1
|
Elden Hassan HSS, Moselhy WA, Ibrahim MA, Zaki AH, Khalil F, Hassanen EI, Abdel-Gawad DRI. Exosomal therapy mitigates silver nanoparticles-induced neurotoxicity in rats. Biomarkers 2024; 29:442-458. [PMID: 39417532 DOI: 10.1080/1354750x.2024.2415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Our investigation aims to appraise the neuroprotective impact of Bone Marrow-Mesenchymal Stem Cells (BM-MSCs) derived exosomes against Ag NPs-inducing neurotoxicity in rats. MATERIALS AND METHODS Twenty-four albino rats were divided into 3 groups. Group I (control negative), Group II (intraperitoneally injected with Ag NPs for 28 days, whereas Group III (intraperitoneally injected with Ag NP and BM-MSCs derived exosomes. RESULTS There was a marked elevation of Malondialdehyde (MDA) along with a reduction of brain antioxidants, Gamma-aminobutyric acid (GABA) and Monoamine Oxidase (MAO) in the Ag NPs receiving group. Ag NPs upregulated c-Jun N-terminal Kinases (JNK) genes and c-Myc and downregulated the tissue inhibitors of metalloproteinases (TIMP-1) and Histone deacetylase 1 (HDAC1) genes. Otherwise, the co-treatment of BM-MSCs derived exosomes with Ag NPs could markedly increase the rat's body weight, activity and learning while, decreasing anxiety, restoring all the toxicological parameters and improving the microscopic appearance of different brain areas. CONCLUSION BM-MSCs-derived exosomes downregulated both apoptotic and inflammatory mediators and upregulated the antiapoptotic genes. BM-MSCs-derived exosomes exhibit a great therapeutic effect against the neurotoxic effects of Ag NPs.
Collapse
Affiliation(s)
- Hanan Safwat Salah Elden Hassan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Walaa A Moselhy
- Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman H Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Doaa R I Abdel-Gawad
- Lecturer of Toxicology and Forensic Medicine- Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
2
|
Chen F, Sun J, Ye R, Virk TL, Liu Q, Yuan Y, Xu X. Taurine Protects against Silica Nanoparticle-Induced Apoptosis and Inflammatory Response via Inhibition of Oxidative Stress in Porcine Ovarian Granulosa Cells. Animals (Basel) 2024; 14:2959. [PMID: 39457890 PMCID: PMC11506286 DOI: 10.3390/ani14202959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Silica nanoparticles (SNPs) induce reproductive toxicity through ROS production, which significantly limits their application. The protective effects of taurine (Tau) against SNP-induced reproductive toxicity remain unexplored. So this study aims to investigate the impact of Tau on SNP-induced porcine ovarian granulosa cell toxicity. In vitro, granulosa cells were exposed to SNPs combined with Tau. The localization of SNPs was determined by TEM. Cell viability was examined by CCK-8 assay. ROS levels were measured by CLSM and FCM. SOD and CAT levels were evaluated using ELISA and qPCR. Cell apoptosis was detected by FCM, and pro-inflammatory cytokine transcription levels were measured by qPCR. The results showed that SNPs significantly decreased cell viability, while increased cell apoptosis and ROS levels. Moreover, SOD and CAT were decreased, while IFN-α, IFN-β, IL-1β, and IL-6 were increased after SNP exposures. Tau significantly decreased intracellular ROS, while it increased SOD and CAT compared to SNPs alone. Additionally, Tau exhibited anti-inflammatory effects and inhibited cell apoptosis. On the whole, these findings suggest that Tau mitigates SNP-induced cytotoxicity by reducing oxidative stress, inflammatory response, and cell apoptosis. Tau may be an effective strategy to alleviate SNP-induced toxicity and holds promising application prospects in the animal husbandry and veterinary industry.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiarong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
| | - Rongrong Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
| | - Tuba Latif Virk
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
