1
|
Zhao H, Feng K, Lei J, Shu Y, Bo L, Liu Y, Wang L, Liu W, Ning S, Wang L. Identification of somatic mutation-driven enhancers and their clinical utility in breast cancer. iScience 2024; 27:108780. [PMID: 38303701 PMCID: PMC10831879 DOI: 10.1016/j.isci.2024.108780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Somatic mutations contribute to cancer development by altering the activity of enhancers. In the study, a total of 135 mutation-driven enhancers, which displayed significant chromatin accessibility changes, were identified as candidate risk factors for breast cancer (BRCA). Furthermore, we identified four mutation-driven enhancers as independent prognostic factors for BRCA subtypes. In Her2 subtype, enhancer G > C mutation was associated with poorer prognosis through influencing its potential target genes FBXW9, TRIR, and WDR83. We identified aminoglutethimide and quinpirole as candidate drugs targeting the mutated enhancer. In normal subtype, enhancer G > A mutation was associated with poorer prognosis through influencing its target genes ALOX15B, LINC00324, and MPDU1. We identified eight candidate drugs such as erastin, colforsin, and STOCK1N-35874 targeting the mutated enhancer. Our findings suggest that somatic mutations contribute to breast cancer subtype progression by altering enhancer activity, which could be potential candidates for cancer therapy.
Collapse
Affiliation(s)
- Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ke Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junjie Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaopeng Shu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lin Bo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lixia Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wangyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
2
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
da Silva Lima F, da Silva Gonçalves CE, Fock RA. A review of the role of zinc finger proteins on hematopoiesis. J Trace Elem Med Biol 2023; 80:127290. [PMID: 37659124 DOI: 10.1016/j.jtemb.2023.127290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
The bone marrow is responsible for producing an incredible number of cells daily in order to maintain blood homeostasis through a process called hematopoiesis. Hematopoiesis is a greatly demanding process and one entirely dependent on complex interactions between the hematopoietic stem cell (HSC) and its surrounding microenvironment. Zinc (Zn2+) is considered an important trace element, playing diverse roles in different tissues and cell types, and zinc finger proteins (ZNF) are proteins that use Zn2+ as a structural cofactor. In this way, the ZNF structure is supported by a Zn2+ that coordinates many possible combinations of cysteine and histidine, with the most common ZNF being of the Cys2His2 (C2H2) type, which forms a family of transcriptional activators that play an important role in different cellular processes such as development, differentiation, and suppression, all of these being essential processes for an adequate hematopoiesis. This review aims to shed light on the relationship between ZNF and the regulation of the hematopoietic tissue. We include works with different designs, including both in vitro and in vivo studies, detailing how ZNF might regulate hematopoiesis.
Collapse
Affiliation(s)
- Fabiana da Silva Lima
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Ferrer-Vicens I, Ferguson DCJ, Wilson MC, Heesom KJ, Bieker JJ, Frayne J. A novel human cellular model of CDA IV enables comprehensive analysis revealing the molecular basis of the disease phenotype. Blood 2023; 141:3039-3054. [PMID: 37084386 PMCID: PMC10315626 DOI: 10.1182/blood.2022018735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 04/23/2023] Open
Abstract
Red blood cell disorders can result in severe anemia. One such disease congenital dyserythropoietic anemia IV (CDA IV) is caused by the heterozygous mutation E325K in the transcription factor KLF1. However, studying the molecular basis of CDA IV is severely impeded by the paucity of suitable and adequate quantities of material from patients with anemia and the rarity of the disease. We, therefore, took a novel approach, creating a human cellular disease model system for CDA IV that accurately recapitulates the disease phenotype. Next, using comparative proteomics, we reveal extensive distortion of the proteome and a wide range of disordered biological processes in CDA IV erythroid cells. These include downregulated pathways the governing cell cycle, chromatin separation, DNA repair, cytokinesis, membrane trafficking, and global transcription, and upregulated networks governing mitochondrial biogenesis. The diversity of such pathways elucidates the spectrum of phenotypic abnormalities that occur with CDA IV and impairment to erythroid cell development and survival, collectively explaining the CDA IV disease phenotype. The data also reveal far more extensive involvement of KLF1 in previously assigned biological processes, along with novel roles in the regulation of intracellular processes not previously attributed to this transcription factor. Overall, the data demonstrate the power of such a model cellular system to unravel the molecular basis of disease and how studying the effects of a rare mutation can reveal fundamental biology.
