1
|
Shi X, Ji Y, Wu X, Du Y, Yan X, Wang Y, Xia X. Blocking of SIRT7/FOXO3a axis by miR-152-3p enhances cisplatin sensitivity in breast cancer. Am J Med Sci 2025; 369:105-115. [PMID: 39241827 DOI: 10.1016/j.amjms.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Cisplatin-based chemoresistance is a major obstacle for the treatment breast cancer (BC) including Triple-negative breast cancer (TNBC). SIRT7 is reportedly involved in the progression of BC, the underlining mechanism in Cisplatin-based chemoresistance in BC remains unclear. This work is to elucidate effects of SIRT7 on cisplatin resistance in breast cancer regulated by miR-152-3p. METHODS The RNA expression of SIRT7 and miRNAs in breast cancer were available from TCGA database. SIRT7-targeted miRNAs were predicted by TargetScan, miRanda, miRDB databases. The association of SIRT7 expression with predicted miRNA was validated by Luciferase assay. Cell apoptosis was determined by Flow cytometry. Cell viability was detected by CCK8 assay. The mRNA expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Protein expression was determined by Western blotting assay. RESULTS SIRT7 mRNA levels were dramatically enhanced in BC tissues compared to para-carcinoma tissues, also increased in BC patients with Cisplatin-based chemotherapy containing TNBC compared with those without. The increase of SIRT7 expression was obviously relevant to shorter survival time of them. Importantly, SIRT7 inhibition facilitated Cisplatin-induced cell apoptosis of TNBC (MDA-MB-231 and MDA-MB-468) and non- TNBC (MCF-7). Notably, miR-152-3p was predicted as a negative regulator of SIRT7 by overlapping downregulated miRNAs in BC patients treated with Cisplatin-based chemotherapy and miRNAs to target SIRT7. Mechanically, miR-152-3p blocked SIRT7 to stimulate an activation of FOXO3a, cleaved PARP1 and Caspase-3, sensitizing Cisplatin-induced apoptosis of BC cells. CONCLUSIONS Inhibition of SIRT7 by miR-152-3p may be a promising strategy against the resistance to cisplatin-based chemotherapy in TNBC.
Collapse
Affiliation(s)
- Xiangkui Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, the Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yunfei Ji
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xueqing Wu
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Du
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaonan Yan
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China; Clinical Center of Reproductive Medicine, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221000, China.
| | - Yan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, the Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Xiaobing Xia
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Zou T, Liu JY, Qin Q, Guo J, Zhou WZ, Li XP, Zhou HH, Chen J, Liu ZQ. Role of rs873601 Polymorphisms in Prognosis of Lung Cancer Patients Treated with Platinum-Based Chemotherapy. Biomedicines 2023; 11:3133. [PMID: 38137354 PMCID: PMC10741124 DOI: 10.3390/biomedicines11123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Lung cancer is still the most lethal malignancy in the world, according to the report of Cancer Statistics in 2021. Platinum-based chemotherapy combined with immunotherapy is the first-line treatment in lung cancer patients. However, the 5-year survival rate is always affected by the adverse reactions and drug resistance caused by platinum-based chemotherapy. DNA damage and repair system is one of the important mechanisms that can affect the response to chemotherapy and clinical outcomes in lung cancer patients. OBJECTIVE The objective of this study is to find the relationship between the polymorphisms of DNA repair genes with the prognosis of platinum-based chemotherapy in lung cancer patients. PATIENTS AND METHODS We performed genotyping in 17 single nucleotide polymorphisms (SNPs) of Excision Repair Cross-Complementation group (ERCC) genes and X-ray Repair Cross-Complementing (XRCC) genes of 345 lung cancer patients via Sequenom MassARRAY. We used Cox proportional hazard models, state, and plink to analyze the associations between SNPs and the prognosis of lung cancer patients. RESULTS We found that the ERCC5 rs873601 was associated with the overall survival time in lung cancer patients treated with platinum-based chemotherapy (p = 0.031). There were some polymorphisms that were related to the prognosis in specific subgroups of lung cancer. Rs873601 showed a great influence on the prognosis of patients more than 55 years, Small Cell Lung Cancer (SCLC), and smoking patients. Rs2444933 was associated with prognosis in age less than 55 years, SCLC, metastasis, and stage III/IV/ED patients. Rs3740051 played an important role in the prognosis of SCLC and metastasis patients. Rs1869641 was involved in the prognosis of SCLC patients. Rs1051685 was related to the prognosis in non-metastasis patients. CONCLUSION The ERCC5 rs873601 (G>A) was a valuable biomarker for predicting the prognosis in lung cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ting Zou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Qun Qin
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Jie Guo
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Wen-Zhi Zhou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
| | - Juan Chen
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Xue P, Zhang G, Zhang H, Cui S, Zhang L, Yu T, Xiao M, Li L, Lu X. A miR-15a related polymorphism affects NSCLC prognosis via altering ERCC1 repair to platinum-based chemotherapy. J Cell Mol Med 2022; 26:5439-5451. [PMID: 36181289 PMCID: PMC9639052 DOI: 10.1111/jcmm.17566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum‐based chemotherapy is regarded as a preferential curative‐intent option for non‐small cell lung cancer (NSCLC), while the acquired drug resistance has become a major obstacle that limits its clinical application. Since the repair efficiency of tumour cells to platinum‐DNA adducts plays a crucial role in chemotherapy resistance, we aimed to explore whether several meaningful polymorphisms of DNA repair genes were associated with the benefits of platinum‐based chemotherapy in NSCLC patients. Firstly, six single nucleotide polymorphisms (SNPs) located in the 3'untranslated region (3'UTR) of three DNA repair genes were detected in 246 NSCLC patients receiving platinum‐based chemotherapy and analysed the correlation of these candidate SNPs with the overall survival. Cox proportional hazard model showed that NSCLC patients carrying ERCC1 rs3212986 AA genotype had a shorter overall survival compared to those with CC. Mechanistically, we performed tumour chemosensitivity assay to observe the convincing linkage of rs3212986 polymorphism with ERCC1 expression and cisplatin sensitivity. The subsequent in vitro experiments identified that rs3212986 polymorphism altered the post‐transcriptional regulation of ERCC1 via affecting the binding of miR‐15a, and further changed the sensitivity to platinum analogue. It reminded that patients carrying ERCC1 rs3212986 CC homozygote were expected to respond better to platinum‐based chemotherapy due to a lower expression of ERCC1. Compared with previous studies, our current comprehensive study suggested that rs3212986, a 3'UTR polymorphism in ERCC1, might have clinical relevance in predicting the prognosis of NSCLC patients receiving platinum‐based chemotherapy.
