in cisplatin-resistant H103 cells. The cisplatin treatment also altered methylation patterns in both SAS and H103 cells and decreased their sensitivity to ROS-induced cytotoxicity. We suggest that the sequence alterations and epigenetic changes in mtDNA and the reduction in mtDNA content could be key drivers of cisplatin resistance in OSCC. These mtDNA alterations may participate in cellular adaptation that serves as a response to adverse changes in the environment, particularly exposure to cytotoxic agents. Importantly, the observed mtDNA changes may be influenced by the distinct genetic landscapes of various cancer subtypes. Overall, this study reveals significant insights into cisplatin resistance driven by complex mtDNA dynamics, particularly in OSCC. This underscores the need for targeted therapies tailored to the genetic profiles of individual OSCC patients to improve disease prognosis.
Collapse
Affiliation(s)
- Amnani Aminuddin
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- AGTC Genomics, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Tan J, Lin G, Zhang R, Wen Y, Luo C, Wang R, Wang F, Peng S, Zhang J. Bufotalin Induces Oxidative Stress-Mediated Apoptosis by Blocking the ITGB4/FAK/ERK Pathway in Glioblastoma. Antioxidants (Basel) 2024; 13:1179. [PMID: 39456433 PMCID: PMC11505062 DOI: 10.3390/antiox13101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. We conducted a systematic assessment to investigate the impact of BT on GBM cell viability, migration, invasion, and colony formation. Furthermore, in vivo results were obtained to evaluate the effect of BT on tumor growth. The preliminary findings of our study demonstrate the effective inhibition of GBM cell growth and subcutaneous tumor development in mice by BT, with tolerable levels of tolerance observed. Mechanistically, BT treatment induced mitochondrial dysfunction, bursts of reactive oxygen species (ROS), and subsequent cell apoptosis. More importantly, proteomic-based differentially expressed proteins analysis revealed a significant downregulation of integrin β4 (ITGB4) following BT treatment. Furthermore, our evidence suggested that the ITGB4/focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) pathway involved BT-induced apoptosis. Overall, our study demonstrates the anti-GBM effects of BT and elucidates the underlying mechanism, highlighting BT as a potential therapeutic option for GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feiyun Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| | - Shoujiao Peng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| |
Collapse
|
5
|
Chi H, Su L, Yan Y, Gu X, Su K, Li H, Yu L, Liu J, Wang J, Wu Q, Yang G. Illuminating the immunological landscape: mitochondrial gene defects in pancreatic cancer through a multiomics lens. Front Immunol 2024; 15:1375143. [PMID: 38510247 PMCID: PMC10953916 DOI: 10.3389/fimmu.2024.1375143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024] Open
Abstract
This comprehensive review delves into the complex interplay between mitochondrial gene defects and pancreatic cancer pathogenesis through a multiomics approach. By amalgamating data from genomic, transcriptomic, proteomic, and metabolomic studies, we dissected the mechanisms by which mitochondrial genetic variations dictate cancer progression. Emphasis has been placed on the roles of these genes in altering cellular metabolic processes, signal transduction pathways, and immune system interactions. We further explored how these findings could refine therapeutic interventions, with a particular focus on precision medicine applications. This analysis not only fills pivotal knowledge gaps about mitochondrial anomalies in pancreatic cancer but also paves the way for future investigations into personalized therapy options. This finding underscores the crucial nexus between mitochondrial genetics and oncological immunology, opening new avenues for targeted cancer treatment strategies.
Collapse
Affiliation(s)
- Hao Chi
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xiang Gu
- Biology Department, Southern Methodist University, Dallas, TX, United States
| | - Ke Su
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Li
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lili Yu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jue Wang
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Guanhu Yang
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, and University Hospital, Macau University of Science and Technology, Macau, Macao SAR, China
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
6
|
Lee S, Son JY, Lee J, Cheong H. Unraveling the Intricacies of Autophagy and Mitophagy: Implications in Cancer Biology. Cells 2023; 12:2742. [PMID: 38067169 PMCID: PMC10706449 DOI: 10.3390/cells12232742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential lysosome-mediated degradation pathway that maintains cellular homeostasis and viability in response to various intra- and extracellular stresses. Mitophagy is a type of autophagy that is involved in the intricate removal of dysfunctional mitochondria during conditions of metabolic stress. In this review, we describe the multifaceted roles of autophagy and mitophagy in normal physiology and the field of cancer biology. Autophagy and mitophagy exhibit dual context-dependent roles in cancer development, acting as tumor suppressors and promoters. We also discuss the important role of autophagy and mitophagy within the cancer microenvironment and how autophagy and mitophagy influence tumor host-cell interactions to overcome metabolic deficiencies and sustain the activity of cancer-associated fibroblasts (CAFs) in a stromal environment. Finally, we explore the dynamic interplay between autophagy and the immune response in tumors, indicating their potential as immunomodulatory targets in cancer therapy. As the field of autophagy and mitophagy continues to evolve, this comprehensive review provides insights into their important roles in cancer and cancer microenvironment.
Collapse
Affiliation(s)
- Sunmi Lee
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
| | - Ji-Yoon Son
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
| | - Jinkyung Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Republic of Korea;
| | - Heesun Cheong
- Branch of Molecular Cancer Biology, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea; (S.L.); (J.-Y.S.)
- Department of Cancer Biomedical Science, Graduate School of Cancer Science & Policy, National Cancer Center, Goyang-si 10408, Republic of Korea;
| |
Collapse
|
7
|
Cui Y, Wang F, Fang B. Mitochondrial dysfunction and drug targets in multiple myeloma. J Cancer Res Clin Oncol 2023; 149:8007-8016. [PMID: 36928159 DOI: 10.1007/s00432-023-04672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological cancer that has no cure. Although currently there are several novel drugs, most MM patients experience drug resistance and disease relapse. The results of previous studies suggest that aberrant mitochondrial function may contribute to tumor progression and drug resistance. Mitochondrial DNA mutations and metabolic reprogramming have been reported in MM patients. Several preclinical and clinical studies have shown encouraging results of mitochondria-targeting therapy in MM patients. In this review, we have summarized our current understanding of mitochondrial biology in MM. More importantly, we have reviewed mitochondrial targeting strategies in MM treatment.
Collapse
Affiliation(s)
- Yushan Cui
- Department of Hematology, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 of Dongming Road, Zhengzhou, 450000, China
| | - Fujue Wang
- Department of Hematology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421000, China
| | - Baijun Fang
- Department of Hematology, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 of Dongming Road, Zhengzhou, 450000, China.
| |
Collapse
|
8
|
Lin Y, Yang B, Huang Y, Zhang Y, Jiang Y, Ma L, Shen YQ. Mitochondrial DNA-targeted therapy: A novel approach to combat cancer. CELL INSIGHT 2023; 2:100113. [PMID: 37554301 PMCID: PMC10404627 DOI: 10.1016/j.cellin.2023.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that are essential for mitochondrial function and cellular homeostasis, and participates in important processes of cellular bioenergetics and metabolism. Alterations in mtDNA are associated with various diseases, especially cancers, and are considered as biomarkers for some types of tumors. Moreover, mtDNA alterations have been found to affect the proliferation, progression and metastasis of cancer cells, as well as their interactions with the immune system and the tumor microenvironment (TME). The important role of mtDNA in cancer development makes it a significant target for cancer treatment. In recent years, many novel therapeutic methods targeting mtDNA have emerged. In this study, we first discussed how cancerogenesis is triggered by mtDNA mutations, including alterations in gene copy number, aberrant gene expression and epigenetic modifications. Then, we described in detail the mechanisms underlying the interactions between mtDNA and the extramitochondrial environment, which are crucial for understanding the efficacy and safety of mtDNA-targeted therapy. Next, we provided a comprehensive overview of the recent progress in cancer therapy strategies that target mtDNA. We classified them into two categories based on their mechanisms of action: indirect and direct targeting strategies. Indirect targeting strategies aimed to induce mtDNA damage and dysfunction by modulating pathways that are involved in mtDNA stability and integrity, while direct targeting strategies utilized molecules that can selectively bind to or cleave mtDNA to achieve the therapeutic efficacy. This study highlights the importance of mtDNA-targeted therapy in cancer treatment, and will provide insights for future research and development of targeted drugs and therapeutic strategies.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longyun Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
9
|
Daglish SCD, Fennell EMJ, Graves LM. Targeting Mitochondrial DNA Transcription by POLRMT Inhibition or Depletion as a Potential Strategy for Cancer Treatment. Biomedicines 2023; 11:1598. [PMID: 37371693 PMCID: PMC10295849 DOI: 10.3390/biomedicines11061598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription of the mitochondrial genome is essential for the maintenance of oxidative phosphorylation (OXPHOS) and other functions directly related to this unique genome. Considerable evidence suggests that mitochondrial transcription is dysregulated in cancer and cancer metastasis and contributes significantly to cancer cell metabolism. Recently, inhibitors of the mitochondrial DNA-dependent RNA polymerase (POLRMT) were identified as potentially attractive new anti-cancer compounds. These molecules (IMT1, IMT1B) inactivate cancer cell metabolism through reduced transcription of mitochondrially-encoded OXPHOS subunits such as ND1-5 (Complex I) and COI-IV (Complex IV). Studies from our lab have discovered small molecule regulators of the mitochondrial matrix caseinolytic protease (ClpP) as probable inhibitors of mitochondrial transcription. These compounds activate ClpP proteolysis and lead to the rapid depletion of POLRMT and other matrix proteins, resulting in inhibition of mitochondrial transcription and growth arrest. Herein we present a comparison of POLRMT inhibition and ClpP activation, both conceptually and experimentally, and evaluate the results of these treatments on mitochondrial transcription, inhibition of OXPHOS, and ultimately cancer cell growth. We discuss the potential for targeting mitochondrial transcription as a cancer cell vulnerability.