Collapse
Affiliation(s)
| | | | - Marieangela C. Wilson
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - James J. Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Gnanapragasam MN, Planutis A, Glassberg JA, Bieker JJ. Identification of a genomic DNA sequence that quantitatively modulates KLF1 transcription factor expression in differentiating human hematopoietic cells. Sci Rep 2023; 13:7589. [PMID: 37165057 PMCID: PMC10172341 DOI: 10.1038/s41598-023-34805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
The onset of erythropoiesis is under strict developmental control, with direct and indirect inputs influencing its derivation from the hematopoietic stem cell. A major regulator of this transition is KLF1/EKLF, a zinc finger transcription factor that plays a global role in all aspects of erythropoiesis. Here, we have identified a short, conserved enhancer element in KLF1 intron 1 that is important for establishing optimal levels of KLF1 in mouse and human cells. Chromatin accessibility of this site exhibits cell-type specificity and is under developmental control during the differentiation of human CD34+ cells towards the erythroid lineage. This site binds GATA1, SMAD1, TAL1, and ETV6. In vivo editing of this region in cell lines and primary cells reduces KLF1 expression quantitatively. However, we find that, similar to observations seen in pedigrees of families with KLF1 mutations, downstream effects are variable, suggesting that the global architecture of the site is buffered towards keeping the KLF1 genetic region in an active state. We propose that modification of intron 1 in both alleles is not equivalent to complete loss of function of one allele.
Collapse
Affiliation(s)
- M N Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - A Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - J A Glassberg
- Department of Emergency Medicine, Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - J J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Deguise MO, Blain S, Simpson E, Liebman M, Ferretti E. Congenital dyserythropoietic anemia type IV in the genetic era: A rare neonatal case report of rapid identification with a review of the literature. Pediatr Blood Cancer 2023; 70:e30245. [PMID: 36798023 DOI: 10.1002/pbc.30245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
Congenital dyserythropoietic anemia type IV (CDAIV) is a rare inherited hematological disorder, presenting with severe anemia due to altered erythropoiesis and hemolysis, with variable needs for recurrent transfusions. We present a case of a transfusion-dependent male newborn who presented at birth with severe hemolytic anemia, and required an intrauterine transfusion. Genetic testing rapidly identified a Kruppel-like factor 1 (KLF1) pathogenic variant (c.973G>A, p.E325K), known to be causative for CDAIV. This case highlights the advantages of next-generation sequencing testing for congenital hemolytic anemia: diagnostic speed, guidance on natural history, and optimized clinical management and anticipatory guidance for parents and clinicians. Additionally, we reviewed the literature for all CDAIV cases.
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Sarah Blain
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Pediatric Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Ewurabena Simpson
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Division of Pediatric Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Mira Liebman
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Division of Pediatric Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Emanuela Ferretti
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Division of Neonatology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Faggetter S, Ferster A, Dedeken L, Demulder A, David-Nguyen L, Fenneteau O, Parisot M, Nitschke P, Vial Y, Da Costa L. Hereditary spherocytosis associated with Noonan syndrome mimicking a dyserythropoietic anaemia. Pediatr Blood Cancer 2023; 70:e30121. [PMID: 36579772 DOI: 10.1002/pbc.30121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Sarah Faggetter
- Haemato-oncology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alina Ferster
- Haemato-oncology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Dedeken
- Haemato-oncology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anne Demulder
- Haemato-oncology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ludvine David-Nguyen
- Service d'Hématologie Biologique (Haematology Diagnostic Lab), AP-HP, Hôpital Robert Debré, Paris, France
| | - Odile Fenneteau
- Service d'Hématologie Biologique (Haematology Diagnostic Lab), AP-HP, Hôpital Robert Debré, Paris, France
| | - Melanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cité University, Paris, France.,Paris Cité University, Paris, France
| | - Patrick Nitschke
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cité University, Paris, France.,Paris Cité University, Paris, France
| | - Yoann Vial
- Paris Cité University, Paris, France.,Service de Biologie moléculaire (Genetic Department), AP-HP, Hôpital Robert Debré, Paris, France
| | - Lydie Da Costa
- Service d'Hématologie Biologique (Haematology Diagnostic Lab), AP-HP, Hôpital Robert Debré, Paris, France.,Paris Cité University, Paris, France.,HEMATIM EA4666, UPJV, Amiens, France
| |
Collapse
|
8
|
EKLF/Klf1 regulates erythroid transcription by its pioneering activity and selective control of RNA Pol II pause-release. Cell Rep 2022; 41:111830. [PMID: 36543143 PMCID: PMC9879271 DOI: 10.1016/j.celrep.2022.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
EKLF/Klf1 is a zinc-finger transcription activator essential for erythroid lineage commitment and terminal differentiation. Using ChIP-seq, we investigate EKLF DNA binding and transcription activation mechanisms during mouse embryonic erythropoiesis. We utilize the Nan/+ mouse that expresses the EKLF-E339D (Nan) variant mutated in its conserved zinc-finger region and address the mechanism of hypomorphic and neomorphic changes in downstream gene expression. First, we show that Nan-EKLF limits normal EKLF binding to a subset of its sites. Second, we find that ectopic binding of Nan-EKLF occurs largely at enhancers and activates transcription through pioneering activity. Third, we find that for a subset of ectopic targets, gene activation is achieved in Nan/+ only by Nan-EKLF binding to distal enhancers, leading to RNA polymerase II pause-release. These results have general applicability to understanding how a DNA binding variant factor confers dominant disruptive effects on downstream gene expression even in the presence of its normal counterpart.