Collapse
Affiliation(s)
- Ping Xue
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Guopei Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hongchao Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tao Yu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Mingyang Xiao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Liuli Li
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Abdalkhalek ES, Wakeel LME, Nagy AA, Sabri NA. Variants of ERCC5 and the outcome of platinum-based regimens in non-small cell lung cancer: a prospective cohort study. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:152. [PMID: 35852645 PMCID: PMC9296400 DOI: 10.1007/s12032-022-01741-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022]
Abstract
Excision repair complementary complex 5 (ERCC5) is an important component in the repair pathway of platinum-induced damage. The current study evaluated the effect of ERCC5 variants (rs751402 and rs1047768) on the clinical outcome of platinum-based regimens in non-small cell lung cancer (NSCLC) patients. A prospective, cohort study was conducted on 57 newly diagnosed NSCLC Egyptian patients. Patients received either cisplatin or carboplatin-based chemotherapy. DNA was extracted and the variants were analyzed using real time PCR. This study found no significant difference between the studied variants and patients’ response to chemotherapy, progression-free survival (PFS) or overall survival (OS). However, a statistically significant association was found between the histologic subtypes and the studied variants (p = 0.028 and 0.018 for rs751402 and rs1047768, respectively). A statistically significant association was evident between the type of the allele present in the studied polymorphisms, p value = 0.000040. Moreover, the minor allele frequency (MAF) of the studied variants rs751402 and rs1047768 were similar to those of African and European populations, respectively. Results of this study have concluded that ERCC5 variants did not affect the clinical outcome of platinum-based chemotherapy in NSCLC. A significant coinheritance was found between the two variants of ERCC5. Moreover, the similarity between the MAF of the studied variants and the African or European population can guide future research when extrapolating data from African European populations to their Egyptian counterparts.
Collapse
Affiliation(s)
- Esraa S Abdalkhalek
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbaseya, Cairo, Egypt
| | - Lamia M El Wakeel
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbaseya, Cairo, Egypt.
| | - Ahmed A Nagy
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Abbaseya, Cairo, Egypt
| | - Nagwa A Sabri
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbaseya, Cairo, Egypt
| |
Collapse
|
5
|
Wang Y, Xia XB, Tang HZ, Cai JR, Shi XK, Ji HX, Yan XN, Xu T. Association of T2285C polymorphism in PARP1 gene coding region with its expression, activity and NSCLC risk along with prognosis. Mutagenesis 2021; 36:281-293. [PMID: 34132814 DOI: 10.1093/mutage/geab022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerase-1(PARP1), a DNA repair gene, is the crucial player in the maintenance of genome integrity. T2285C polymorphism in coding region of PARP1 has been reported to be associated with susceptibility to tumors. We explored the relation and mechanism of T2285C polymorphism of PARP1 to its expression and activity along with risk and prognosis in NSCLC. mRNA expression was measured using qRT-PCR assay or collected from TCGA dataset. Protein expression was examined with immunoblotting assay. Genotypes were determined by PCR-RFLP and sequencing approaches. PARP1 activity was determined with enzyme activity assay. Regulation of SIRT7 to PARP1 were determined by over-expression and small interference experiment. Association of PARP1 T2285C polymorphism with NSCLC risk was evaluated via multiple logistic regression analysis. Comparison of treatment response and PFS of NSCLC patients among different genotypes or regimens was made by Chi-square test. Results indicated that mRNA and protein expression of PARP1 dramatically increased in NSCLC tissues in comparison to paired para-carcinoma tissues (P<0.05). TC/CC mutant genotypes were associated with markedly enhanced PARP1 mRNA level compared with TT genotype (P=0.011). No significant difference was discovered in PARP1 protein expression among TT, TC or CC genotypes (P>0.05). Subjects with variant allele C had higher risk of NSCLC in comparison to allele T carriers [odds ratio (OR) =1.560; P=0.000]. NSCLC patients carrying mutational TC or CC genotypes were correlated with unfavorable response to platinum-based chemotherapy (TT vs.TC vs.CC, P=0.010), and shorter PFS compared to TT genotype (TT vs.TC vs.CC, P=0.009). T2285C mutation of PARP1 resulted in the enhancement of its mRNA, but the decrease of enzyme activity in tumor cell. Overexpression of SIRT7 attenuated PARP1 expression and activity. These findings suggest the variant allele C of T2285C polymorphism of PARP1 linked to an increase of NSCLC risk, and unfavorable efficacy and prognosis of NSCLC patients with platinum-based chemotherapy, which might be associated with enhancement of its mRNA expression and the diminishment of activity. Identification of PARP1 T2285C polymorphism and mRNA expression may be the promising way for the individualized treatment of NSCLC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Bing Xia
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Zhuo Tang
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Ran Cai
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Kui Shi
- Department of Pharmacy, the Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou, China
| | - Huai Xue Ji
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao Nan Yan
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Tie Xu
- Emergency Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Mu R, Liu H, Luo S, Patz EF, Glass C, Su L, Du M, Christiani DC, Jin L, Wei Q. Genetic variants of CHEK1, PRIM2 and CDK6 in the mitotic phase-related pathway are associated with nonsmall cell lung cancer survival. Int J Cancer 2021; 149:1302-1312. [PMID: 34058013 DOI: 10.1002/ijc.33702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
The mitotic phase is a vital step in cell division and may be involved in cancer progression, but it remains unclear whether genetic variants in mitotic phase-related pathways genes impact the survival of these patients. Here, we investigated associations between 31 032 single nucleotide polymorphisms (SNPs) in 368 mitotic phase-related pathway genes and overall survival (OS) of patients with nonsmall cell lung cancer (NSCLC). We assessed the associations in a discovery data set of 1185 NSCLC patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the findings in another data set of 984 patients from the Harvard Lung Cancer Susceptibility Study. As a result, we identified three independent SNPs (ie, CHEK1 rs76744140 T>C, PRIM2 rs6939623 G>T and CDK6 rs113181986 G>C) to be significantly associated with NSCLC OS with an adjusted hazard ratio of 1.29 (95% confidence interval = 1.11-1.49, P = 8.26 × 10-4 ), 1.26 (1.12-1.42, 1.10 × 10-4 ) and 0.73 (0.63-0.86, 1.63 × 10-4 ), respectively. Moreover, the number of combined unfavorable genotypes of these three SNPs was significantly associated with NSCLC OS and disease-specific survival in the PLCO data set (Ptrend < .0001 and .0003, respectively). Further expression quantitative trait loci analysis showed that the rs76744140C allele predicted CHEK1 mRNA expression levels in normal lung tissues and that rs113181986C allele predicted CDK6 mRNA expression levels in whole blood tissues. Additional analyses indicated CHEK1, PRIM2 and CDK6 may impact NSCLC survival. Taken together, these findings suggested that these genetic variants may be prognostic biomarkers of patients with NSCLC.