| | - Qi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuguo Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xianyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.S.); (R.Y.); (T.L.V.); (Q.L.); (Y.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Boulain M, Morin D, Juvin L. Multigenerational inheritance of breathing deficits following perinatal exposure to titanium dioxide nanoparticles in the offspring of mice. DISCOVER NANO 2024; 19:16. [PMID: 38261116 PMCID: PMC10805760 DOI: 10.1186/s11671-023-03927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The utilization of titanium dioxide nanoparticles (TIO2NPs) has experienced a significant surge in recent decades, and these particles are now commonly found in various everyday consumer products. Due to their small size, TIO2NPs can penetrate biological barriers and elicit adverse interactions with biological tissues. Notably, exposure of pregnant females to TIO2NPs during the perinatal period has been shown to disrupt the growth of offspring. Furthermore, this exposure induces epigenetic modifications in the DNA of newborns, suggesting the possibility of multigenerational effects. Thus, perinatal exposure to TIO2NPs may induce immediate metabolic impairments in neonates, which could be transmitted to subsequent generations in the long term. RESULTS In this study, we utilized perinatal exposure of female mice to TIO2NPs through voluntary food intake and observed impaired metabolism in newborn male and female F1 offspring. The exposed newborn mice exhibited reduced body weight gain and a slower breathing rate compared to non-exposed animals. Additionally, a higher proportion of exposed F1 newborns experienced apneas. Similar observations were made when the exposure was limited to the postnatal period, highlighting lactation as a critical period for the adverse effects of TIO2NPs on postnatal metabolism. Importantly, the breathing deficits induced by TIO2NPs were transmitted from F1 females to the subsequent F2 generation. Moreover, re-exposure of adult F1 females to TIO2NPs exacerbated the breathing deficits in newborn F2 males. CONCLUSIONS Our findings demonstrate that perinatal exposure to TIO2NPs disrupts postnatal body weight gain and respiration in the offspring, and these deficits are transmissible to future generations.
Collapse
Affiliation(s)
- Marie Boulain
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Didier Morin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000, Bordeaux, France.
| |
Collapse
|
4
|
Ren C, Yan R, Yuan Z, Yin L, Li H, Ding J, Wu T, Chen R. Maternal exposure to sunlight-irradiated graphene oxide induces neurodegeneration-like symptoms in zebrafish offspring through intergenerational translocation and genomic DNA methylation alterations. ENVIRONMENT INTERNATIONAL 2023; 179:108188. [PMID: 37690221 DOI: 10.1016/j.envint.2023.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
The physiochemical properties of graphene oxide may be affected by sunlight irradiation. However, the underlying mechanisms that alter the properties and subsequent intergenerational effects are not sufficiently investigate. Epigenetics is an early sensitive marker for the intergenerational effects of nanomaterial exposure due to the epigenetic memory. In this study, we investigate changes in the physicochemical properties and the intergenerational effects of maternal exposure to simulated sunlight-irradiated polyethyleneimine-functionalized graphene oxide (SL-PEI-GO). Results show that the physicochemical properties of polyethyleneimine-functionalized graphene oxide (PEI-GO) can be altered significantly by the oxidation of carbon atoms with unpaired electrons present in the defects and on the edges of PEI-GO by sunlight. First, the positive charges, sharp edges, defects and disordered structures of SL-PEI-GO make it translocate from maternal zebrafish to offspring, thus catalyzing the production of reactive oxygen species and damaging mitochondria directly. In addition, changes in DNA methylation reduce the expression of protocadherin1a, protocadherin19 and cadherin4, thus destroying cell membrane integrity, cell adhesion and Ca2+ binding. The alteration of DNA methylation induced by maternal exposure activates the Ca2+-CaMKK-brsk2a pathway, which catalyzes the phosphorylation of Tau and eventually results in the appearance of neurodegeneration-like symptoms, including the loss of neurons and neurobehavioral disorders. This study demonstrates that maternal exposure to SL-PEI-GO induces clear neurodegeneration-like symptoms in offspring through both the intergenerational translocation of nanomaterials and differential DNA methylation. These findings may provide new insights into the health risks of nanomaterials altered by nature conditions.
