1
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
2
|
Deffenbaugh JL, Jung KJ, Murphy SP, Liu Y, Rau CN, Petersen-Cherubini CL, Collins PL, Chung D, Lovett-Racke AE. Novel model of multiple sclerosis induced by EBV-like virus generates a unique B cell population. J Neuroimmunol 2024; 394:578408. [PMID: 39098102 DOI: 10.1016/j.jneuroim.2024.578408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Epstein-Barr virus (EBV) is deemed a necessary, yet insufficient factor in the development of multiple sclerosis (MS). In this study, myelin basic protein-specific transgenic T cell receptor mice were infected with murid gammaherpesvirus 68 virus (MHV68), an EBV-like virus that infects mice, resulting in the onset neurological deficits at a significantly higher frequency than influenza or mock-infected mice. MHV68 infected mice exhibited signs including optic neuritis and ataxia which are frequently observed in MS patients but not in experimental autoimmune encephalomyelitis mice. MHV68-infected mice exhibited increased focal immune cell infiltration in the central nervous system. Single cell RNA sequencing identified the emergence of a population of B cells that express genes associated with antigen presentation and costimulation, indicating that gammaherpesvirus infection drives a distinct, pro-inflammatory transcriptional program in B cells that may promote autoreactive T cell responses in MS.
Collapse
Affiliation(s)
- Joshua L Deffenbaugh
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Kyeong-Joo Jung
- Department of Computer Science and Engineering, The Ohio State University, USA.
| | - Shawn P Murphy
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Yue Liu
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Christina N Rau
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Cora L Petersen-Cherubini
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Neuroscience Graduate Program, The Ohio State University, USA
| | - Patrick L Collins
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, USA.
| | - Amy E Lovett-Racke
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
3
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
4
|
Afrasiabi A, Ahlenstiel C, Swaminathan S, Parnell GP. The interaction between Epstein-Barr virus and multiple sclerosis genetic risk loci: insights into disease pathogenesis and therapeutic opportunities. Clin Transl Immunology 2023; 12:e1454. [PMID: 37337612 PMCID: PMC10276892 DOI: 10.1002/cti2.1454] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease, characterised by the demyelination of neurons in the central nervous system. Whilst it is unclear what precisely leads to MS, it is believed that genetic predisposition combined with environmental factors plays a pivotal role. It is estimated that close to half the disease risk is determined by genetic factors. However, the risk of developing MS cannot be attributed to genetic factors alone, and environmental factors are likely to play a significant role by themselves or in concert with host genetics. Epstein-Barr virus (EBV) infection is the strongest known environmental risk factor for MS. There has been increasing evidence that leaves little doubt that EBV is necessary, but not sufficient, for developing MS. One plausible explanation is EBV may alter the host immune response in the presence of MS risk alleles and this contributes to the pathogenesis of MS. In this review, we discuss recent findings regarding how EBV infection may contribute to MS pathogenesis via interactions with genetic risk loci and discuss possible therapeutic interventions.
Collapse
Affiliation(s)
- Ali Afrasiabi
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical ResearchUniversity of SydneySydneyNSWAustralia
- The Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSWAustralia
| | - Chantelle Ahlenstiel
- Kirby InstituteUniversity of New South WalesSydneyNSWAustralia
- RNA InstituteUniversity of New South WalesSydneyNSWAustralia
| | - Sanjay Swaminathan
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical ResearchUniversity of SydneySydneyNSWAustralia
- Department of MedicineWestern Sydney UniversitySydneyNSWAustralia
| | - Grant P Parnell
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical ResearchUniversity of SydneySydneyNSWAustralia
- Biomedical Informatics and Digital Health, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| |
Collapse
|
5
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. The Role of Microorganisms in the Etiopathogenesis of Demyelinating Diseases. Life (Basel) 2023; 13:1309. [PMID: 37374092 DOI: 10.3390/life13061309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS), neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are inflammatory diseases of the central nervous system (CNS) with a multifactorial aetiology. Environmental factors are important for their development and microorganisms could play a determining role. They can directly damage the CNS, but their interaction with the immune system is even more important. The possible mechanisms involved include molecular mimicry, epitope spreading, bystander activation and the dual cell receptor theory. The role of Epstein-Barr virus (EBV) in MS has been definitely established, since being seropositive is a necessary condition for the onset