Collapse
Affiliation(s)
- Rui Mu
- Department of Stomatology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Radiology, Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Carolyn Glass
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Li Su
- Department of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Mulong Du
- Department of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - David C Christiani
- Department of Environmental Health and Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Peixoto da Silva S, Caires HR, Bergantim R, Guimarães JE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Semin Cancer Biol 2021; 83:283-302. [PMID: 33757848 DOI: 10.1016/j.semcancer.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Rui Bergantim
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, Hospital São João, 4200-319, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - José E Guimarães
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário, IUCSCESPU, 4585-116, Gandra, Paredes, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Spasić J, Radosavljević D, Nagorni-Obradović L. The influence of genetic polymorphisms on the toxicity of platinum-based chemotherapy in the treatment of non-small cell lung cancer. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-31940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains one of the most frequent and the deadliest of malignant diseases throughout the world. Target and immune therapy have revolutionalized the treatment of this disease, but platinum-based chemotherapy still has a place in the treatment algorithm. The toxicity profile of cisplatin is well known and can be a limiting factor in the adequate treatment delivery of the drug. There are important inter-individual differences in the efficacy and the toxicity of all chemotherapy drugs, which cannot be explained solely by the characteristics of the tumor. In order to define predictive factors for the occurrence of toxic effects, numerous genetic alterations have been investigated - especially single nucleotide polymorphisms (SNPs). The investigated genes are those involved in DNA repair mechanisms, signal pathways of apoptosis, DNA synthesis, transport mechanisms, but often with inconclusive and opposing results. It is clear that the effect of SNPs on the occurrence of cisplatin toxicity cannot be explained by investigating just one or several genes alone, but epigenetic interactions must be investigated, as well as interactions with outside factors. The study of SNPs is, however, a relatively simple and inexpensive method and, as such, can be used as one of the prognostic tools for everyday practice.
Collapse
|
9
|
Pharmacogenetic Association between XRCC1 Polymorphisms and Response to Platinum-Based Chemotherapy in Asian Patients with NSCLC: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3520764. [PMID: 33150172 PMCID: PMC7603545 DOI: 10.1155/2020/3520764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
Background Platinum-based chemotherapy plays an antitumor role by damaging DNA. X-ray repair crosscomplementing protein 1 (XRCC1) participates in DNA repair and thus affects the sensitivity to platinum drugs. Two polymorphisms of XRCC1, rs25487 (Arg399Gln) and rs1799782 (Arg194Trp), have been widely studied for the association with clinical outcomes of platinum-based chemotherapy in Asian patients with non-small-cell lung cancer (NSCLC), but the results remain inconclusive. Thus, we performed the present meta-analysis. Methods Literature search was performed in PubMed, Web of Science, and EMBASE up to June 2019. Odds ratios (ORs) for objective response ratio (ORR), Cox proportional hazard ratios (HRs) of overall survival (OS) and progression-free survival (PFS), and the corresponding 95% confidence intervals (95% CIs) were calculated to assess the association strengths between XRCC1 polymorphisms and clinical outcomes. Comparisons were performed in homozygous, heterozygous, dominant, and recessive models. Results Finally, a total of 23 studies involving 5567 patients were included in the meta-analysis. Compared to ArgArg of rs25487, GlnGln (OR = 1.71, 95% CI: 1.16-2.52, p = .007, I2 = 56.8%) and GlnArg (OR = 1.23, 95% CI: 1.07-1.40, p = .003, I2 = 29.0%) were associated with higher ORR. Meanwhile, GlnGln indicated a favorable OS (HR = 0.60, 95% CI: 0.40-0.88) and PFS (HR = 0.64, 95% CI: 0.46-0.90). We also found positive associations between rs1799782 and ORR in all comparison models with low between-study heterogeneity. The association strength increased with the number of variant alleles (TrpTrp vs. ArgArg: OR = 1.73, 95% CI:1.31-2.27; TrpArg vs. ArgArg: OR = 1.28, 95% CI: 1.06-1.55), suggesting a gene dosage effect. In addition, TrpTrp predicted a longer OS. Conclusion Our results showed that rs25487 and rs1799782 of XRCC1 are potential markers to predict clinical outcomes of platinum-based chemotherapy in Asian patients with NSCLC.
Collapse
|
10
|
Zhang S, Wang Y. Deoxyshikonin inhibits cisplatin resistance of non-small-cell lung cancer cells by repressing Akt-mediated ABCB1 expression and function. J Biochem Mol Toxicol 2020; 34:e22560. [PMID: 32627280 DOI: 10.1002/jbt.22560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/31/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
Drug resistance is a large challenge for the treatment of non-small-cell lung cancer (NSCLC). Deoxyshikonin is the naphthoquinol compound with anticancer activity. However, the role and mechanism of deoxyshikonin in cisplatin resistance of NSCLC remain poorly understood. Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Cell apoptosis was evaluated by flow cytometry and caspase-3 activity. We found that cisplatin-resistant A549/cis and H1299/cis cells had higher cisplatin resistance than A549 and H1299 cells, respectively. Deoxyshikonin contributed to cisplatin-induced viability inhibition and apoptosis in A549/cis and H1299/cis cells. Moreover, deoxyshikonin inhibited phosphorylation of Akt and the expression and function of ATP-binding cassette subfamily B member 1 (ABCB1). Activation of protein kinase B (Akt) pathway attenuated the effect of deoxyshikonin on cisplatin resistance and ABCB1 expression and function in A549/cis and H1299/cis cells. In conclusion, deoxyshikonin suppressed cisplatin resistance in cisplatin-resistant NSCLC cells by repressing Akt signaling-mediated ABCB1 expression.