Collapse
Affiliation(s)
- Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lijia Yin
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hongji Li
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin 300074, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing institute of Petrochemical Technology, Beijing 102617, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Flasz B, Ajay AK, Tarnawska M, Babczyńska A, Majchrzycki Ł, Kędziorski A, Napora-Rutkowski Ł, Świerczek E, Augustyniak M. Multigenerational Effects of Graphene Oxide Nanoparticles on Acheta domesticus DNA Stability. Int J Mol Sci 2023; 24:12826. [PMID: 37629006 PMCID: PMC10454164 DOI: 10.3390/ijms241612826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The use of nanoparticles like graphene oxide (GO) in nanocomposite industries is growing very fast. There is a strong concern that GO can enter the environment and become nanopollutatnt. Environmental pollutants' exposure usually relates to low concentrations but may last for a long time and impact following generations. Attention should be paid to the effects of nanoparticles, especially on the DNA stability passed on to the offspring. We investigated the multigenerational effects on two strains (wild and long-lived) of house cricket intoxicated with low GO concentrations over five generations, followed by one recovery generation. Our investigation focused on oxidative stress parameters, specifically AP sites (apurinic/apyrimidinic sites) and 8-OHdG (8-hydroxy-2'-deoxyguanosine), and examined the global DNA methylation pattern. Five intoxicated generations were able to overcome the oxidative stress, showing that relatively low doses of GO have a moderate effect on the house cricket (8-OHdG and AP sites). The last recovery generation that experienced a transition from contaminated to uncontaminated food presented greater DNA damage. The pattern of DNA methylation was comparable in every generation, suggesting that other epigenetic mechanisms might be involved.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| |
Collapse
|
6
|
Brzóska K, Sochanowicz B, Szczygieł M, Drzał A, Śniegocka M, Michalczyk-Wetula D, Elas M, Kapka-Skrzypczak L, Kruszewski M. Silver Nanoparticles Induced Changes in DNA Methylation and Histone H3 Methylation in a Mouse Model of Breast Cancer. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114163. [PMID: 37297299 DOI: 10.3390/ma16114163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The importance of epigenetic changes as a measurable endpoint in nanotoxicological studies is getting more and more appreciated. In the present work, we analyzed the epigenetic effects induced by citrate- and PEG-coated 20 nm silver nanoparticles (AgNPs) in a model consisting of 4T1 breast cancer tumors in mice. Animals were administered with AgNPs intragastrically (1 mg/kg b.w. daily-total dose 14 mg/kg b.w.) or intravenously (administration twice with 1 mg/kg b.w.-total dose 2 mg/kg b.w.). We observed a significant decrease in 5-methylcytosine (5-mC) level in tumors from mice treated with citrate-coated AgNPs regardless of the route of administration. For PEG-coated AgNPs, a significant decrease in DNA methylation was observed only after intravenous administration. Moreover, treatment of 4T1 tumor-bearing mice with AgNPs decreased histone H3 methylation in tumor tissue. This effect was the most pronounced for PEG-coated AgNPs administered intravenously. No changes in histone H3 Lys9 acetylation were observed. The decrease in methylation of DNA and histone H3 was accompanied by changes in expression of genes encoding chromatin-modifying enzymes (Setd4, Setdb1, Smyd3, Suv39h1, Suv420h1, Whsc1, Kdm1a, Kdm5b, Esco2, Hat1, Myst3, Hdac5, Dnmt1, Ube2b, and Usp22) and genes related to carcinogenesis (Akt1, Brca1, Brca2, Mlh1, Myb, Ccnd1, and Src). The significance of the observed changes and the mechanisms responsible for their development are unclear, and more research in this area is warranted. Nevertheless, the present work points to the epigenetic effects as an important level of interaction between nanomaterials and biological systems, which should always be taken into consideration during analysis of the biological activity of nanomaterials and development of nanopharmaceuticals.