Collapse
|
9
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
10
|
Krüppel-Like Factor 1: A Pivotal Gene Regulator in Erythropoiesis. Cells 2022; 11:cells11193069. [PMID: 36231031 PMCID: PMC9561966 DOI: 10.3390/cells11193069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Krüppel-like factor 1 (KLF1) plays a crucial role in erythropoiesis. In-depth studies conducted on mice and humans have highlighted its importance in erythroid lineage commitment, terminal erythropoiesis progression and the switching of globin genes from γ to β. The role of KLF1 in haemoglobin switching is exerted by the direct activation of β-globin gene and by the silencing of γ-globin through activation of BCL11A, an important γ-globin gene repressor. The link between KLF1 and γ-globin silencing identifies this transcription factor as a possible therapeutic target for β-hemoglobinopathies. Moreover, several mutations have been identified in the human genes that are responsible for various benign phenotypes and erythroid disorders. The study of the phenotype associated with each mutation has greatly contributed to the current understanding of the complex role of KLF1 in erythropoiesis. This review will focus on some of the principal functions of KLF1 on erythroid cell commitment and differentiation, spanning from primitive to definitive erythropoiesis. The fundamental role of KLF1 in haemoglobin switching will be also highlighted. Finally, an overview of the principal human mutations and relative phenotypes and disorders will be described.
Collapse
|
11
|
King R, Gallagher PJ, Khoriaty R. The congenital dyserythropoieitic anemias: genetics and pathophysiology. Curr Opin Hematol 2022; 29:126-136. [PMID: 35441598 PMCID: PMC9021540 DOI: 10.1097/moh.0000000000000697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The congenital dyserythropoietic anemias (CDA) are hereditary disorders characterized by ineffective erythropoiesis. This review evaluates newly developed CDA disease models, the latest advances in understanding the pathogenesis of the CDAs, and recently identified CDA genes. RECENT FINDINGS Mice exhibiting features of CDAI were recently generated, demonstrating that Codanin-1 (encoded by Cdan1) is essential for primitive erythropoiesis. Additionally, Codanin-1 was found to physically interact with CDIN1, suggesting that mutations in CDAN1 and CDIN1 result in CDAI via a common mechanism. Recent advances in CDAII (which results from SEC23B mutations) have also been made. SEC23B was found to functionally overlap with its paralogous protein, SEC23A, likely explaining the absence of CDAII in SEC23B-deficient mice. In contrast, mice with erythroid-specific deletion of 3 or 4 of the Sec23 alleles exhibited features of CDAII. Increased SEC23A expression rescued the CDAII erythroid defect, suggesting a novel therapeutic strategy for the disease. Additional recent advances included the identification of new CDA genes, RACGAP1 and VPS4A, in CDAIII and a syndromic CDA type, respectively. SUMMARY Establishing cellular and animal models of CDA is expected to result in improved understanding of the pathogenesis of these disorders, which may ultimately lead to the development of new therapies.
Collapse
Affiliation(s)
- Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Patrick J. Gallagher
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Mukherjee K, Bieker JJ. Transcriptional Control of Gene Expression and the Heterogeneous Cellular Identity of Erythroblastic Island Macrophages. Front Genet 2021; 12:756028. [PMID: 34880902 PMCID: PMC8646026 DOI: 10.3389/fgene.2021.756028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
During definitive erythropoiesis, maturation of erythroid progenitors into enucleated reticulocytes requires the erythroblastic island (EBI) niche comprising a central macrophage attached to differentiating erythroid progenitors. Normally, the macrophage provides a nurturing environment for maturation of erythroid cells. Its critical physiologic importance entails aiding in recovery from anemic insults, such as systemic stress or acquired disease. Considerable interest in characterizing the central macrophage of the island niche led to the identification of putative cell surface markers enriched in island macrophages, enabling isolation and characterization. Recent studies focus on bulk and single cell transcriptomics of the island macrophage during adult steady-state erythropoiesis and embryonic erythropoiesis. They reveal that the island macrophage is a distinct cell type but with widespread cellular heterogeneity, likely suggesting distinct developmental origins and biological function. These studies have also uncovered transcriptional programs that drive gene expression in the island macrophage. Strikingly, the master erythroid regulator EKLF/Klf1 seems to also play a major role in specifying gene expression in island macrophages, including a putative EKLF/Klf1-dependent transcription circuit. Our present review and analysis of mouse single cell genetic patterns suggest novel expression characteristics that will enable a clear enrichment of EBI subtypes and resolution of island macrophage heterogeneity. Specifically, the discovery of markers such as Epor, and specific features for EKLF/Klf1-expressing island macrophages such as Sptb and Add2, or for SpiC-expressing island macrophage such as Timd4, or for Maf/Nr1h3-expressing island macrophage such as Vcam1, opens exciting possibilities for further characterization of these unique macrophage cell types in the context of their critical developmental function.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States.,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States.,Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States.,Tisch Cancer Center, Mount Sinai School of Medicine, New York, NY, United States.,Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|