Collapse
Affiliation(s)
- Suhong Zhang
- Department of Respiratory and Critical Care Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yi Wang
- Department of Thoracic and Cardiovascular Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
11
|
Liu W, Wang Y, Luo J, Yuan H, Luo Z. Genetic Polymorphisms and Platinum-Based Chemotherapy-Induced Toxicities in Patients With Lung Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2020; 9:1573. [PMID: 32257953 PMCID: PMC7090160 DOI: 10.3389/fonc.2019.01573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Platinum-based agents, including cisplatin, carboplatin, and oxaliplatin, are indispensable for the treatment of lung cancer. The development of toxicity frequently necessitates dose reduction or discontinuation of therapy, despite the clinical response. Pharmacogenomics studies were reviewed to identify the possible genetic variants that underlie individual susceptibility to platinum-related toxicities. Method: We conducted a systematic search in PubMed and Embase for pharmacogenomics reports that focused on commonly reported platinum-induced toxicities, such as gastrointestinal (GI), hematological, neurological, and other toxicities, in patients diagnosed with lung cancer. Meta-analyses were conducted to determine the association between genetic polymorphisms and platinum-induced toxicity by checking the odds ratio (OR) and 95% confidence interval (CI) using random or fixed-effects models as appropriate. Results: Twenty eligible studies that met the inclusion criteria with sufficient data were extracted and presented comprehensively. A total of 16 polymorphisms from 11 genes were included in the meta-analysis. MTHFR rs1801131 and MDM2 rs1690924 were significantly correlated with platinum-induced GI toxicity (P = 0.04 and P = 0.02, respectively). Patients with the MTHFR rs1801131AA and MDM2 rs1690924TC/CC genotype tended to have a higher risk of GI toxicity than patients with other genotypes did (OR = 1.73, 95% CI = 0.86-2.18; and OR = 0.51, 95% CI = 0.29-0.88, respectively). Compared to carriers of the MTHFR rs1801133CC genotype, carriers of the CT/TT genotype had a significantly increased risk of hematological toxicity (P = 0.01, OR = 1.68, 95% CI = 1.12-2.52). Conclusion: In the future, physicians should pay careful attention to MTHFR and MDM2 for personalized chemotherapy treatment among patients with lung cancer.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ying Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jianquan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Haiyan Yuan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
12
|
Mao CX, Li M, Zhang W, Zhou HH, Yin JY, Liu ZQ. Pharmacogenomics for the efficacy of platinum-based chemotherapy: Old drugs, new integrated perspective. Biomed Pharmacother 2020; 126:110057. [PMID: 32145590 DOI: 10.1016/j.biopha.2020.110057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Platinum-based chemotherapy remains the cornerstone of treatment for many malignancies. However, although therapeutic efficiency varies greatly among individuals, there is a lack of pharmacogenomic biomarkers that can be used in clinical settings to identify chemosensitive patients and allow stratification. With the development of high-throughput screening techniques and systems biology approaches, a growing body of evidence has shown that platinum resistance is a multifactorial, multi-dimensional, dynamic process incorporating genetic background, tumor evolution and gut microbes. This review critically summarizes potential pharmacogenomic biomarkers for predicting the efficacy of platinum drugs and provides a comprehensive, time-varying perspective that integrates multiple markers.
Collapse
Affiliation(s)
- Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
13
|
Nicoś M, Rolska-Kopińska A, Krawczyk P, Grenda A, Bożyk A, Szczyrek M, Milanowski J. Effect of TOP2A and ERCC1 gene polymorphisms on the efficacy and toxicity of cisplatin and etoposide-based chemotherapy in small cell lung cancer patients. Arch Med Sci 2020; 17:474-480. [PMID: 33747282 PMCID: PMC7959040 DOI: 10.5114/aoms.2020.92572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/11/2018] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION The main treatment regimen for small cell lung cancer (SCLC) involves platinum-based chemotherapy (cisplatin or carboplatin) and etoposide. Single nucleotide polymorphisms (SNPs) in TOP2A and ERCC1 genes were tested as prognostic and predictive factors in non-small cell lung cancer (NSCLC). There are limited data about the clinical relevance of these genetic alterations in SCLC. We undertook this retrospective study to determine the influence of SNPs in TOP2A (rs34300454; rs13695; rs11540720) and ERCC1 (rs11615; rs3212986) genes on the efficiency and toxicity of chemotherapy with platinum and etoposide in SCLC Caucasian patients. MATERIAL AND METHODS The studied group included 103 Caucasian SCLC patients (65 male, 38 female, median age 65 ±7.5 years). Detailed clinical-demographical data were collected and response to treatment was monitored. DNA was isolated from peripheral blood leukocytes using QIAamp DNA Mini Kit. Single nucleotide polymorphisms were analyzed using TaqMan hydrolyzing probes in real-time PCR technique on an Eco Illumina device. RESULTS Patients with C/C genotype in rs13695 of the TOP2A gene had significantly lower risk of neutropenia during chemotherapy than C/T heterozygous patients (p = 0.02, χ² = 5.51, OR = 2.676, 95% CI: 1.165-6.143). Patients harbouring homozygous C/C genotype in rs3212986 of the ERCC1 gene had significantly higher risk of anaemia during chemotherapy, than heterozygous C/A patients (p = 0.045, χ² = 4.01, OR = 0.417, 95% CI: 0.175-0.991). Furthermore, heterozygous G/A genotype in rs11615 of the ERCC1 gene was associated with significant shortening of OS (9 vs. 12 months) compared to homozygous A/A genotype (p = 0.01, χ² = 6.31, HR = 1.657, 95% CI: 1.0710-2.5633). CONCLUSIONS SNPs in ERCC1 and TOP2 genes may be associated with the toxicities and survival of SCLC patients treated with cisplatin and etoposide.
Collapse
Affiliation(s)
- Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rolska-Kopińska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Bożyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Medical University of Lublin, Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
14
|
Vasconcellos VF, Marta GN, da Silva EMK, Gois AFT, de Castria TB, Riera R. Cisplatin versus carboplatin in combination with third-generation drugs for advanced non-small cell lung cancer. Cochrane Database Syst Rev 2020; 1:CD009256. [PMID: 31930743 PMCID: PMC6956680 DOI: 10.1002/14651858.cd009256.pub3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death in both sexes worldwide. Approximately 50% of those diagnosed with lung cancer will have locally advanced or metastatic disease and will be treated in a palliative setting. Platinum-based combination chemotherapy has benefits in terms of survival and symptom control when compared with best supportive care. OBJECTIVES To assess the effectiveness and safety of carboplatin-based chemotherapy when compared with cisplatin-based chemotherapy, both in combination with a third-generation drug, in people with advanced non-small cell lung cancer (NSCLC). To compare quality of life in people with advanced NSCLC receiving chemotherapy with cisplatin and carboplatin combined with a third-generation drug. SEARCH METHODS We searched the following electronic databases: the Cochrane Central Register of Controlled Trials (CENTRAL; 13 January 2019), MEDLINE (via PubMed) (1966 to 13 January 2019), and Embase (via Ovid) (1974 to 13 January 2019). In addition, we handsearched the proceedings of the American Society of Clinical Oncology Meetings (January 1990 to September 2018) and reference lists from relevant resources. SELECTION CRITERIA Randomised clinical trials (RCTs) comparing regimens with carboplatin or cisplatin combined with a third-generation drug in people with locally advanced or metastatic NSCLC. We accepted any regimen and number of cycles that included these drugs, since there is no widely accepted standard regimen. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the search results, and a third review author resolved any disagreements. The primary outcomes were overall survival and health-related quality of life. The secondary outcomes were one-year survival rate, objective response rate and toxicity. MAIN RESULTS In this updated review, we located one additional RCT, for a total of 11 included RCTs (5088 participants, 4046 of whom were available for meta-analysis). There was no difference in overall survival (hazard ratio (HR) 0.99, 95% confidence interval (CI) 0.82 to 1.20; 10 RCTs; 2515 participants; high-quality evidence); one-year survival rate (risk ratio (RR) 0.98, 95% CI 0.89 to 1.08; I2 = 17%; 4004 participants; all 11 RCTs; high-quality evidence); or response rate (RR 0.89, 95% CI 0.79 to 1.00; I2 = 12%; all 11 RCTs; 4020 participants; high-quality evidence). A subgroup analysis comparing carboplatin with different doses of cisplatin found an overall survival benefit in favour of carboplatin-based regimens when compared to cisplatin at lower doses (40 to 80 mg/m2) (HR 1.15, 95% CI 1.03 to 1.28; 6 RCTs; 2508 participants), although there was no overall survival benefit when carboplatin-based chemotherapy was compared to cisplatin at higher doses (80 to 100 mg/m2) (HR 0.93, 95% CI 0.83 to 1.04; I2 = 0%; 4 RCTs; 1823 participants). Carboplatin caused more thrombocytopenia (RR 2.46, 95% CI 1.49 to 4.04; I2 = 68%; 10 RCTs; 3670 participants) and was associated with more neurotoxicity (RR 1.42, 95% CI 0.91 to 2.23; I2 = 0%, 5 RCTs; 1489 participants), although we believe this last finding is probably related to a confounding factor (higher dose of paclitaxel in the carboplatin-containing treatment arm of a large study included in the analysis). There was no statistically significant difference in renal toxicity (RR 0.52, 95% CI 0.19 to 1.45; I2 = 3%; 3 RCTs; 1272 participants); alopecia (RR 1.11, 95% CI 0.73 to 1.68; I2 = 0%; 2 RCTs; 300 participants); anaemia (RR 1.37, 95% CI 0.79 to 2.38; I2 = 77%; 10 RCTs; 3857 participants); and neutropenia (RR 1.18, 95% CI 0.85 to 1.63; I2 = 94%; 10 RCTs; 3857 participants) between cisplatin-based chemotherapy and carboplatin-based chemotherapy regimens. Two RCTs performed a health-related quality of life analysis; however, as they used different methods of measurement we were unable to perform a meta-analysis. One RCT reported comparative health-related quality of life data between cisplatin and carboplatin-containing arms but found no significant differences in global indices of quality of life, including global health status or functional scales. In this Cochrane review, we found that the quality of evidence was high for overall survival, one-year survival rate and response rate but moderate quality evidence for the other outcomes measured. AUTHORS' CONCLUSIONS Advanced NSCL patients treated with carboplatin or cisplatin doublet with third-generation chemotherapy drugs showed equivalent overall survival, one-year survival, and response rate. Regarding adverse events, carboplatin caused more thrombocytopenia, and cisplatin caused more nausea/vomiting. Therefore, in this palliative therapeutic intent, the choice of the platin compound should take into account the expected toxicity profile, patient's comorbidities and preferences.
Collapse
Affiliation(s)
- Vitor F Vasconcellos
- Instituto do Câncer do Estado de São Paulo (ICESP/FMUSP)Medical OncologyAv. Dr Arnaldo 251São PauloSao PauloBrazil01246‐000
| | - Guilherme N Marta
- Instituto do Câncer do Estado de São Paulo (ICESP/FMUSP)Medical OncologyAv. Dr Arnaldo 251São PauloSao PauloBrazil01246‐000
| | - Edina MK da Silva
- Universidade Federal de São PauloEmergency Medicine and Evidence Based MedicineRua Borges Lagoa 564 cj 64Vl. ClementinoSão PauloSão PauloBrazil04038‐000
| | - Aecio FT Gois
- Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em SaúdeCochrane BrazilRua Pedro de Toledo, 598São PauloSão PauloBrazil04039‐001
| | - Tiago B de Castria
- Instituto do Câncer do Estado de São Paulo (ICESP/FMUSP)Medical OncologyAv. Dr Arnaldo 251São PauloSao PauloBrazil01246‐000
| | - Rachel Riera
- Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em SaúdeCochrane BrazilRua Pedro de Toledo, 598São PauloSão PauloBrazil04039‐001
| | | |
Collapse
|
15
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
16
|
Polynuclear ruthenium organometallic compounds induce DNA damage in human cells identified by the nucleotide excision repair factor XPC. Biosci Rep 2019; 39:BSR20190378. [PMID: 31227614 PMCID: PMC6629949 DOI: 10.1042/bsr20190378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Ruthenium organometallic compounds represent an attractive avenue in developing alternatives to platinum-based chemotherapeutic agents. While evidence has been presented indicating ruthenium-based compounds interact with isolated DNA in vitro, it is unclear what effect these compounds exert in cells. Moreover, the antibiotic efficacy of polynuclear ruthenium organometallic compounds remains uncertain. In the present study, we report that exposure to polynuclear ruthenium organometallic compounds induces recruitment of damaged DNA sensing protein Xeroderma pigmentosum Group C into chromatin-immobilized foci. Additionally, we observed one of the tested polynuclear ruthenium organometallic compounds displayed increased cytotoxicity against human cells deficient in nucleotide excision repair (NER). Taken together, these results suggest that polynuclear ruthenium organometallic compounds induce DNA damage in cells, and that cellular resistance to these compounds may be influenced by the NER DNA repair phenotype of the cells.
Collapse
|
17
|
Song YH, Zhang CQ, Chen FF, Lin XY. Upregulation of Neural Precursor Cell Expressed Developmentally Downregulated 4-1 is Associated with Poor Prognosis and Chemoresistance in Lung Adenocarcinoma. Chin Med J (Engl) 2019; 131:16-24. [PMID: 29271375 PMCID: PMC5754953 DOI: 10.4103/0366-6999.221262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The E3 ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) negatively regulates phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein levels through polyubiquitination and proteolysis, but its significance in lung cancer is still unclear. This study investigated the expression and the role of NEDD4-1 in tumor development and chemosensitivity of lung adenocarcinoma (ADC). METHODS We retrospectively investigated the expression and significance of NEDD4-1, PTEN, and p-Akt proteins in 135 paired ADC and adjacent noncancerous tissue specimens using immunohistochemistry. Furthermore, we evaluated the relationship between NEDD4-1 expression and clinicopathologic characteristics and prognosis. The effects of small interfering RNA against NEDD4-1 on proliferation and chemosensitivity were examined in A549 cells in vitro using 3- (4,5-dimethylthiazol-2-yl) -5-(3-carboxymethoxyphenyl) -2-(4-sulfophenyl)- 2H-tetrazolium method. The ability of migration and invasion of A549 cells was tested by transwell assay. Moreover, reverse-transcription quantitative polymerase chain reaction and Western blotting analyses were used to determine the expression of NEDD4-1, PTEN, phosphoinositide 3-kinase (PI3K)/Akt activity, and its downstream target proteins. RESULTS NEDD4-1 protein was significantly upregulated in lung ADC tissues, whereas it was weak or negative in normal lung epithelial cells. The expression of NEDD4-1 in ADC (78.5%, 106/135) was significantly much higher than that in adjacent normal lung tissue (13.3%, 29/135, P < 0.01), and it was associated with lymph node metastasis, tumor-node-metastasis (TNM) stage, and chemotherapy resistance. PTEN expression was downregulated in lung ADC (60.7% vs. 100.0% in noncancerous specimens, P = 0.007), and was negatively correlated with lymph node metastasis, histological variants, clinical stage, chemoresistance. In addition, expression of p-Akt in ADC tissues (71.1% 96/135) was much higher than that in adjacent lung epithelial cells (6.7%, 9/135, P < 0.01). Kaplan-Meier and multivariate analysis demonstrated that expressions of NEDD4-1 and PTEN were both independent risk factors for survival in patients with lung ADC. NEDD4-1 knockdown in vivo decreased proliferation, migration, and invasion and improved chemosensitivity to cisplatin and paclitaxel in A549 cells. NEDD4-1 knockdown also significantly enhanced PTEN expression and inhibited p-Akt activity and downstream target proteins. CONCLUSIONS NEDD4-1 upregulation may contribute to the progression of lung ADC. NEDD4-1 may regulate the proliferation, invasion, migration, and chemoresistance of lung ADC cells through the PI3K/Akt pathway, suggesting that it may be regarded as a therapeutic target for the treatment of lung ADC.