Collapse
Affiliation(s)
| | | | - Lee M. Graves
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.C.D.D.); (E.M.J.F.)
| |
Collapse
|
10
|
Lorca R, Aparicio A, Gómez J, Álvarez-Velasco R, Pascual I, Avanzas P, González-Urbistondo F, Alen A, Vázquez-Coto D, González-Fernández M, García-Lago C, Cuesta-Llavona E, Morís C, Coto E. Mitochondrial Heteroplasmy as a Marker for Premature Coronary Artery Disease: Analysis of the Poly-C Tract of the Control Region Sequence. J Clin Med 2023; 12:jcm12062133. [PMID: 36983136 PMCID: PMC10053235 DOI: 10.3390/jcm12062133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Mitochondrial DNA (mtDNA) differs from the nuclear genome in many aspects: a maternal inheritance pattern; being more prone to acquire somatic de novo mutations, accumulative with age; and the possible coexistence of different mtDNA alleles (heteroplasmy). Mitochondria are key cellular organelles responsible for energy production and involved in complex mechanisms, including atherosclerosis. In this scenario, we aimed to evaluate mtDNA variants that could be associated with premature cardiovascular disease. We evaluated 188 consecutive patients presenting with premature myocardial infarction with ST elevation (STEMI) confirmed by coronary angiogram. mtDNA polymorphisms and clinical data were evaluated and compared with 271 individuals from the same population (control group). Tobacco consumption (80.85% vs. 21.21%, p < 0.01) and dyslipidemia (38.83% vs. 28.41%, p = 0.02) were significantly more frequent among STEMI patients. Moreover, C16223T mtDNA mutation and poly-C heteroplasmy were significantly more frequent among premature STEMI male patients than in controls. The OR associated C16223T mtDNA with the increased presence of cardiovascular risk factors. Our data suggest that mtDNA 16223T and heteroplasmy may be associated with unstable premature atherosclerosis disease in men. Moreover, the presence of cardiovascular risk factors (CVRFs) was associated with C16223T mtDNA, with a cumulative effect. Protective mitochondrial pathways are potential therapeutic targets. Preventing exposure to the damaging mechanisms associated with CVRFs is of utmost importance.
Collapse
Affiliation(s)
- Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
| | - Andrea Aparicio
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Correspondence:
| | - Rut Álvarez-Velasco
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Isaac Pascual
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
- CIBER-Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | | | - Alberto Alen
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Daniel Vázquez-Coto
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | | | - Claudia García-Lago
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Elías Cuesta-Llavona
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - César Morís
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
- Laboratorio de Genética, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
11
|
Rickard BP, Overchuk M, Obaid G, Ruhi MK, Demirci U, Fenton SE, Santos JH, Kessel D, Rizvi I. Photochemical Targeting of Mitochondria to Overcome Chemoresistance in Ovarian Cancer †. Photochem Photobiol 2023; 99:448-468. [PMID: 36117466 PMCID: PMC10043796 DOI: 10.1111/php.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy with a stubborn mortality rate of ~65%. The persistent failure of multiline chemotherapy, and significant tumor heterogeneity, has made it challenging to improve outcomes. A target of increasing interest is the mitochondrion because of its essential role in critical cellular functions, and the significance of metabolic adaptation in chemoresistance. This review describes mitochondrial processes, including metabolic reprogramming, mitochondrial transfer and mitochondrial dynamics in ovarian cancer progression and chemoresistance. The effect of malignant ascites, or excess peritoneal fluid, on mitochondrial function is discussed. The role of photodynamic therapy (PDT) in overcoming mitochondria-mediated resistance is presented. PDT, a photochemistry-based modality, involves the light-based activation of a photosensitizer leading to the production of short-lived reactive molecular species and spatiotemporally confined photodamage to nearby organelles and biological targets. The consequential effects range from subcytotoxic priming of target cells for increased sensitivity to subsequent treatments, such as chemotherapy, to direct cell killing. This review discusses how PDT-based approaches can address key limitations of current treatments. Specifically, an overview of the mechanisms by which PDT alters mitochondrial function, and a summary of preclinical advancements and clinical PDT experience in ovarian cancer are provided.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson TX 95080, USA
| | - Mustafa Kemal Ruhi
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Suzanne E. Fenton
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Janine H. Santos
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Golubickaite I, Ugenskiene R, Bartnykaite A, Poskiene L, Vegiene A, Padervinskis E, Rudzianskas V, Juozaityte E. Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer. Genes (Basel) 2023; 14:434. [PMID: 36833361 PMCID: PMC9956916 DOI: 10.3390/genes14020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
In 2020, 878,348 newly reported cases and 444,347 deaths related to head and neck cancer were reported. These numbers suggest that there is still a need for molecular biomarkers for the diagnosis and prognosis of the disease. In this study, we aimed to analyze mitochondria-related mitochondrial transcription factor A (TFAM) and DNA polymerase γ (POLG) single-nucleotide polymorphisms (SNPs) in the head and neck cancer patient group and evaluate associations between SNPs, disease characteristics, and patient outcomes. Genotyping was performed using TaqMan probes with Real-Time polymerase chain reaction. We found associations between TFAM gene SNPs rs11006129 and rs3900887 and patient survival status. We found that patients with the TFAM rs11006129 CC genotype and non-carriers of the T allele had longer survival times than those with the CT genotype or T-allele carriers. Additionally, patients with the TFAM rs3900887 A allele tended to have shorter survival times than non-carriers of the A allele. Our findings suggest that variants in the TFAM gene may play an important role in head and neck cancer patient survival and could be considered and further evaluated as prognostic biomarkers. However, due to the limited sample size (n = 115), further studies in larger and more diverse cohorts are needed to confirm these findings.
Collapse
Affiliation(s)
- Ieva Golubickaite
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Bartnykaite
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathological Anatomy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Aurelija Vegiene
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Evaldas Padervinskis
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Viktoras Rudzianskas
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Elona Juozaityte
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
13
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Ruisoto P, Navarro-Jiménez E, Ramos-Campo DJ, Tornero-Aguilera JF. Metabolic Health, Mitochondrial Fitness, Physical Activity, and Cancer. Cancers (Basel) 2023; 15:814. [PMID: 36765772 PMCID: PMC9913323 DOI: 10.3390/cancers15030814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer continues to be a significant global health issue. Traditional genetic-based approaches to understanding and treating cancer have had limited success. Researchers are increasingly exploring the impact of the environment, specifically inflammation and metabolism, on cancer development. Examining the role of mitochondria in this context is crucial for understanding the connections between metabolic health, physical activity, and cancer. This study aimed to review the literature on this topic through a comprehensive narrative review of various databases including MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. The review highlighted the importance of mitochondrial function in overall health and in regulating key events in cancer development, such as apoptosis. The concept of "mitochondrial fitness" emphasizes the crucial role of mitochondria in cell metabolism, particularly their oxidative functions, and how proper function can prevent replication errors and regulate apoptosis. Engaging in high-energy-demanding movement, such as exercise, is a powerful intervention for improving mitochondrial function and increasing resistance to environmental stressors. These findings support the significance of considering the role of the environment, specifically inflammation and metabolism, in cancer development and treatment. Further research is required to fully understand the mechanisms by which physical activity improves mitochondrial function and potentially reduces the risk of cancer.
Collapse
Affiliation(s)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n Villaviciosa de Odón, 28670 Madrid, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Navarre, Spain
| | | | | | | |
Collapse
|
14
|
Welch DR, Foster C, Rigoutsos I. Roles of mitochondrial genetics in cancer metastasis. Trends Cancer 2022; 8:1002-1018. [PMID: 35915015 PMCID: PMC9884503 DOI: 10.1016/j.trecan.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
The contributions of mitochondria to cancer have been recognized for decades. However, the focus on the metabolic role of mitochondria and the diminutive size of the mitochondrial genome compared to the nuclear genome have hindered discovery of the roles of mitochondrial genetics in cancer. This review summarizes recent data demonstrating the contributions of mitochondrial DNA (mtDNA) copy-number variants (CNVs), somatic mutations, and germline polymorphisms to cancer initiation, progression, and metastasis. The goal is to summarize accumulating data to establish a framework for exploring the contributions of mtDNA to neoplasia and metastasis.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Internal Medicine (Hematology/Oncology), The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Pathology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - Christian Foster
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, 1020 Locust Street, Suite M81, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Mitochondrial DNA sequences and transcriptomic profiles for elucidating the genetic underpinnings of cisplatin responsiveness in oral squamous cell carcinoma. BMC Genom Data 2022; 23:47. [PMID: 35729497 PMCID: PMC9210765 DOI: 10.1186/s12863-022-01062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/11/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Functional genetic variation plays an important role in predicting patients’ response to chemotherapeutic agents. A growing catalogue of mitochondrial DNA (mtDNA) alterations in various cancers point to their important roles in altering the drug responsiveness and survival of cancer cells. In this work, we report the mtDNA sequences, obtained using a nanopore sequencer that can directly sequence unamplified DNA, and the transcriptomes of oral squamous cell carcinoma (OSCC) cell lines with differing responses to cisplatin, to explore the interplay between mtDNA alterations, epigenetic regulation of gene expression, and cisplatin response in OSCC. Data description Two human OSCC cell lines, namely H103 and SAS, and drug-resistant stem-like cells derived from SAS were used in this work. To validate our hypothesis that cisplatin sensitivity is linked to mtDNA changes, we sequenced their mtDNA using a nanopore sequencer, MinION. We also obtained the whole transcriptomic profiles of the cells from a microarray analysis. The mtDNA mutational and whole transcriptomic profiles that we provide can be used alongside other similar datasets to facilitate the identification of new markers of cisplatin sensitivity, and therefore the development of effective therapies for OSCC.