Collapse
Affiliation(s)
- Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Barbara Sochanowicz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Małgorzata Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Agnieszka Drzał
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Martyna Śniegocka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Dominika Michalczyk-Wetula
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
7
|
Ma Y, Shi J, Zhang Y, Chen Z, Jia G. Titanium Dioxide Nanoparticles Altered the lncRNA Expression Profile in Human Lung Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1059. [PMID: 36673815 PMCID: PMC9858630 DOI: 10.3390/ijerph20021059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Respiration is considered to be the main occupational or environmental exposure pathway of titanium dioxide nanoparticles (TiO2 NPs), and the lung is considered to be the target organ of respiratory exposure; however, the mechanism of respiratory toxicity is not fully understood. In this study, the effect of TiO2 NPs on the expression profile of long non-coding RNA (lncRNA) in bronchial epithelial cells (BEAS-2B) was investigated to understand their potential toxic mechanism. BEAS-2B cells were treated with 100 μg/mL TiO2 NPs for 48 h, then RNA sequencing was performed to screen the differential lncRNAs compared with the control group, and the enrichment pathways of the differentially expressed lncRNAs were further analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The results identified a total of 45,769 lncRNAs, and 277 different lncRNAs were screened. KEGG pathway analysis showed that the targeted mRNAs of these different lncRNAs were enriched in the pyrimidine metabolism pathway. This work demonstrates that TiO2 NPs could alter the lncRNA expression profile in BEAS-2B cells, and epigenetics may play a role in the mechanism of respiratory toxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Shi J, Zhang Y, Ma Y, Chen Z, Jia G. Long Non-Coding RNA Expression Profile Alteration Induced by Titanium Dioxide Nanoparticles in HepG2 Cells. TOXICS 2022; 10:724. [PMID: 36548557 PMCID: PMC9785481 DOI: 10.3390/toxics10120724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The liver is considered the major target organ affected by oral exposure to titanium dioxide nanoparticles (TiO2 NPs), but the mechanism of hepatotoxicity is not fully understood. This study investigated the effect of TiO2 NPs on the expression profile of long non-coding RNA (lncRNA) in hepatocytes and tried to understand the potential mechanism of hepatotoxicity through bioinformatics analysis. The human hepatocellular carcinoma cells (HepG2) were treated with TiO2 NPs at doses of 0-200 μg/mL for 48 h and then RNA sequencing was implemented. The differential lncRNAs between the control and TiO2 NPs-treated groups were screened, then the lncRNA-mRNA network and enrichment pathways were analyzed via multivariate statistics. As a result, 46,759 lncRNAs were identified and 129 differential lncRNAs were screened out. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the targeted mRNAs of those differential lncRNAs were enriched in the Hedgehog signaling pathway, Vasopressin-regulated water reabsorption, and Glutamatergic synapse. Moreover, two lncRNA-mRNA networks, including lncRNA NONHSAT256380.1-JRK and lncRNA NONHSAT173563.1-SMIM22, were verified by mRNA detection. This study demonstrated that an alteration in the lncRNA expression profile could be induced by TiO2 NPs and epigenetics may play an important role in the mechanism of hepatotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
9
|
Ghazimoradi MM, Ghorbani MH, Ebadian E, Hassani A, Mirzababaei S, Hodjat M, Navaei-Nigjeh M, Abdollahi M. Epigenetic effects of graphene oxide and its derivatives: A mini-review. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503483. [PMID: 35649677 DOI: 10.1016/j.mrgentox.2022.503483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO), an engineered nanomaterial, has a two-dimensional structure with carbon atoms arranged in a hexagonal array. While it has been widely used in many industries, such as biomedicine, electronics, and biosensors, there are still concerns over its safety. Recently, many studies have focused on the potential toxicity of GO. Epigenetic toxicity is an important aspect of a material's toxicological profile, since changes in gene expression have been associated with carcinogenicity and disease progression. In this review, we focus on the epigenetic alterations caused by GO, including DNA methylation, histone modification, and altered expression of non-coding RNAs. GO can affect DNA methyltransferase activity and disrupt the methylation of cytosine bases in DNA strands, leading to alteration of genome expression. Modulation of histones by GO, targeting histone deacetylase and demethylase, as well as dysregulation of miRNA and lncRNA expression have been reported. Further studies are required to determine the mechanisms of GO-induced epigenetic alterations.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghazimoradi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Hossein Ghorbani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Ebadian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|