Collapse
Affiliation(s)
- Ying-Hua Song
- Department of Respiratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Cai-Qing Zhang
- Department of Respiratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Fang-Fang Chen
- Department of Respiratory Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Xiao-Yan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
18
|
Pötsch I, Baier D, Keppler BK, Berger W. Challenges and Chances in the Preclinical to Clinical Translation of Anticancer Metallodrugs. METAL-BASED ANTICANCER AGENTS 2019. [DOI: 10.1039/9781788016452-00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite being “sentenced to death” for quite some time, anticancer platinum compounds are still the most frequently prescribed cancer therapies in the oncological routine and recent exciting news from late-stage clinical studies on combinations of metallodrugs with immunotherapies suggest that this situation will not change soon. It is perhaps surprising that relatively simple molecules like cisplatin, discovered over 50 years ago, are still widely used clinically, while none of the highly sophisticated metal compounds developed over the last decade, including complexes with targeting ligands and multifunctional (nano)formulations, have managed to obtain clinical approval. In this book chapter, we summarize the current status of ongoing clinical trials for anticancer metal compounds and discuss the reasons for previous failures, as well as new opportunities for the clinical translation of metal complexes.
Collapse
Affiliation(s)
- Isabella Pötsch
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Dina Baier
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna, Department of Inorganic Chemistry Währingerstrasse Vienna 1090 Austria
| | - Walter Berger
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
19
|
Boldrin E, Malacrida S, Rumiato E, Battaglia G, Ruol A, Amadori A, Saggioro D. Association Between ERCC1 rs3212986 and ERCC2/XPD rs1799793 and OS in Patients With Advanced Esophageal Cancer. Front Oncol 2019; 9:85. [PMID: 30847299 PMCID: PMC6393335 DOI: 10.3389/fonc.2019.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer (EC) is a very aggressive tumor, and no reliable prognostic markers exist especially for resectable advanced neoplasia. The principal aim of this study was to investigate the association of germline polymorphisms in nucleotide excision repair (NER) pathway genes with the overall survival (OS) of patients with advanced EC. As a second aim, we also studied the association of NER gene variants with response to cisplatin-based chemotherapy. Among the EC patients referred to our Institution between 2004 and 2012, we selected a cohort of 180 patients diagnosed with a clinical tumor stage ranging from IIB and IVA. Patients were genotyped for four NER variants, two in the ERCC1 (rs11615 and rs3212986) and two in the ERCC2/XPD (rs1799793 and rs13181) genes. Kaplan–Meier analyses and Cox proportional hazards model were used to evaluate the associations of the selected variants with OS; association with response to neoadjuvant therapy was investigated using logistic regression. Results showed that the ERCC1 rs3212986 and the ERCC2/XPD rs1799793 were significantly associated with shorter OS. On the contrary, response association analysis displayed that, while rs11615 and rs3212986 in ERCC1 were associated with response, both ERCC2/XPD variants were not. By creating survival prediction models, we showed that the rs3212986 and the rs1799793 have a better predictability of the tumor stage alone. Furthermore, they were able to improve the power of the clinical model (AUC = 0.660 vs. AUC = 0.548, p = 0.004). In conclusion, our results indicate that the ERCC1 rs3212986 and the ERCC2/XPD rs1799793 could be used as surrogate markers for a better stratification of EC patients with advanced resectable tumor.
Collapse
Affiliation(s)
- Elisa Boldrin
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sandro Malacrida
- Eurac Research, Institute of Mountain Emergency Medicine, Bolzano, Italy
| | - Enrica Rumiato
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Giorgio Battaglia
- Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Alberto Ruol
- Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.,Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Daniela Saggioro
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
20
|
Gene-gene and gene-environment interaction data for platinum-based chemotherapy in non-small cell lung cancer. Sci Data 2018; 5:180284. [PMID: 30531820 PMCID: PMC6289114 DOI: 10.1038/sdata.2018.284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
Abstract
Gene-gene (GXG) and gene-environment (GXE) interactions play important roles in pharmacogenetics study. Simultaneously incorporating multiple single nucleotide polymorphisms (SNPs) and clinical factors is needed to explore the association of their interactions with drug response and toxicity phenotypes. We genotyped 504 SNPs in a total of 490 Chinese non-small cell lung cancer (NSCLC) patients, and the correlation of GXG and GXE interactions with platinum-based chemotherapeutic efficacy and safety were analyzed. In this data descriptor, we shared our data set which could help others to reuse them. All kinds of file types needed for GXG and GXE analysis were supplied. The process of genotyping and data analysis was also introduced step by step.