Collapse
|
16
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
17
|
Alimba CG, Sivanesan S, Krishnamurthi K. Mitochondrial dysfunctions elicited by solid waste leachates provide insights into mechanisms of leachates induced cell death and pathophysiological disorders. CHEMOSPHERE 2022; 307:136085. [PMID: 36007733 DOI: 10.1016/j.chemosphere.2022.136085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Emissions (mainly leachates and landfill gases) from solid waste facilities are laden with mixtures of dangerous xenobiotics implicated with significant increase in various pathophysiological disorders including cancer, and eventual mortality of exposed wildlife and humans. However, the molecular mechanisms of solid waste leachates induce pathophysiological disorders and cell death are still largely unknown. Although, evolving evidence implicated generation of reactive oxygen species and oxidative stress as the possible mechanism. Recent scientific reports are linking reactive oxygen species and mitochondrial dysfunctions as the player mechanism in pathophysiological disorder and apoptosis induced by xenobiotics in solid waste leachates. This systematic review presents an explicit discussion of recent scientific findings on the structural and functional alterations in mitochondria induced by solid waste leachates as the molecular mechanisms plausibly responsible for the pathophysiological disorders, cancer and cell death reported in landfill toxicology and epidemiological studies. This review aims to increase scientific understanding on solid waste leachate induced mitochondria dysfunctions as the key player in molecular mechanisms of solid waste induced toxicity. The findings in this review were mainly from using primary cells, cell lines, Drosophila and fish. Whether the findings will similarly be observed in mammalian test systems in vivo and particularly in exposed humans, remained to be investigated. Improvement in technological advancements, enforcement of legislation and regulations, and creation of sophisticated health surveillance against exposure to solid waste leachates, will expectedly mitigate human exposure to solid waste emissions and contamination of the environment.
Collapse
Affiliation(s)
- Chibuisi Gideon Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria; Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany.
| | - Saravanadevi Sivanesan
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Kannan Krishnamurthi
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P, India.
| |
Collapse
|
18
|
Mitochondrial Dysfunction, Mitophagy and Their Correlation with Perinatal Complications: Preeclampsia and Low Birth Weight. Biomedicines 2022; 10:biomedicines10102539. [PMID: 36289801 PMCID: PMC9599185 DOI: 10.3390/biomedicines10102539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are essential organelles and crucial for cellular survival. Mitochondrial biogenesis and mitophagy are dynamic features that are essential for both maintaining the health of the mitochondrial network and cellular demands. The accumulation of damaged mitochondria has been shown to be related to a wide range of pathologies ranging from neurological to musculoskeletal. Mitophagy is the selective autophagy of mitochondria, eliminating dysfunctional mitochondria in cells by engulfment within double-membraned vesicles. Preeclampsia and low birth weight constitute prenatal complications during pregnancy and are leading causes of maternal and fetal mortality and morbidity. Both placental implantation and fetal growth require a large amount of energy, and a defect in the mitochondrial quality control mechanism may be responsible for the pathophysiology of these diseases. In this review, we compiled current studies investigating the role of BNIP3, DRAM1, and FUNDC1, mediators of receptor-mediated mitophagy, in the progression of preeclampsia and the role of mitophagy pathways in the pathophysiology of low birth weight. Recent studies have indicated that mitochondrial dysfunction and accumulation of reactive oxygen species are related to preeclampsia and low birth weight. However, due to the lack of studies in this field, the results are controversial. Therefore, mitophagy-related pathways associated with these pathologies still need to be elucidated. Mitophagy-related pathways are among the promising study targets that can reveal the pathophysiology behind preeclampsia and low birth weight.
Collapse
|
19
|
DNA2 mutation causing multisystemic disorder with impaired mitochondrial DNA maintenance. J Hum Genet 2022; 67:691-699. [PMID: 36064591 DOI: 10.1038/s10038-022-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To describe a novel DNA2 variant contributing to defects in mtDNA maintenance and mtDNA depletion syndrome (MDS), and the clinical and histological findings associated with this variation. METHODS Herein, we describe the case of a patient who presented with hearing loss and myopathy, given the family history of similar findings in the father, was evaluated by sequencing of the deafness gene panel, mitochondrial genome, and the exome. Furthermore, tissue staining, mtDNA copy number detection, mtDNA sequencing, and long-range polymerase chain reaction tests were also conducted on the muscle biopsy specimen. In vitro experiments, including analyses of the mtDNA copy number; levels of ATP, ATPase, and reactive oxygen species (ROS); and the membrane potential, were performed. RESULTS The DNA2 heterozygous truncating variant c. 2368C > T (p.Q790X) was identified and verified as the cause of an mtDNA copy number decrement in both functional experiments and muscle tissue analyses. These changes were accompanied by reductions in ATP, ATPase, and ROS levels. CONCLUSION The DNA2 variant was a likely cause of MDS in this patient. These findings expand the mutational spectrum of MDS and improve our understanding of the functions of DNA2 by revealing its novel role in mtDNA maintenance.
Collapse
|
20
|
Legaki AI, Moustakas II, Sikorska M, Papadopoulos G, Velliou RI, Chatzigeorgiou A. Hepatocyte Mitochondrial Dynamics and Bioenergetics in Obesity-Related Non-Alcoholic Fatty Liver Disease. Curr Obes Rep 2022; 11:126-143. [PMID: 35501558 PMCID: PMC9399061 DOI: 10.1007/s13679-022-00473-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF THE REVIEW Mitochondrial dysfunction has long been proposed to play a crucial role in the pathogenesis of a considerable number of disorders, such as neurodegeneration, cancer, cardiovascular, and metabolic disorders, including obesity-related insulin resistance and non-alcoholic fatty liver disease (NAFLD). Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify their formation through biogenesis and the opposite processes of fission and fusion, the fragmentation, and connection of mitochondrial network areas respectively. Herein, we review and discuss the current literature on the significance of mitochondrial adaptations in obesity and metabolic dysregulation, emphasizing on the role of hepatocyte mitochondrial flexibility in obesity and NAFLD. RECENT FINDINGS Accumulating evidence suggests the involvement of mitochondrial morphology and bioenergetics dysregulations to the emergence of NAFLD and its progress to non-alcoholic steatohepatitis (NASH). Most relevant data suggests that changes in liver mitochondrial dynamics and bioenergetics hold a key role in the pathogenesis of NAFLD. During obesity and NAFLD, oxidative stress occurs due to the excessive production of ROS, leading to mitochondrial dysfunction. As a result, mitochondria become incompetent and uncoupled from respiratory chain activities, further promoting hepatic fat accumulation, while leading to liver inflammation, insulin resistance, and disease's deterioration. Elucidation of the mechanisms leading to dysfunctional mitochondrial activity of the hepatocytes during NAFLD is of predominant importance for the development of novel therapeutic approaches towards the treatment of this metabolic disorder.
Collapse
Affiliation(s)
- Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Ioannis I. Moustakas
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Michalina Sikorska
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
21
|
Jain A, Katiyar A, Singh R, Bakhshi S, Singh H, Palanichamy JK, Singh A. Implications of mitochondrial DNA variants in pediatric B-cell acute lymphoblastic leukemia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Research on the role of variations in the mitochondrial genome in pathogenesis of acute lymphoblastic leukemia (ALL) has been unfolding at a rapid rate. Our laboratory has previously described higher number of copies of the mitochondrial genomes per cell in pediatric ALL patients as compared to the healthy controls. In the current study, we evaluated the pattern of mitochondrial genome variations in 20 de-novo pediatric B-ALL cases and seven controls. Quantitative real-time Polymerase Chain Reaction was used for estimation of mitochondrial genomes’ copy number in bone marrow samples of each ALL patient and peripheral blood samples of controls. The complete mitochondrial genomes of all samples were sequenced using the Illumina platform.
Results
Sequencing data analysis using multiple mitochondrial genome databases revealed 325 variants in all 27 samples, out of which 221 variants were previously known while 104 were unassigned, new variants. The 325 variants consisted of 7 loss-of-function variants, 131 synonymous variants, 75 missense variants, and 112 non-coding variants. New, missense variants (n = 21) were identified in genes encoding the electron transport chain complexes with most of them encoding ND4, ND5 of complex I. Missense and loss-of-function variants were found to be deleterious by many predictor databases of pathogenicity. MuTect2 identified true somatic variants present only in tumors between patient-sibling pairs and showed overlap with missense and loss-of-function variants. Online MtDNA-server showed heteroplasmic and homoplasmic variants in mitochondrial genome.
Conclusions
The data suggest that some of these variations might have a deleterious impact on the expression of mitochondrial encoded genes with a possible functional relevance in leukemia.
