1
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
2
|
Chen S, Zhang Z, Peng H, Jiang S, Xu C, Ma X, Zhang L, Zhou H, Xing X, Chen L, Wang Q, Chen W, Li D. Histone H3K36me3 mediates the genomic instability of Benzo[a]pyrene in human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123564. [PMID: 38367693 DOI: 10.1016/j.envpol.2024.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/13/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Histone modifications maintain genomic stability and orchestrate gene expression at the chromatin level. Benzo [a]pyrene (BaP) is the ubiquitous carcinogen widely spread in the environment, but the role and regulatory mechanism of histone modification in its toxic effects remain largely undefined. In this study, we found a dose-dependent reduction of histone H3 methylations at lysine4, lysine9, lysine27, lysine36 in HBE cells treated with BaP. We observed that inhibiting H3K27 and H3K36 methylation impaired cell proliferation, whereas the loss of H3K4, H3K9, H3K27, and H3K36 methylation led to increased genomic instability and delayed DNA repair. H3K36 mutation at both H3.1 and H3.3 exhibited the most significant impacts. In addition, we found that the expression of SET domain containing 2 (SETD2), the unique methyltransferase catalyzed H3K36me3, was downregulated by BaP dose-dependently in vitro and in vivo. Knockdown of SETD2 aggravated DNA damage of BaP exposure, which was consistent with the effects of H3K36 mutation. With the aid of chromatin immunoprecipitation (ChIP) -seq and RNA-seq, we found that H3K36me3 was responsible for transcriptional regulation of genes involved in pathways related to cell survival, lung cancer, metabolism and inflammation. The enhanced enrichment of H3K36me3 in genes (CYP1A1, ALDH1A3, ACOXL, WNT5A, WNT7A, RUNX2, IL1R2) was positively correlated with their expression levels, while the reduction of H3K36me3 distribution in genes (PPARGC1A, PDE4D, GAS1, RNF19A, KSR1) were in accordance with the downregulation of gene expression. Taken together, our findings emphasize the critical roles and mechanisms of histone lysine methylation in mediating cellular homeostasis during BaP exposure.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Department of Toxicology, School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Honghao Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuyun Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liying Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Tewary G, Freyter B, Al-Razaq MA, Auerbach H, Laschke MW, Kübelbeck T, Kolb A, Mangelinck A, Mann C, Kramer D, Rübe CE. Immunomodulatory Effects of Histone Variant H2A.J in Ionizing Radiation Dermatitis. Int J Radiat Oncol Biol Phys 2024; 118:801-816. [PMID: 37758068 DOI: 10.1016/j.ijrobp.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.
Collapse
Affiliation(s)
- Gargi Tewary
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Benjamin Freyter
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Mutaz Abd Al-Razaq
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hendrik Auerbach
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Adèle Mangelinck
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Daniela Kramer
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Claudia E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany.
| |
Collapse
|
4
|
Rishi JK, Timme K, White HE, Kerns KC, Keating AF. Altered histone abundance as a mode of ovotoxicity during 7,12-dimethylbenz[a]anthracene exposure with additive influence of obesity†. Biol Reprod 2024; 110:419-429. [PMID: 37856498 PMCID: PMC10873273 DOI: 10.1093/biolre/ioad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Histones are slowly evolving chromatin components and chromatin remodeling can incorporate histone variants differing from canonical histones as an epigenetic modification. Several identified histone variants are involved with the environmental stress-induced DNA damage response (DDR). Mechanisms of DDR in transcriptionally inactive, prophase-arrested oocytes and epigenetic regulation are under-explored in ovarian toxicology. The study objective was to identify ovarian proteomic and histone modifications induced by DMBA exposure and an influence of obesity. Post-pubertal wildtype (KK.Cg-a/a; lean) and agouti (KK.Cg-Ay/J; obese) female mice, were exposed to either corn oil (control; CT) or DMBA (1 mg/kg) for 7d via intraperitoneal injection (n = 10/treatment). Ovarian proteome analysis (LC-MS/MS) determined that obesity altered 225 proteins (P < 0.05) with histone 3 being the second least abundant (FC = -5.98, P < 0.05). Histone 4 decreased by 3.33-fold, histone variant H3.3 decreased by 3.05-fold, and H1.2, H1.4 and H1.1(alpha) variants increased by 1.59, 1.90 and 2.01-fold, respectively (P < 0.05). DMBA exposure altered 48 proteins in lean mice with no observed alterations in histones or histone variants. In obese mice, DMBA exposure altered 120 proteins and histone 2B abundance increased by 0.30-fold (P < 0.05). In DMBA-exposed mice, obesity altered the abundance of 634 proteins. Histones 4, 3 and 2A type 1-F decreased by 4.03, 3.71, 0.43-fold, respectively, whereas histone variant H1.2 and linker histone, H15 increased by 2.72- and 3.07-fold, respectively (P < 0.05). Thus, DMBA exposure alters histones and histone variants, and responsivity is more pronounced during obesity, potentially altering ovarian transcriptional regulation.