Collapse
|
21
|
TNFAIP8 promotes the proliferation and cisplatin chemoresistance of non-small cell lung cancer through MDM2/p53 pathway. Cell Commun Signal 2018; 16:43. [PMID: 30064446 PMCID: PMC6069800 DOI: 10.1186/s12964-018-0254-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/19/2018] [Indexed: 12/29/2022] Open
Abstract
Background The highly refractory nature of non-small cell lung cancer (NSCLC) to chemotherapeutic drugs is an important factor resulting in its poor prognosis. Recent studies have revealed that tumour necrosis factor alpha-induced protein 8 (TNFAIP8) is involved in various biological and pathological processes of cells, but their underlying mechanisms in processes ranging from cancer development to drug resistance have not been fully elucidated. Methods TNFAIP8 expression in clinical NSCLC samples was examined through immunohistochemistry (IHC). After adjusting for patients’ characteristics with propensity score matching, Kaplan-Meier analysis and Cox regression analysis were performed for comparison of patients’ survival according to the TNFAIP8 level. Lentiviral transfection with TNFAIP8-specific shRNAs was used to establish stable TNFAIP8 knockdown (TNFAIP8 KD) NCI-H460, A549 and cis-diamminedichloroplatinum II resistant A549 (A549/cDDP) cell lines. Cell proliferation and viability were assessed by CCK-8 assay. Cell cycle was examined by flow cytometry. Multiple pathways regulated by TNFAIP8 KD were revealed by microarray analysis. Results We found that high TNFAIP8 expression was associated with advanced pT stage, advanced pTNM stage, lymph node metastasis and unfavourable survival in NSCLC patients. TNFAIP8 shRNAs reduced in vitro cancer cell proliferation and in vivo tumor growth. Additionally, TNFAIP8 KD increased the sensitivity of NSCLC cells to cisplatin in vitro and in vivo. Conversely, up-regulation of TNFAIP8 promoted the proliferation and drug resistance to cisplatin of NSCLC cells. TNFAIP8 influences cancer progression pathways involving the MDM2/p53 pathway. Indeed, we observed that TNFAIP8 KD mediated the MDM2 downregulation and the p53 ubiquitination, thereby decreasing the degradation of p53 protein. shRNA p53 reversed TNFAIP8 shRNA-mediated regulation of cell proliferation, cell cycle, cisplatin sensitivity, and expression levels of RAD51, a DNA repair gene. Conclusion Our work uncovers a hitherto unappreciated role of TNFAIP8 in NSCLC proliferation and cisplatin chemoresistance that is mediated through the MDM2/p53 pathway. These findings might offer potential therapeutic targets for reversing cisplatin resistance in NSCLC patients with high TNFAIP8 expression. Electronic supplementary material The online version of this article (10.1186/s12964-018-0254-x) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Sun C, Zhang Z, Qie J, Wang Y, Qian J, Wang J, Wu J, Li Q, Bai C, Han B, Gao Z, Xu J, Lu D, Jin L, Wang H. Genetic polymorphism of SLC31A1 is associated with clinical outcomes of platinum-based chemotherapy in non-small-cell lung cancer patients through modulating microRNA-mediated regulation. Oncotarget 2018; 9:23860-23877. [PMID: 29844858 PMCID: PMC5963629 DOI: 10.18632/oncotarget.24794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 01/27/2023] Open
Abstract
SLC31A1 is the major transporter for platinum drug intake, its expression correlates with drug disposition and response. In 1004 Chinese NSCLC patients with platinum-based chemotherapy, we investigated the association between SLC31A1 polymorphisms and clinical outcomes. Heterozygotes of rs10759637 at 3′UTR was associated with severe thrombocytopenia (odds ratio [OR]: 2.69; P = 0.012) and shorter overall survival (hazard ratio [HR]: 1.24; P = 0.005). Variant homozygote of rs2233914 was correlated with longer overall survival (hazard ratio [HR]: 0.73; P = 0.008). Haplotype and diplotype of these linked SNPs were associated with hematologic toxicities. In stratification analyses, rs10759637 and rs2233914 consistently correlated with overall survival in specific subgroups such as men, smoker, patients older than 58 years, or with ECOG PS 0-1, or with squamous cell carcinoma. rs10759637 could change the local structure of 3′UTR harboring putative binding sites for hsa-miR-29, whose transfection into 16HBE cells resulted in remarkable suppression of gene expression. The rs10759637 variant significantly correlated with lowered luciferase activity in reporter assays and decreased expression of SLC31A1 transcript in tumorous tissues. The study thereby identified functional polymorphism of SLC31A1 that modulates miRNA-3′UTR interaction and gene expression as potential pharmacogenetic biomarker for clinical outcomes of platinum-based chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Chang Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhuojun Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingbo Qie
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ji Qian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Wu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Respiratory and Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Baohui Han
- Department of Pneumology, Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhiqiang Gao
- Department of Pneumology, Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jibin Xu
- Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Haijian Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
XRCC3 polymorphism is associated with hypertension-induced left ventricular hypertrophy. Hypertens Res 2018; 41:426-434. [PMID: 29626209 DOI: 10.1038/s41440-018-0038-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022]
Abstract
Deficiency of X-ray repair cross-complementing protein 3 (XRCC3), a DNA-damage repair molecule, and the 241Met variant of XRCC3 have been reported to increase endoreduplication, which induces polyploidy. The aims of this study were to determine the impact of the XRCC3 polymorphism on the incidence of hypertension-induced left ventricular hypertrophy (LVH) and to investigate the mechanisms underlying any potential relationship. Patients undergoing chronic hemodialysis (n = 77) were genotyped to assess for the XRCC3 Thr241Met polymorphism. The XRCC3 241Thr/Met genotype was more frequent in the LVH (+) group than in the LVH (-) group (42.3 vs. 13.7%, χ2 = 7.85, p = 0.0051). To investigate possible mechanisms underlying these observations, human XRCC3 cDNA of 241Thr or that of 241Met was introduced into cultured CHO cells. The surface area of CHO cells expressing XRCC3 241Met was larger than that expressing 241Thr. Spontaneous DNA double-strand breaks accumulated to a greater degree in NIH3T3 cells expressing 241Met (3T3-241Met) than in those expressing 241Thr (3T3-241Thr). DNA damage caused by radiation induced cell senescence more frequently in 3T3-241Met. The levels of basal and TNF-α-stimulated MCP-1 mRNA and protein secretion were higher in 3T3-241Met. Finally, FACS analysis revealed that the cell percentage in G2/M phase including polyploidy was significantly higher in 3T3-241Met than in 3T3-241Thr. Furthermore, the basal level of MCP-1 mRNA positively correlated with the cell percentage in G2/M phase and polyploidy. These data suggest that the XRCC3 241Met increases the risk of LVH via accumulation of DNA damage, thereby altering cell cycle progression and inducing cell senescence and a proinflammatory phenotype.
Collapse
|
24
|
Combined effect of ERCC1 and ERCC2 polymorphisms on overall survival in non-squamous non-small-cell lung cancer patients treated with first-line pemetrexed/platinum. Lung Cancer 2018; 118:90-96. [PMID: 29572009 DOI: 10.1016/j.lungcan.2018.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/03/2017] [Accepted: 01/17/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Polymorphisms of DNA repair genes may affect DNA repair capacity and the sensitivity of platinum doublets chemotherapy in non-small-cell lung cancer (NSCLC). We prospectively evaluated whether single nucleotide polymorphisms (SNPs) of ERCC1, ERCC2, XRCC1, and XRCC3 were associated with treatment outcome in advanced non-squamous NSCLC patients receiving pemetrexed/platinum as their first-line chemotherapy. MATERIALS AND METHODS Genotyping of six SNPs in four DNA repair genes in 58 patients treated with first-line pemetrexed/platinum was performed using TaqMan SNP Genotyping Assays. RESULTS The wild-type ERCC1 8092 (C/C) was significantly associated with a better objective response compared to the variant genotypes (C/A + A/A) (48% vs 10%, P = .005). In the multivariate Cox proportional hazards model, we found that individuals with a wild-type genotype of ERCC1 Asn118Asn, ERCC1 C8092A and ERCC2 Asp312Asn had significantly better overall survival (OS) than those with a heterozygous or homozygous variant genotype. On the other hand, the heterozygous variant genotype of ERCC2 Lys751Gln was associated with better OS than that of the wild-type genotype. We further explored the combined effect of SNPs on OS, and found a significant allele/dose-dependent trend toward decreasing OS in patients with an increasing number of unfavorable alleles among four SNPs in ERCC1 and ERCC2. The median OS of patients with two or three unfavorable alleles (30.1 and 30.5 months, respectively) was significantly longer than that of patients with 4 unfavorable alleles (11.8 months, log-rank test for trend, P = .001). CONCLUSION A combination of ERCC1 and ERCC2 polymorphisms may predict OS among pemetrexed/platinum treated advanced non-squamous NSCLC patients.