Collapse
|
22
|
Agnoletto C, Volinia S. Mitochondria dysfunction in circulating tumor cells. Front Oncol 2022; 12:947479. [PMID: 35992829 PMCID: PMC9386562 DOI: 10.3389/fonc.2022.947479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) represent a subset of heterogeneous cells, which, once released from a tumor site, have the potential to give rise to metastasis in secondary sites. Recent research focused on the attempt to detect and characterize these rare cells in the circulation, and advancements in defining their molecular profile have been reported in diverse tumor species, with potential implications for clinical applications. Of note, metabolic alterations, involving mitochondria, have been implicated in the metastatic process, as key determinants in the transition of tumor cells to a mesenchymal or stemness-like phenotype, in drug resistance, and in induction of apoptosis. This review aimed to briefly analyse the most recent knowledge relative to mitochondria dysfunction in CTCs, and to envision implications of altered mitochondria in CTCs for a potential utility in clinics.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Rete Oncologica Veneta (ROV), Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Riehl L, Mulaw M, Kneer K, Beer M, Beer A, Barth TF, Benes V, Schulte J, Fischer M, Debatin K, Beltinger C. Targeted parallel DNA sequencing detects circulating tumor-associated variants of the mitochondrial and nuclear genomes in patients with neuroblastoma. Cancer Rep (Hoboken) 2022; 6:e1687. [PMID: 35899825 PMCID: PMC9875664 DOI: 10.1002/cnr2.1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The utility for liquid biopsy of tumor-associated circulating single-nucleotide variants, as opposed to mutations, of the mitochondrial (mt) and nuclear genomes in neuroblastoma (NB) is unknown. PROCEDURE Variants of the mt and nuclear genomes from tumor, blood cells, and consecutive plasma samples of five patients with metastatic NB that relapsed or progressed were analyzed. Targeted parallel sequencing results of the mt genome, and of the coding region of 139 nuclear genes and 22 miRNAs implicated in NB, were correlated with clinical imaging and laboratory data. RESULTS All tumors harbored multiple somatic mt and nuclear single nucleotide variants with low allelic frequency, most of them not detected in the circulation. In one patient a tumor-associated mt somatic variant was detected in the plasma before and during progressive disease. In a second patient a circulating nuclear tumor-associated DNA variant heralded clinical relapse. In all patients somatic mt and nuclear variants not evident in the tumor biopsy at time of diagnosis were found circulating at varying timepoints. This suggests either tumor heterogeneity, evolution of tumor variants or a confounding contribution of normal tissues to somatic variants in patient plasma. The number and allelic frequency of the circulating variants did not reflect the clinical course of the tumors. Mutational signatures of mt and nuclear somatic variants differed. They varied between patients and were detected in the circulation without mirroring the patients' course. CONCLUSIONS In this limited cohort of NB patients clinically informative tumor-associated mt and nuclear circulating variants were detected by targeted parallel sequencing in a minority of patients.
Collapse
Affiliation(s)
- Lara Riehl
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| | - Medhanie Mulaw
- Institute of Experimental Cancer ResearchUniversity Medical Center UlmUlmGermany
| | - Katharina Kneer
- Department of Nuclear MedicineUniversity Medical Center UlmUlmGermany
| | - Meinhard Beer
- Department of Diagnostic and Interventional RadiologyUniversity Medical Center UlmUlmGermany
| | - Ambros Beer
- Department of Nuclear MedicineUniversity Medical Center UlmUlmGermany
| | - Thomas F. Barth
- Department of PathologyUniversity Medical Center UlmUlmGermany
| | - Vladimir Benes
- Genomics Core FacilityEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Johannes Schulte
- Pediatric Oncology and HematologyCharité University MedicineBerlinGermany,German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
| | - Matthias Fischer
- Department of Pediatric Oncology and HematologyUniversity Children's Hospital of CologneCologneGermany
| | - Klaus‐Michael Debatin
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| |
Collapse
|
24
|
Wang Z, Li S, Xu F, Fu J, Sun J, Gan X, Yang C, Mao Z. ncRNAs-mediated high expression of TIMM8A correlates with poor prognosis and act as an oncogene in breast cancer. Cancer Cell Int 2022; 22:177. [PMID: 35501914 PMCID: PMC9063222 DOI: 10.1186/s12935-022-02595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Breast cancer is notorious for its increasing incidence for decades. Ascending evidence has demonstrated that translocase of inner mitochondrial membrane (TIMM) proteins play vital roles in progression of several types of human cancer. However, the biological behaviors and molecular mechanisms of TIMM8A in breast cancer remain not fully illustrated. Methods Pan-cancer analysis was firstly performed for TIMM8A’s expression and prognosis by Oncomine database. Subsequently, TIMM8A-related noncoding RNAs (ncRNAs) were identified by a series of bioinformatics analyses and dual-luciferase reporter assay, including expression analysis, correlation analysis, and survival analysis. Moreover, the effect of TIMM8A on breast cancer proliferation and apoptosis was evaluated in vitro by CCK-8 assays, EdU cell proliferation assays, JC-1 mitochondrial membrane potential detection assays and Western blot assays and the in vivo effect was revealed through a patient-derived xenograft mouse model. Results We found that TIMM8A showed higher expression level in breast cancer and the higher TIMM8A mRNA expression group had a poorer prognosis than the lower TIMM8A group. hsa-circ-0107314/hsa-circ-0021867/hsa-circ-0122013 might be the three most potential upstream circRNAs of hsa-miR-34c-5p/hsa-miR-449a-TIMM8A axis in breast cancer. TIMM8A promotes proliferation of breast cancer cells in vitro and tumor growth in vivo. Conclusion Our results confirmed that ncRNAs-mediated upregulation of TIMM8A correlated with poor prognosis and act as an oncogene in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02595-x.
Collapse
Affiliation(s)
- Zhonglin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, 215006, China.,Department of Breast Surgery, The Second People's Hospital of Lianyungang, Lianyungang, 222006, China
| | - Shuqin Li
- Department of Breast Surgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222006, China
| | - Feng Xu
- Jiangsu Breast Disease Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Jingyue Fu
- Jiangsu Breast Disease Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Jie Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, 215006, China
| | - XinLi Gan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, 215006, China
| | - Chuang Yang
- Jiangsu Breast Disease Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
| | - Zhongqi Mao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, 215006, China.
| |
Collapse
|
25
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Li F, Liu J, Tang S, Yan J, Chen H, Li D, Yan X. Quercetin regulates inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells by promoting PVT1 expression. Acta Histochem 2021; 123:151819. [PMID: 34844154 DOI: 10.1016/j.acthis.2021.151819] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effect and potential mechanism of quercetin on inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells. MATERIALS AND METHODS H9C2 cells were obtained from the Shanghai Institutes for Biological Sciences, Chinese Academy of Science, and randomly divided into six groups: control, model, PVT1 overexpression (OV), quercetin, OV + quercetin, and NAC groups. The CCK-8 assay was performed to examine cell proliferation. Flow cytometry was used to examine cell apoptosis, cell membrane potential, and ROS levels. The expression of endothelial nitric oxide synthase (eNOS), malondialdehyde (MDA), and superoxide dismutase (SOD) was measured by ELISA and a Biochemical kit. Western blotting was used to determine the levels of p-DRP1 (s637), MFN2, NF-kB, p-NF-kB, IkB, and p-IkB. IL-6, IL-10, TNF-α, and IL-1β mRNA expression was examined by RT-PCR. Electron microscopy was used to observe the structure of mitochondria in H9C2 cells. RESULTS MDA, p-NF-κB, p-IKB, IL-6, IL-1β, and TNF-α expression levels, and the cell apoptosis rate were significantly higher in the model group than in the control group (P < 0.05). In contrast, the cell proliferation rate and IL-10, SOD, eNOS, and ATP levels were significantly lower in the model group (P < 0.05). Moreover, MDA expression was significantly lower in the OV, quercetin, quercetin + OV, and NAC groups than in the model group (P < 0.05), while SOD, eNOS, and ATP levels were higher. The electron microscopy results showed that PVT1 overexpression or quercetin treatment could inhibit inflammation-induced mitochondrial fission and promote mitochondrial fusion. CONCLUSION Quercetin promotes the proliferation of H9C2 cells, while inhibiting inflammation, oxidative stress, and cell apoptosis, and alleviating the structural and functional dysfunction of mitochondria. These effects are achieved by promoting PVT1 expression.