Collapse
Affiliation(s)
- Jaspreet K Rishi
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Karl C Kerns
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Rahman MS, Billah MM, Rangel V, Cantu E. Elevated temperature triggers increase in global DNA methylation, 5-methylcytosine expression levels, apoptosis and NOx levels in the gonads of Atlantic sea urchin. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110899. [PMID: 37673203 DOI: 10.1016/j.cbpb.2023.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Global warming is one of the greatest threats to living organisms. Among them, marine invertebrates are severely impacted on reproductive fitness by rising seawater surface temperatures due to climate change (e.g., massive heat waves). In this study, we used highly sensitive radioimmunoassay, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), in situ TUNEL assay, luminescence assay, and colorimetric assay techniques to investigate the impacts of high temperatures on global DNA methylation, cellular apoptosis, and nitrative stress in gonads of Atlantic sea urchin (Arbacia punctulata, a commercially important species). Young adult sea urchins were exposed to 24, 28, and 32 °C for one week in a controlled laboratory setting. High temperatures (28 and 32 °C) markedly increased global DNA methylation (around 1.1-1.5-fold in testes and ~ 1.7-fold in ovaries) and 5-methylcytosine (5-mC) levels in gonads (around 2.7- to ~5.1-fold in ovaries and ~ 3.5- to ~6.2-fold in testes) compared with controls (24 °C). The number of apoptotic nuclei in gonads was much higher in high-temperature groups. The caspase activity also increased significantly (P < 0.05) in gonads in high-temperature groups. Nitrate/nitrites (NOx, a biomarker of reactive nitrogen species) levels were increased around 2.6- to ~5.2-fold in testes and ~ 1.9- to ~3.8-fold in ovaries in high-temperature groups. Collectively, these outcomes indicate that high temperatures drastically induce global DNA methylation, 5-mC expression levels, cellular apoptosis, and NOx levels in the gonads of Atlantic sea urchin.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Victor Rangel
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Esmirna Cantu
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
6
|
Chu S, Letcher RJ. Bottom-up proteomics analysis for adduction of the broad-spectrum herbicide atrazine to histone. Anal Bioanal Chem 2023; 415:1497-1504. [PMID: 36662240 PMCID: PMC9974708 DOI: 10.1007/s00216-023-04545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Histones are the major proteinaceous components of chromatin in eukaryotic cells and an important part of the epigenome. The broad-spectrum herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1, 3, 5-triazine) and its metabolites are known to form protein adducts, but the formation of atrazine-histone adducts has not been studied. In this study, a bottom-up proteomics analysis method was optimized and applied to identify histone adduction by atrazine in vitro. Whole histones of calf thymus or human histone H3.3 were incubated with atrazine. After solvent-based protein precipitation, the protein was digested by trypsin/Glu-C and the resulting peptides were analyzed by high-resolution mass spectrometry using an ultra-high-performance liquid chromatograph interfaced with a quadrupole Exactive-Orbitrap mass spectrometer. The resulting tryptic/Glu-C peptide of DTNLCAIHAK from calf thymus histone H3.1 or human histone H3.3 was identified with an accurate mass shift of +179.117 Da in atrazine incubated samples. It is deduced that a chemical group with an elemental composition of C8H13N5 (179.1171 Da) from atrazine adducted with calf thymus histone H3.1 or human histone H3.3. It was confirmed by MS/MS analysis that the adduction position was at its cysteine 110 residue. Time- and concentration-dependent assays also confirmed the non-enzymatic covalent modification of histone H3.3 by atrazine in vitro. Thus, the potential exists that atrazine adduction may lead to the alteration of histones that subsequently disturbs their normal function.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada.
| |
Collapse
|
7
|
Shah SM, Demidova EV, Lesh RW, Hall MJ, Daly MB, Meyer JE, Edelman MJ, Arora S. Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treat Rev 2022; 104:102337. [PMID: 35051883 PMCID: PMC9016579 DOI: 10.1016/j.ctrv.2021.102337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
DNA repair vulnerabilities are present in a significant proportion of cancers. Specifically, germline alterations in DNA repair not only increase cancer risk but are associated with treatment response and clinical outcomes. The therapeutic landscape of cancer has rapidly evolved with the FDA approval of therapies that specifically target DNA repair vulnerabilities. The clinical success of synthetic lethality between BRCA deficiency and poly(ADP-ribose) polymerase (PARP) inhibition has been truly revolutionary. Defective mismatch repair has been validated as a predictor of response to immune checkpoint blockade associated with durable responses and long-term benefit in many cancer patients. Advances in next generation sequencing technologies and their decreasing cost have supported increased genetic profiling of tumors coupled with germline testing of cancer risk genes in patients. The clinical adoption of panel testing for germline assessment in high-risk individuals has generated a plethora of genetic data, particularly on DNA repair genes. Here, we highlight the therapeutic relevance of germline aberrations in DNA repair to identify patients eligible for precision treatments such as PARP inhibitors (PARPis), immune checkpoint blockade, chemotherapy, radiation therapy and combined treatment. We also discuss emerging mechanisms that regulate DNA repair.