Collapse
|
25
|
Hamilton G, Rath B. Pharmacogenetics of platinum-based chemotherapy in non-small cell lung cancer: predictive validity of polymorphisms of ERCC1. Expert Opin Drug Metab Toxicol 2017; 14:17-24. [PMID: 29226731 DOI: 10.1080/17425255.2018.1416095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The efficacy of platinum-based chemotherapy for patients with non-small cell lung cancer (NSCLC) is limited by chemoresistance. Platinum drugs damage DNA by introducing intrastrand and interstrand crosslinks which result in cell death. Excision repair cross-complementing 1 (ERCC1) is a member of the nucleotide excision repair (NER) pathway which erases such defects. Single nucleotide polymorphisms (SNPs) in ERCC1 impair this activity and have been suggested to predict the response to chemotherapy. Area covered: Among the polymorphisms of proteins involved in uptake, metabolism, cytotoxicity and efflux of platinum drugs, codon 118 C/T and C8092A in ERCC1 are the best characterized SNPs studied for their predictive power. Here, the divergent results for studies of these markers in NSCLC are summarized and the reasons for this contradictory data discussed. Expert opinion: Cytotoxicity of platinum compounds comprise complex cellular processes for which DNA repair may not constitute the rate limiting step. These drugs are administered as doublets to histologically diverse patients and, furthermore, the NER pathway in ERCC1 wildtype cohorts may be still impaired by the chemotherapeutics applied. At present, assessment of a limited number of polymorphism in DNA repair proteins is not reliably associated with response to treatment in NSCLC patients.
Collapse
Affiliation(s)
- Gerhard Hamilton
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Barbara Rath
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
26
|
Mari A, D'Andrea D, Abufaraj M, Foerster B, Kimura S, Shariat SF. Genetic determinants for chemo- and radiotherapy resistance in bladder cancer. Transl Androl Urol 2017; 6:1081-1089. [PMID: 29354495 PMCID: PMC5760393 DOI: 10.21037/tau.2017.08.19] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bladder cancer (BCa) is burdened by high rates of chemo- and radio-resistance. We reviewed and summarized the current evidence regarding the genetic determinants of resistance in patients treated with chemotherapy and/or radiotherapy (RT) for BCa. Genetic heterogeneity may preexist to treatment arising with tumorigenesis or increasing progressively during the treatment. Several biological pathways seem to be involved in the cellular response to treatment. These pathways comprehend mechanisms leading to modify the intracellular concentration of the drug, mechanisms leading to increase the repair of DNA damage caused by the treatment, mechanisms leading to increase cell survival, despite DNA damage, acting on the signaling pathways affecting apoptosis, mechanisms promoting autophagy. In the present review, we focused on the genetic determinants of resistance affecting the aforementioned mechanisms.
Collapse
Affiliation(s)
- Andrea Mari
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - David D'Andrea
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Mohammad Abufaraj
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Beat Foerster
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Shoji Kimura
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Urology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
27
|
Pérez-Ramírez C, Cañadas-Garre M, Alnatsha A, Molina MÁ, Robles AI, Villar E, Delgado JR, Faus-Dáder MJ, Calleja-Hernández MÁ. Interleukins as new prognostic genetic biomarkers in non-small cell lung cancer. Surg Oncol 2017; 26:278-285. [PMID: 28807247 DOI: 10.1016/j.suronc.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Surgery is the standard treatment for early-stage NSCLC, and platinum-based chemotherapy remains as the treatment of choice for advanced-stage NSCLC patients with naïve EGFR status. However, overall 5-years relative survival rates are low. Interleukins (ILs) are crucial for processes associated with tumor development. In NSCLC, IL1B, IL6, IL12A, IL13 and IL16 gene polymorphisms may contribute to individual variation in terms of patient survival. The purpose of this study was to evaluate the association between IL gene polymorphisms and survival in NSCLC patients. METHODS A prospective cohorts study was performed, including 170 NSCLC patients (114 Stage IIIB-IV, 56 Stage I-IIIA). IL1B (C > T; rs1143634), IL1B (C > T; rs12621220), IL1B (C > G; rs1143623), IL1B (A > G; rs16944), IL1B (C > T; rs1143627), IL6 (C > G; rs1800795), IL12A (C > T; rs662959), IL13 (A > C; rs1881457) and IL16 (G > T; rs7170924) gene polymorphisms were analyzed by PCR Real-Time. RESULTS Patients with IL16 rs7170924-GG genotype were in higher risk of death (p = 0.0139; HR = 1.82; CI95% = 1.13-2.94) Furthermore, carriers of the TT genotype for IL12A rs662959 presented higher risk of progression in the non-resected NSCLC patient subgroup (p = 0.0412; HR = 4.49; CI95% = 1.06-18.99). The rest of polymorphisms showed no effect of on outcomes. CONCLUSIONS Our results suggest that IL16 rs7170924-GG and IL12A rs662959-TT genotypes predict higher risk of death and progression, respectively, in NSCLC patients. No influence of IL1B rs12621220, IL1B rs1143623, IL1B rs16944, IL1B rs1143627, IL6 rs1800795, IL13 rs1881457 on NSCLC clinical outcomes was found in our patients.
Collapse
Affiliation(s)
- Cristina Pérez-Ramírez
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, Spain; Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Marisa Cañadas-Garre
- Centre for Public Health, Queen's University of Belfast c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, United Kingdom.
| | - Ahmed Alnatsha
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, Spain; Department of Molecular Medicine, Faculty of Medicine, University of Tübingen, Geissweg 5, 72076 Tübingen, Germany.
| | - Miguel Ángel Molina
- Pangaea Biotech, S.L., Hospital Universitario Quirón Dexeus, C/ Sabino Arana, 5-19, 08028 Barcelona, Spain.
| | - Ana I Robles
- National Cancer Institute, 37 Convent Dr, 37/3060D, Bethesda, MD, United States.
| | - Eduardo Villar
- Pathology Service, UGC Anatomía Patológica, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain.
| | - Juan Ramón Delgado
- Medical Oncology Service, UGC Oncología Médica, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain.
| | - María José Faus-Dáder
- Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Miguel Ángel Calleja-Hernández
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| |
Collapse
|