Collapse
Affiliation(s)
- Fen Li
- Department of Neurology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, China
| | - Jianguang Liu
- Department of Neurology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, China
| | - Shifan Tang
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, China
| | - Jie Yan
- Department of Forensic Science, Changsha, China
| | - Haifeng Chen
- Department of Clinical Medicine, Jianghan University, China
| | - Dongsheng Li
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, China.
| | - Xisheng Yan
- Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, China.
| |
Collapse
|
27
|
Carotenuto P, Amato F, Lampis A, Rae C, Hedayat S, Previdi MC, Zito D, Raj M, Guzzardo V, Sclafani F, Lanese A, Parisi C, Vicentini C, Said-Huntingford I, Hahne JC, Hallsworth A, Kirkin V, Young K, Begum R, Wotherspoon A, Kouvelakis K, Azevedo SX, Michalarea V, Upstill-Goddard R, Rao S, Watkins D, Starling N, Sadanandam A, Chang DK, Biankin AV, Jamieson NB, Scarpa A, Cunningham D, Chau I, Workman P, Fassan M, Valeri N, Braconi C. Modulation of pancreatic cancer cell sensitivity to FOLFIRINOX through microRNA-mediated regulation of DNA damage. Nat Commun 2021; 12:6738. [PMID: 34795259 PMCID: PMC8602334 DOI: 10.1038/s41467-021-27099-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/29/2021] [Indexed: 01/17/2023] Open
Abstract
FOLFIRINOX, a combination of chemotherapy drugs (Fluorouracil, Oxaliplatin, Irinotecan -FOI), provides the best clinical benefit in pancreatic ductal adenocarcinoma (PDAC) patients. In this study we explore the role of miRNAs (MIR) as modulators of chemosensitivity to identify potential biomarkers of response. We find that 41 and 84 microRNA inhibitors enhance the sensitivity of Capan1 and MiaPaCa2 PDAC cells respectively. These include a MIR1307-inhibitor that we validate in further PDAC cell lines. Chemotherapy-induced apoptosis and DNA damage accumulation are higher in MIR1307 knock-out (MIR1307KO) versus control PDAC cells, while re-expression of MIR1307 in MIR1307KO cells rescues these effects. We identify binding of MIR1307 to CLIC5 mRNA through covalent ligation of endogenous Argonaute-bound RNAs cross-linking immunoprecipitation assay. We validate these findings in an in vivo model with MIR1307 disruption. In a pilot cohort of PDAC patients undergoing FOLFIRONX chemotherapy, circulating MIR1307 correlates with clinical outcome.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- TIGEM - Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Francesco Amato
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Colin Rae
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Somaieh Hedayat
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Maria C Previdi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Domenico Zito
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Maya Raj
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | | | | | - Andrea Lanese
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Claudia Parisi
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Caterina Vicentini
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, , University of Verona, Verona, Italy
| | | | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Albert Hallsworth
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Vladimir Kirkin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Kate Young
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Ruwaida Begum
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | | | | | | | | | | | - Sheela Rao
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - David Watkins
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | | | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - David K Chang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| | - Nigel B Jamieson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Diagnostics and Public Health, Section of Pathology, , University of Verona, Verona, Italy
| | | | - Ian Chau
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Paul Workman
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Trust, London and Surrey, London, UK
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- The Royal Marsden NHS Trust, London and Surrey, London, UK.
- Beatson West of Scotland Cancer Centre, Glasgow, UK.
| |
Collapse
|
28
|
Golubickaite I, Ugenskiene R, Cepaite J, Ziliene E, Inciura A, Poskiene L, Juozaityte E. Mitochondria-related TFAM gene variants and their effects on patients with cervical cancer. Biomed Rep 2021; 15:106. [PMID: 34765190 PMCID: PMC8576402 DOI: 10.3892/br.2021.1482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Cervical cancer is the fourth most common type of cancer in women worldwide, with high incidence and mortality rates, particularly in developing countries. There are human papillomavirus vaccines and cytological screening programs available; however, there are no molecular markers that would aid the prognosis of the course of the disease or prediction of the outcomes of the patients. The aim of the present study was to investigate the associations between single nucleotide polymorphisms (SNPs) of the mitochondrial transcription factor A (TFAM) gene (rs11006132, rs11006129, rs1937, rs16912174, rs16912202 and rs3900887), and the clinical parameters and tumor phenotype of patients with cervical cancer. DNA isolated from patients with cervical cancer (n=172) was used for genotyping using Real-Time PCR using TaqMan probes. It was revealed that the TFAM rs3900887 TT and AT genotypes were associated with a lower risk of developing larger tumors. The results showed an association between the rs3900887 SNP and tumor phenotype, indicating TFAM rs3900887 as a potential biomarker for tumor size in cervical cancer.
Collapse
Affiliation(s)
- Ieva Golubickaite
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.,Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Juste Cepaite
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Egle Ziliene
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Arturas Inciura
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathological Anatomy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Elona Juozaityte
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
29
|
Foo BJA, Eu JQ, Hirpara JL, Pervaiz S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1341604. [PMID: 34777681 PMCID: PMC8580634 DOI: 10.1155/2021/1341604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are the main powerhouse of the cell, generating ATP through the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS), which drives myriad cellular processes. In addition to their role in maintaining bioenergetic homeostasis, changes in mitochondrial metabolism, permeability, and morphology are critical in cell fate decisions and determination. Notably, mitochondrial respiration coupled with the passage of electrons through the electron transport chain (ETC) set up a potential source of reactive oxygen species (ROS). While low to moderate increase in intracellular ROS serves as secondary messenger, an overwhelming increase as a result of either increased production and/or deficient antioxidant defenses is detrimental to biomolecules, cells, and tissues. Since ROS and mitochondria both regulate cell fate, attention has been drawn to their involvement in the various processes of carcinogenesis. To that end, the link between a prooxidant milieu and cell survival and proliferation as well as a switch to mitochondrial OXPHOS associated with recalcitrant cancers provide testimony for the remarkable metabolic plasticity as an important hallmark of cancers. In this review, the regulation of cell redox status by mitochondrial metabolism and its implications for cancer cell fate will be discussed followed by the significance of mitochondria-targeted therapies for cancer.
Collapse
Affiliation(s)
- Brittney Joy-Anne Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jie Qing Eu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Cancer Science Institute, NUS, Singapore, Singapore
| | | | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, NUS, Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Faculté de Médicine, Université de Paris, Paris, France
| |
Collapse
|
30
|
Insights into the Role of Oxidative Stress in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8388258. [PMID: 34659640 PMCID: PMC8516553 DOI: 10.1155/2021/8388258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress (OS) arises when the body is subjected to harmful endogenous or exogenous factors that overwhelm the antioxidant system. There is increasing evidence that OS is involved in a number of diseases, including ovarian cancer (OC). OC is the most lethal gynecological malignancy, and risk factors include genetic factors, age, infertility, nulliparity, microbial infections, obesity, smoking, etc. OS can promote the proliferation, metastasis, and therapy resistance of OC, while high levels of OS have cytotoxic effects and induce apoptosis in OC cells. This review focuses on the relationship between OS and the development of OC from four aspects: genetic alterations, signaling pathways, transcription factors, and the tumor microenvironment. Furthermore, strategies to target aberrant OS in OC are summarized and discussed, with a view to providing new ideas for clinical treatment.
Collapse
|
31
|
Dong T, Zhang X, Liu Y, Xu S, Chang H, Chen F, Pan L, Hu S, Wang M, Lu M. Opa1 Prevents Apoptosis and Cisplatin-Induced Ototoxicity in Murine Cochleae. Front Cell Dev Biol 2021; 9:744838. [PMID: 34621753 PMCID: PMC8490775 DOI: 10.3389/fcell.2021.744838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023] Open
Abstract
Optic atrophy1 (OPA1) is crucial for inner mitochondrial membrane (IMM) fusion and essential for maintaining crista structure and mitochondrial morphology. Optic atrophy and hearing impairment are the most prevalent clinical features associated with mutations in the OPA1 gene, but the function of OPA1 in hearing is still unknown. In this study, we examined the ability of Opa1 to protect against cisplatin-induced cochlear cell death in vitro and in vivo. Our results revealed that knockdown of Opa1 affects mitochondrial function in HEI-OC1 and Neuro 2a cells, as evidenced by an elevated reactive oxygen species (ROS) level and reduced mitochondrial membrane potential. The dysfunctional mitochondria release cytochrome c, which triggers apoptosis. Opa1 expression was found to be significantly reduced after cell exposed to cisplatin in HEI-OC1 and Neuro 2a cells. Loss of Opa1 aggravated the apoptosis and mitochondrial dysfunction induced by cisplatin treatment, whereas overexpression of Opa1 alleviated cisplatin-induced cochlear cell death in vitro and in explant. Our results demonstrate that overexpression of Opa1 prevented cisplatin-induced ototoxicity, suggesting that Opa1 may play a vital role in ototoxicity and/or mitochondria-associated cochlear damage.
Collapse
Affiliation(s)
- Tingting Dong
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejie Zhang
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing Liu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Xu
- Shanghai Ninth People's Hospital, Shanghai Institute of Precision Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haishuang Chang
- Shanghai Ninth People's Hospital, Shanghai Institute of Precision Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqiu Chen
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Pan
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoru Hu
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wang
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Department of Orthopaedics, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
33
|
Mitochondrial Dysfunction in Diseases, Longevity, and Treatment Resistance: Tuning Mitochondria Function as a Therapeutic Strategy. Genes (Basel) 2021; 12:genes12091348. [PMID: 34573330 PMCID: PMC8467098 DOI: 10.3390/genes12091348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are very important intracellular organelles because they have various functions. They produce ATP, are involved in cell signaling and cell death, and are a major source of reactive oxygen species (ROS). Mitochondria have their own DNA (mtDNA) and mutation of mtDNA or change the mtDNA copy numbers leads to disease, cancer chemo/radioresistance and aging including longevity. In this review, we discuss the mtDNA mutation, mitochondrial disease, longevity, and importance of mitochondrial dysfunction in cancer first. In the later part, we particularly focus on the role in cancer resistance and the mitochondrial condition such as mtDNA copy number, mitochondrial membrane potential, ROS levels, and ATP production. We suggest a therapeutic strategy employing mitochondrial transplantation (mtTP) for treatment-resistant cancer.