Collapse
Affiliation(s)
- Shreya M Shah
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Science Scholars Program, Temple University, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Kazan Federal University, Kazan, Russian Federation
| | - Randy W Lesh
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Michael J Hall
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Mary B Daly
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Joshua E Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Martin J Edelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States; Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
8
|
The transcriptomic response of adult salmon lice (Lepeophtheirus salmonis) to reduced salinity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100778. [PMID: 33271493 DOI: 10.1016/j.cbd.2020.100778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
Salmon lice (Lepeophtheirus salmonis) are marine parasitic copepods living on salmonids and are challenging for salmon aquaculture. One of several treatment methods is the application of freshwater to the fish which can lead to lice loss. However, lab experiments have shown that salmon lice, acclimated to seawater, are capable of surviving for several weeks in freshwater, when attached to a host. If not attached to a host, they die within a few hours in freshwater but can survive a longer time in brackish water. The molecular mechanisms involved in the adaptation to low salinity of the louse have not been identified yet. In this study we incubated salmon lice, being attached to a host, or detached, in seawater, brackish water and freshwater for 4 h and 1 d, sampled the animals and used RNA-Seq to identify genes involved in these mechanisms. Freshwater incubation led to a much stronger regulatory response than brackish water and a longer incubation time gave a stronger effect than a short incubation. Among the most interesting genes, upregulated in low salinity water are in addition to several transporters, several enzymes involved in amino acid metabolism and especially in the proline biosynthesis. A strong upregulation of these enzymes might lead to an accumulation of proline which is known to be used as an osmolyte in other species. While the RNA-Seq experiment was performed with female samples, qPCR showed that at least 10 genes regulated in females, were also regulated in males.
Collapse
|
9
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
10
|
Kotowski U, Erović BM, Schnöll J, Stanek V, Janik S, Steurer M, Mitulović G. Quantitative proteome analysis of Merkel cell carcinoma cell lines using SILAC. Clin Proteomics 2019; 16:42. [PMID: 31889939 PMCID: PMC6921584 DOI: 10.1186/s12014-019-9263-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is an aggressive neuroendocrine tumour of the skin with growing incidence. To better understand the biology of this malignant disease, immortalized cell lines are used in research for in vitro experiments. However, a comprehensive quantitative proteome analysis of these cell lines has not been performed so far. METHODS Stable isotope labelling by amino acids in cell culture (SILAC) was applied to six MCC cell lines (BroLi, MKL-1, MKL-2, PeTa, WaGa, and MCC13). Following tryptic digest of labelled proteins, peptides were analysed by mass spectrometry. Proteome patterns of MCC cell lines were compared to the proteome profile of an immortalized keratinocyte cell line (HaCaT). RESULTS In total, 142 proteins were upregulated and 43 proteins were downregulated. Altered proteins included mitoferrin-1, histone H2A type 1-H, protein-arginine deiminase type-6, heterogeneous nuclear ribonucleoproteins A2/B1, protein SLX4IP and clathrin light chain B. Furthermore, several proteins of the histone family and their variants were highly abundant in MCC cell lines. CONCLUSIONS The results of this study present a new protein map of MCC and provide deeper insights in the biology of MCC. Data are available via ProteomeXchange with identifier PXD008181.
Collapse
Affiliation(s)
- Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Boban M. Erović
- Institute of Head and Neck Diseases, Evangelical Hospital Vienna, 1180 Vienna, Austria
| | - Julia Schnöll
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Victoria Stanek
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Janik
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Steurer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Goran Mitulović
- Proteomics Core Facility, Medical University of Vienna, 1090 Vienna, Austria
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
11
|
Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019; 11:E1789. [PMID: 31739493 PMCID: PMC6895987 DOI: 10.3390/cancers11111789] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Biological responses to ionizing radiation (IR) have been studied for many years, generally showing the dependence of these responses on the quality of radiation, i.e., the radiation particle type and energy, types of DNA damage, dose and dose rate, type of cells, etc. There is accumulating evidence on the pivotal role of complex (clustered) DNA damage towards the determination of the final biological or even clinical outcome after exposure to IR. In this review, we provide literature evidence about the significant role of damage clustering and advancements that have been made through the years in its detection and prediction using Monte Carlo (MC) simulations. We conclude that in the future, emphasis should be given to a better understanding of the mechanistic links between the induction of complex DNA damage, its processing, and systemic effects at the organism level, like genomic instability and immune responses.
Collapse
Affiliation(s)
| | | | | | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|