Collapse
|
34
|
Effects of Cancer Presence and Therapy on the Platelet Proteome. Int J Mol Sci 2021; 22:ijms22158236. [PMID: 34361002 PMCID: PMC8347210 DOI: 10.3390/ijms22158236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Platelets are involved in tumor angiogenesis and cancer progression. Previous studies indicated that cancer could affect platelet content. In the current study, we investigated whether cancer-associated proteins can be discerned in the platelets of cancer patients, and whether antitumor treatment may affect the platelet proteome. Platelets were isolated from nine patients with different cancer types and ten healthy volunteers. From three patients, platelets were isolated before and after the start of antitumor treatment. Mass spectrometry-based proteomics of gel-fractionated platelet proteins were used to compare patients versus controls and before and after treatment initiation. A total of 4059 proteins were detected, of which 50 were significantly more abundant in patients, and 36 more in healthy volunteers. Eight of these proteins overlapped with our previous cancer platelet proteomics study. From these data, we selected potential biomarkers of cancer including six upregulated proteins (RNF213, CTSG, PGLYRP1, RPL8, S100A8, S100A9) and two downregulated proteins (GPX1, TNS1). Antitumor treatment resulted in increased levels of 432 proteins and decreased levels of 189 proteins. In conclusion, the platelet proteome may be affected in cancer patients and platelets are a potential source of cancer biomarkers. In addition, we found in a small group of patients that anticancer treatment significantly changes the platelet proteome.
Collapse
|
35
|
Rusin A, Li M, Cocchetto A, Seymour C, Mothersill C. Radiation exposure and mitochondrial insufficiency in chronic fatigue and immune dysfunction syndrome. Med Hypotheses 2021; 154:110647. [PMID: 34358921 DOI: 10.1016/j.mehy.2021.110647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/19/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Chronic fatigue and Immune Dysfunction Syndrome (CFIDS) is a heterogeneous disease that may be promoted by various environmental stressors, including viral infection, toxin uptake, and ionizing radiation exposure. Previous studies have identified mitochondrial dysfunction in CFIDS patients, including modulation of mitochondrial respiratory chain activity, deletions in the mitochondrial genome, and upregulation of reactive oxygen species (ROS). This paper focuses on radiation effects and hypothesizes that CFIDS is primarily caused by stressor-induced mitochondrial metabolic insufficiency, which results in decreased energy production and anabolic metabolites required for normal cellular metabolism. Furthermore, tissues neighbouring or distant from directly perturbed tissues compensate for this dysfunction, which causes symptoms associated with CFIDS. This hypothesis is justified by reviewing the links between radiation exposure and CFIDS, cancer, immune dysfunction, and induction of oxidative stress. Moreover, the relevance of mitochondria in cellular responses to radiation and metabolism are discussed and putative mitochondrial biomarkers for CFIDS are introduced. Implications for diagnosis are then described, including a potential urine assay and PCR test for mitochondrial genome mutations. Finally, future research needs are offered with an emphasis on where rapid progress may be made to assist the afflicted.
Collapse
Affiliation(s)
- Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON Canada.
| | - Megan Li
- Department of Physics and Astronomy, McMaster University, Department of Physics and Astronomy, McMaster University, Hamilton, ON Canada
| | - Alan Cocchetto
- National CFIDS Foundation Inc., 103 Aletha Road, Needham, MA USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON Canada
| | | |
Collapse
|
36
|
Godel M, Ortone G, Anobile DP, Pasino M, Randazzo G, Riganti C, Kopecka J. Targeting Mitochondrial Oncometabolites: A New Approach to Overcome Drug Resistance in Cancer. Pharmaceutics 2021; 13:762. [PMID: 34065551 PMCID: PMC8161136 DOI: 10.3390/pharmaceutics13050762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Drug resistance is the main obstacle for a successful cancer therapy. There are many mechanisms by which cancers avoid drug-mediated death, including alterations in cellular metabolism and apoptotic programs. Mitochondria represent the cell's powerhouse and the connection between carbohydrate, lipid and proteins metabolism, as well as crucial controllers of apoptosis, playing an important role not only in tumor growth and progression, but also in drug response. Alterations in tricarboxylic acid cycle (TCA) caused by mutations in three TCA enzymes-isocitrate dehydrogenase, succinate dehydrogenase and fumarate hydratase-lead to the accumulation of 2-hydroxyglutarate, succinate and fumarate respectively, collectively known as oncometabolites. Oncometabolites have pleiotropic effects on cancer biology. For instance, they generate a pseudohypoxic phenotype and induce epigenetic changes, two factors that may promote cancer drug resistance leading to disease progression and poor therapy outcome. This review sums up the most recent findings about the role of TCA-derived oncometabolites in cancer aggressiveness and drug resistance, highlighting possible pharmacological strategies targeting oncometabolites production in order to improve the efficacy of cancer treatment.
Collapse
|
37
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
38
|
Zhunina OA, Yabbarov NG, Grechko AV, Starodubova AV, Ivanova E, Nikiforov NG, Orekhov AN. The Role of Mitochondrial Dysfunction in Vascular Disease, Tumorigenesis, and Diabetes. Front Mol Biosci 2021; 8:671908. [PMID: 34026846 PMCID: PMC8138126 DOI: 10.3389/fmolb.2021.671908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.
Collapse
Affiliation(s)
- Olga A. Zhunina
- Chemical Biology Department, Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russia
| | - Nikita G. Yabbarov
- Chemical Biology Department, Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russia
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | | | - Ekaterina Ivanova
- Department of Basic Research, Skolkovo Innovative Center, Institute for Atherosclerosis Research, Moscow, Russia
| | - Nikita G. Nikiforov
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia
- Institute of Gene Biology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
39
|
Biswas A, De S. Drivers of dynamic intratumor heterogeneity and phenotypic plasticity. Am J Physiol Cell Physiol 2021; 320:C750-C760. [PMID: 33657326 PMCID: PMC8163571 DOI: 10.1152/ajpcell.00575.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Cancer is a clonal disease, i.e., all tumor cells within a malignant lesion trace their lineage back to a precursor somatic cell that acquired oncogenic mutations during development and aging. And yet, those tumor cells tend to have genetic and nongenetic variations among themselves-which is denoted as intratumor heterogeneity. Although some of these variations are inconsequential, others tend to contribute to cell state transition and phenotypic heterogeneity, providing a substrate for somatic evolution. Tumor cell phenotypes can dynamically change under the influence of genetic mutations, epigenetic modifications, and microenvironmental contexts. Although epigenetic and microenvironmental changes are adaptive, genetic mutations are usually considered permanent. Emerging reports suggest that certain classes of genetic alterations show extensive reversibility in tumors in clinically relevant timescales, contributing as major drivers of dynamic intratumor heterogeneity and phenotypic plasticity. Dynamic heterogeneity and phenotypic plasticity can confer resistance to treatment, promote metastasis, and enhance evolvability in cancer. Here, we first highlight recent efforts to characterize intratumor heterogeneity at genetic, epigenetic, and microenvironmental levels. We then discuss phenotypic plasticity and cell state transition by tumor cells, under the influence of genetic and nongenetic determinants and their clinical significance in classification of tumors and therapeutic decision-making.
Collapse
Affiliation(s)
- Antara Biswas
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
40
|
Golubickaite I, Ugenskiene R, Ziliene E, Beniusyte J, Inciura A, Poskiene L, Juozaityte E. POLG Gene Variants in Cervical Cancer Patients and Their Associations with Clinical and Pathomorphological Tumor Characteristics. J Clin Med 2021; 10:1838. [PMID: 33922707 PMCID: PMC8123044 DOI: 10.3390/jcm10091838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer is one of the most common cancers in women worldwide. Human papillomaviruses are known to be the main, but not the only risk factor, of this cancer type. Despite all the knowledge on this cancer type, it is still a challenge to predict the course of the disease, and therefore, minimally invasive biomarkers are needed. This study aimed to analyze single-nucleotide variants in the POLG gene and assess the associations with tumor phenotype and patient outcome. A total of 172 cervical cancer patients were included in this study. Clinical and tumor data were gathered from medical records retrospectively. Single nucleotide variations were determined using TaqMan probes with Real-Time PCR. Significant associations between POLG rs3087374 and cervical cancer patients' tumor histological type, stage, and tumor size were determined. The CA genotype and A allele of rs3087374 increased the probability of adenocarcinoma histological tumor type, IIIA stage, and T3 tumor size compared to CC genotype and C allele, respectively. Furthermore, patients with AA genotype in rs2072267 had longer metastasis-free survival than those with the GG genotype. Our data suggest that mitochondrial polymerase gamma encoded by nuclear POLG gene is important for specific tumor phenotype formation and patient outcome in cervical cancer.
Collapse
Affiliation(s)
- Ieva Golubickaite
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.Z.); (J.B.); (A.I.); (E.J.)
| | - Egle Ziliene
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.Z.); (J.B.); (A.I.); (E.J.)
| | - Jurgita Beniusyte
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.Z.); (J.B.); (A.I.); (E.J.)
| | - Arturas Inciura
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.Z.); (J.B.); (A.I.); (E.J.)
| | - Lina Poskiene
- Department of Pathological Anatomy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Elona Juozaityte
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.Z.); (J.B.); (A.I.); (E.J.)
| |
Collapse
|
41
|
Golubickaite I, Ugenskiene R, Korobeinikova E, Gudaitiene J, Vaitiekus D, Poskiene L, Juozaityte E. The impact of mitochondria-related POLG and TFAM variants on breast cancer pathomorphological characteristics and patient outcomes. Biomarkers 2021; 26:343-353. [PMID: 33715547 DOI: 10.1080/1354750x.2021.1900397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Breast cancer is the most frequent female cancer, leading to relapse with distant metastasis of approximately one-third of patients. Cancer is usually considered a genetic disease involving mutations in nuclear DNA. However, genes, coding for mitochondrial proteins or regulatory molecules, are rarely under consideration. This study aimed to analyse 10 single nucleotide variants in POLG and TFAM genes and assess their association with tumour phenotype and disease outcome. MATERIALS AND METHODS A total of 234 breast cancer patients were included in this study. Variations were determined with Real-Time PCR using TaqMan® probes. RESULTS We found that patients with POLG rs2307441 TT and CT genotypes had a lower probability for vascular invasion than those with CC genotype (p = 0.001). Patients with POLG rs2072267 AG genotype were predisposed for progression compared with GG genotype (p = 0.015). TFAM rs3900887 TT genotype was associated with a higher probability for positive oestrogen receptors (p = 0.003) and lymphatic invasion (p = 0.001) in comparison to AA genotype, patients with TT (p = 0.000) were more likely to have positive lymph nodes. CONCLUSIONS Our data suggest that variations in POLG and TFAM genes are important determinacies of tumour phenotype and disease outcome in breast cancer patients.
Collapse
Affiliation(s)
- Ieva Golubickaite
- Institute of Biology Systems and Genetic Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Ugenskiene
- Institute of Biology Systems and Genetic Research, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Erika Korobeinikova
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Gudaitiene
- Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathological Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Pathology, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Elona Juozaityte
- Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
42
|
González MDM, Santos C, Alarcón C, Ramos A, Cos M, Catalano G, Acebes JJ, Aluja MP. Mitochondrial DNA haplogroups J and T increase the risk of glioma. Mitochondrion 2021; 58:95-101. [PMID: 33675980 DOI: 10.1016/j.mito.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
The presence of different sets of mitochondrial polymorphisms generated by the accumulation of mutations in different maternal lineages has allowed differentiating mitochondrial haplogroups in human populations. These polymorphisms, in turn, may have effects at the phenotypic level, considering a possible contribution of these germinal mutations to the development of certain diseases such as cancer. The main goal of the present study is to establish a possible association between mitochondrial haplogroups and the risk of suffering glioma. Blood samples were obtained from 32 patients from Catalonia (Spain) diagnosed with different grades of glioma (II, III and IV), according to the World Health Organization. The mitochondrial genome was amplified and sequenced using MiSeq 2000 (Illumina). The HaploGrep tool implemented in mtDNA-Server v.1.0.5 was used for the identification of mitochondrial haplogroups. Data obtained in the present study was further pooled with data from previous European studies including glioma patients from Galicia (Spain) and Italy. Results for the Catalonian samples showed an association between individuals with haplogroup J and the increased risk of suffering glioma, with a significant increase of the frequency of individuals with this haplogroup (25%) regarding the general population (7%). Combining different sets of patients with European origin, it appears that individuals with haplogroups J and T have a significantly higher risk of suffering glioma (p < 0.001; OR: 2.407 and p = 0.007; OR: 1.82, respectively). This is the first study that establishes an association between different mitochondrial haplogroups and the risk of suffering glioma, highlighting the role of mitochondrial variants in this disease.
Collapse
Affiliation(s)
- María Del Mar González
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Carlos Alarcón
- Servicio de Neurocirugía, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain; Servicio de Neurocirugía, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Amanda Ramos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| | - Mònica Cos
- Sección de Neurorradiología, Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Giulio Catalano
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, Italy
| | - Juan José Acebes
- Servicio de Neurocirugía, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Pilar Aluja
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; GREAB - Research Group in Biological Anthropology, Generalitat de Catalunya, Spain
| |
Collapse
|
43
|
Investigating the importance of individual mitochondrial genotype in susceptibility to drug-induced toxicity. Biochem Soc Trans 2021; 48:787-797. [PMID: 32453388 PMCID: PMC7329340 DOI: 10.1042/bst20190233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
The mitochondrion is an essential organelle responsible for generating cellular energy. Additionally, mitochondria are a source of inter-individual variation as they contain their own genome. Evidence has revealed that mitochondrial DNA (mtDNA) variation can confer differences in mitochondrial function and importantly, these differences may be a factor underlying the idiosyncrasies associated with unpredictable drug-induced toxicities. Thus far, preclinical and clinical data are limited but have revealed evidence in support of an association between mitochondrial haplogroup and susceptibility to specific adverse drug reactions. In particular, clinical studies have reported associations between mitochondrial haplogroup and antiretroviral therapy, chemotherapy and antibiotic-induced toxicity, although study limitations and conflicting findings mean that the importance of mtDNA variation to toxicity remains unclear. Several studies have used transmitochondrial cybrid cells as personalised models with which to study the impact of mitochondrial genetic variation. Cybrids allow the effects of mtDNA to be assessed against a stable nuclear background and thus the in vitro elucidation of the fundamental mechanistic basis of such differences. Overall, the current evidence supports the tenet that mitochondrial genetics represent an exciting area within the field of personalised medicine and drug toxicity. However, further research effort is required to confirm its importance. In particular, efforts should focus upon translational research to connect preclinical and clinical data that can inform whether mitochondrial genetics can be useful to identify at risk individuals or inform risk assessment during drug development.
Collapse
|
44
|
Katoto PDMC, Kayembe-Kitenge T, Pollitt KJG, Martens DS, Ghosh M, Nachega JB, Nemery B, Nawrot TS. Telomere length and outcome of treatment for pulmonary tuberculosis in a gold mining community. Sci Rep 2021; 11:4031. [PMID: 33597559 PMCID: PMC7889934 DOI: 10.1038/s41598-021-83281-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Telomere length (TL) is a marker of ageing and mitochondrial DNA (mtDNA) is an early marker of inflammation caused by oxidative stress. We determined TL and mtDNA content among active pulmonary tuberculosis (PTB) patients to assess if these cellular biomarkers differed between artisanal miners and non-miners, and to assess if they were predictive of treatment outcome. We conducted a prospective cohort study from August 2018 to May 2019 involving newly diagnosed PTB patients at three outpatient TB clinics in a rural Democratic Republic of Congo. We measured relative TL and mtDNA content in peripheral blood leukocytes (at inclusion) via qPCR and assessed their association with PTB treatment outcome. We included 129 patients (85 miners and 44 non-miners) with PTB (median age 40 years; range 5-71 years, 22% HIV-coinfected). For each increase in year and HIV-coinfection, TL shortened by - 0.85% (- 0.19 to - 0.52) (p ≤ 0.0001) and - 14% (- 28.22 to - 1.79) (p = 0.02) respectively. Independent of these covariates, patients with longer TL were more likely to have successful TB treatment [adjusted hazard ratio; 95% CI 1.27 for a doubling of leucocyte telomere length at baseline; 1.05-1.44] than patients with a shorter TL. Blood mtDNA content was not predictive for PTB outcome. For a given chronological age, PTB patients with longer telomeres at time of diagnosis were more likely to have successful PTB treatment outcome.
Collapse
Affiliation(s)
- Patrick D M C Katoto
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium.
- Department of Internal Medicine, Division of Respiratory Medicine, CEGEMI and Prof. Lurhuma Biomedical Research Laboratory, Mycobacterium Unit, Catholic University of Bukavu, Bukavu, Democratic Republic of Congo.
- Department of Medicine and Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Tony Kayembe-Kitenge
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
- Department of Public Health, Unit of Toxicology, University of Lubumbashi, Lubumbashi, Democratic Republic of Congo
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, USA
| | - Dries S Martens
- Centre of Environmental Health, University of Hasselt, Agoralaan gebouw D, 3590, Diepenbeek, Belgium
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Jean B Nachega
- Department of Medicine and Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Departments of Epidemiology and International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Epidemiology, Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Benoit Nemery
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium.
- Centre of Environmental Health, University of Hasselt, Agoralaan gebouw D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
45
|
Zhuang X, Chen Y, Wu Z, Xu Q, Chen M, Shao M, Cao X, Zhou Y, Xie M, Shi Y, Zeng Y, Bu H. Mitochondrial miR-181a-5p promotes glucose metabolism reprogramming in liver cancer by regulating the electron transport chain. Carcinogenesis 2021; 41:972-983. [PMID: 31628462 DOI: 10.1093/carcin/bgz174] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Liver cancer and other malignant tumor cells rely on the glycolytic pathway to obtain energy (i.e. the Warburg effect); however, the underlying mechanism is unclear. Mitochondria are sites of oxidative phosphorylation and adenosine triphosphate (ATP) production. The 13 constituent respiratory chain proteins encoded by the mitochondrial genome (namely, mtDNA) play essential roles. We found that in human hepatocellular carcinoma (HCC) tissues, 11 out of the 13 mtDNA-encoded genes exhibited decreased mRNA levels and 5 genes displayed decreased protein levels, including the cytochrome B (mt-CYB) and cytochrome C oxidase II (mt-CO2) genes. Mitochondrial gene sequencing revealed abnormalities in the levels of a large number of mitochondrial miRNAs (mitomiRs). MicroRNA-181a-5p (mir-181a-5p), which potentially targets genes encoding mt-CYB and mt-CO2 protein, was screened out from 549 downregulated mitomiRs via bioinformatic analysis. After overexpression of mitomiR-181a-5p, mt-CYB and mt-CO2 levels were reduced in HCC cells, and the mitochondrial membrane potential (MMP) maintained by the electron transport chain (ETC) was decreased. Furthermore, the expression of hexokinase 2 (HK2) and glucose transporter type 1 (GLUT1) was upregulated, accompanied by elevated glucose, lactic acid release, and activity of lactate dehydrogenase (LDH). In vivo experiments confirmed that constitutive mitomiR-181a-5p expression caused reprogramming of glucose metabolism and promoted tumor growth and early lung metastasis in liver cancer. In summary, the present study reveals the important role of mitomiRs in glucose metabolism reprogramming in liver cancer, which is of considerable value in exploring new therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xiang Zhuang
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Menglin Chen
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Mingyang Shao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Cao
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China
| | - Mingjun Xie
- Department of General Surgery, The First People's Hospital of Yibin, Yibin, China
| | - Yujun Shi
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver and Vascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Fatima S, Suhail N, Alrashed M, Wasi S, Aljaser FS, AlSubki RA, Alsharidah AS, Banu N. Epigallocatechin gallate and coenzyme Q10 attenuate cisplatin-induced hepatotoxicity in rats via targeting mitochondrial stress and apoptosis. J Biochem Mol Toxicol 2021; 35:e22701. [PMID: 33393703 DOI: 10.1002/jbt.22701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/14/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022]
Abstract
Despite the extensive use of cisplatin (CP) as a chemotherapeutic agent, its clinical use is often restricted by undesirable side effects, such as toxicity to normal tissues. The aim of this study was to probe the effect of a combinatorial treatment of low multiple doses of antioxidants on CP-induced toxicity and the mitochondrial apoptotic pathway in hepatocytes. Animals received a single toxic dose of CP (7.5 mg/kg body weight) with or without combined multiple doses of epigallocatechin gallate (EGCG) and coenzyme Q10 (CoQ10) (15 and 5 mg/kg body weight, respectively). CP-treated animals showed altered biochemical parameters, denoting hepatotoxicity, which was markedly improved by the multidose treatment with EGCG + CoQ10. The increased levels of oxidants found in the cytosolic and mitochondrial fractions isolated from the liver of CP-administered rats were significantly attenuated by the combinatorial doses of antioxidants. EGCG + CoQ10 ameliorated the CP-induced compromised antioxidant defenses, oxidative modification of macromolecules, decreased activities of respiratory chain enzymes, altered membrane depolarization, and swelling of liver mitochondria. Furthermore, EGCG + CoQ10 treatment inhibited CP-induced apoptosis by suppressing the activation and mitochondrial accumulation of proapoptotic proteins and preventing the inhibition of antiapoptotic protein expression, cytochrome c efflux, caspase-3 activation, and DNA fragmentation. Histological findings further confirmed the protective effects of EGCG + CoQ10 against CP-induced cellular injury. Our findings revealed that the combination of EGCG and CoQ10, owing to their individual antioxidant properties, can be an effective remedy, which by maintaining redox hemostasis attenuate the mitochondrial stress-mediated molecular and cellular processes involved in CP-induced liver toxicity and cell death.
Collapse
Affiliation(s)
- Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - May Alrashed
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samina Wasi
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Feda S Aljaser
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Roua A AlSubki
- Department of Clinical Laboratory Sciences, Chair of Medical and Molecular Genetics Research, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ashwag S Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Naheed Banu
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraidah, Qassim, Saudi Arabia
| |
Collapse
|
47
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
48
|
Townley AR, Wheatley SP. Mitochondrial survivin reduces oxidative phosphorylation in cancer cells by inhibiting mitophagy. J Cell Sci 2020; 133:jcs247379. [PMID: 33077555 DOI: 10.1242/jcs.247379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023] Open
Abstract
Survivin (also known as BIRC5) is a cancer-associated protein that is pivotal for cellular life and death - it is an essential mitotic protein and an inhibitor of apoptosis. In cancer cells, a small pool of survivin localises to the mitochondria, the function of which remains to be elucidated. Here, we report that mitochondrial survivin inhibits the selective form of autophagy called 'mitophagy', causing an accumulation of respiratory-defective mitochondria. Mechanistically, the data reveal that survivin prevents recruitment of the E3-ubiquitin ligase Parkin to mitochondria and their subsequent recognition by the autophagosome. The data also demonstrate that cells in which mitophagy has been blocked by survivin expression have an increased dependency on glycolysis. As these effects were found exclusively in cancer cells, they suggest that the primary act of mitochondrial survivin is to steer cells towards the implementation of the Warburg transition by inhibiting mitochondrial turnover, which enables them to adapt and survive.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amelia R Townley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sally P Wheatley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
49
|
Khan AH, Lin A, Wang RT, Bloom JS, Lange K, Smith DJ. Pooled analysis of radiation hybrids identifies loci for growth and drug action in mammalian cells. Genome Res 2020; 30:1458-1467. [PMID: 32878976 PMCID: PMC7605260 DOI: 10.1101/gr.262204.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Genetic screens in mammalian cells commonly focus on loss-of-function approaches. To evaluate the phenotypic consequences of extra gene copies, we used bulk segregant analysis (BSA) of radiation hybrid (RH) cells. We constructed six pools of RH cells, each consisting of ∼2500 independent clones, and placed the pools under selection in media with or without paclitaxel. Low pass sequencing identified 859 growth loci, 38 paclitaxel loci, 62 interaction loci, and three loci for mitochondrial abundance at genome-wide significance. Resolution was measured as ∼30 kb, close to single-gene. Divergent properties were displayed by the RH-BSA growth genes compared to those from loss-of-function screens, refuting the balance hypothesis. In addition, enhanced retention of human centromeres in the RH pools suggests a new approach to functional dissection of these chromosomal elements. Pooled analysis of RH cells showed high power and resolution and should be a useful addition to the mammalian genetic toolkit.
Collapse
Affiliation(s)
- Arshad H Khan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1735, USA
| | - Andy Lin
- Office of Information Technology, UCLA, Los Angeles, California 90095-1557, USA
| | - Richard T Wang
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7088, USA
| | - Joshua S Bloom
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7088, USA
- Howard Hughes Medical Institute, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7088, USA
| | - Kenneth Lange
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7088, USA
| | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1735, USA
| |
Collapse
|
50
|
Abedi S, Yung G, Atilano SR, Thaker K, Chang S, Chwa M, Schneider K, Udar N, Bota D, Kenney MC. Differential effects of cisplatin on cybrid cells with varying mitochondrial DNA haplogroups. PeerJ 2020; 8:e9908. [PMID: 33062421 PMCID: PMC7533064 DOI: 10.7717/peerj.9908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background Drug therapy yields different results depending on its recipient population. Cisplatin, a commonly used chemotherapeutic agent, causes different levels of resistance and side effects for different patients, but the mechanism(s) are presently unknown. It has been assumed that this variation is a consequence of differences in nuclear (n) DNA, epigenetics, or some external factor(s). There is accumulating evidence that an individual's mitochondrial (mt) DNA may play a role in their response to medications. Variations within mtDNA can be observed, and an individual's mtDNA can be categorized into haplogroups that are defined by accumulations of single nucleotide polymorphisms (SNPs) representing different ethnic populations. Methods The present study was conducted on transmitochondrial cytoplasmic hybrids (cybrids) that possess different maternal-origin haplogroup mtDNA from African (L), Hispanic [A+B], or Asian (D) backgrounds. Cybrids were created by fusing Rho0 ARPE-19 cells (lacking mtDNA) with platelets, which contain numerous mitochondria but no nuclei. These cybrid cells were cultured to passage five, treated with cisplatin, incubated for 48 h, then analyzed for cell metabolic activity (tetrazolium dye (MTT) assay), mitochondrial membrane potential (JC-1 assay), cytotoxicity (lactate dehydrogenase (LDH) assay), and gene expression levels for ALK, BRCA1, EGFR, and ERBB2/HER2. Results Results indicated that untreated cybrids with varying mtDNA haplogroups had similar relative metabolic activity before cisplatin treatment. When treated with cisplatin, (1) the decline in metabolic activity was greatest in L (27.4%, p < 0.012) < D (24.86%, p = 0.0001) and [A+B] cybrids (24.67%, p = 0.0285) compared to untreated cybrids; (2) mitochondrial membrane potential remained unchanged in all cybrids (3) LDH production varied between cybrids (L >[A+B], p = 0.0270). (4) The expression levels decreased for ALK in L (p < 0.0001) and [A+B] (p = 0.0001) cybrids but not in D cybrids (p = 0.285); and decreased for EGFR in [A+B] cybrids (p = 0.0246) compared to untreated cybrids. Conclusion Our findings suggest that an individual's mtDNA background may be associated with variations in their response to cisplatin treatment, thereby affecting the efficiency and the severity of side effects from the treatment.
Collapse
Affiliation(s)
- Sina Abedi
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America
| | - Gregory Yung
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America
| | - Shari R Atilano
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America
| | - Kunal Thaker
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America
| | - Steven Chang
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America
| | - Kevin Schneider
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America
| | - Nitin Udar
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America
| | - Daniela Bota
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine CA, United States of America
| | - M Cristina Kenney
- Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States of America.,Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, United States of America
| |
Collapse
|