of MS. EBV interacts with genetic and environmental factors, such as low levels of vitamin D and human endogenous retrovirus (HERV), another microorganism implicated in the disease. Many cases of onset or exacerbation of neuromyelitis optica spectrum disorder (NMOSD) have been described after infection with Mycobacterium tuberculosis, EBV and human immunodeficiency virus; however, no definite association with a virus has been found. A possible role has been suggested for Helicobacter pylori, in particular in individuals with aquaporin 4 antibodies. The onset of MOGAD could occur after an infection, mainly in the monophasic course of the disease. A role for the HERV in MOGAD has been hypothesized. In this review, we examined the current understanding of the involvement of infectious factors in MS, NMO and MOGAD. Our objective was to elucidate the roles of each microorganism in initiating the diseases and influencing their clinical progression. We aimed to discuss both the infectious factors that have a well-established role and those that have yielded conflicting results across various studies.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
6
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
7
|
Boussamet L, Rajoka MSR, Berthelot L. Microbiota, IgA and Multiple Sclerosis. Microorganisms 2022; 10:microorganisms10030617. [PMID: 35336190 PMCID: PMC8954136 DOI: 10.3390/microorganisms10030617] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by immune cell infiltration in the central nervous system and destruction of myelin sheaths. Alterations of gut bacteria abundances are present in MS patients. In mouse models of neuroinflammation, depletion of microbiota results in amelioration of symptoms, and gavage with MS patient microbiota exacerbates the disease and inflammation via Th17 cells. On the other hand, depletion of B cells using anti-CD20 is an efficient therapy in MS, and growing evidence shows an important deleterious role of B cells in MS pathology. However, the failure of TACI-Ig treatment in MS highlighted the potential regulatory role of plasma cells. The mechanism was recently demonstrated involving IgA+ plasma cells, specific for gut microbiota and producing IL-10. IgA-coated bacteria in MS patient gut exhibit also modifications. We will focus our review on IgA interactions with gut microbiota and IgA+ B cells in MS. These recent data emphasize new pathways of neuroinflammation regulation in MS.
Collapse
Affiliation(s)
- Léo Boussamet
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Laureline Berthelot
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
- Correspondence:
| |
Collapse
|
8
|
Beretta F, Huang YF, Punga AR. Towards Personalized Medicine in Myasthenia Gravis: Role of Circulating microRNAs miR-30e-5p, miR-150-5p and miR-21-5p. Cells 2022; 11:cells11040740. [PMID: 35203389 PMCID: PMC8870722 DOI: 10.3390/cells11040740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fatigable skeletal muscle weakness with a fluctuating unpredictable course. One main concern in MG is the lack of objective biomarkers to guide individualized treatment decisions. Specific circulating serum microRNAs (miRNAs) miR-30e-5p, miR-150-5p and miR-21-5p levels have been shown to correlate with clinical course in specific MG patient subgroups. The aim of our study was to better characterize these miRNAs, regardless of the MG subgroup, at an early stage from diagnosis and determine their sensitivity and specificity for MG diagnosis, as well as their predictive power for disease relapse. Serum levels of these miRNAs in 27 newly diagnosed MG patients were compared with 245 healthy individuals and 20 patients with non-MG neuroimmune diseases. Levels of miR-30e-5p and miR-150-5p significantly differed between MG patients and healthy controls; however, no difference was seen compared with patients affected by other neuroimmune diseases. High levels of miR-30e-5p predicted MG relapse (p = 0.049) with a hazard ratio of 2.81. In summary, miR-150-5p is highly sensitive but has low specificity for MG, while miR-30e-5p has the greatest potential as a predictive biomarker for the disease course in MG, regardless of subgroup.
Collapse
Affiliation(s)
- Francesca Beretta
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Yu-Fang Huang
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, 75185 Uppsala, Sweden;
| | - Anna Rostedt Punga
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, 75185 Uppsala, Sweden;
- Correspondence:
| |
Collapse
|
9
|
Zhang N, Zuo Y, Jiang L, Peng Y, Huang X, Zuo L. Epstein-Barr Virus and Neurological Diseases. Front Mol Biosci 2022; 8:816098. [PMID: 35083281 PMCID: PMC8784775 DOI: 10.3389/fmolb.2021.816098] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is a double-stranded DNA virus that is ubiquitous in 90–95% of the population as a gamma herpesvirus. It exists in two main states, latent infection and lytic replication, each encoding viral proteins with different functions. Human B-lymphocytes and epithelial cells are EBV-susceptible host cells. EBV latently infects B cells and nasopharyngeal epithelial cells throughout life in most immunologically active individuals. EBV-infected cells, free viruses, their gene products, and abnormally elevated EBV titers are observed in the cerebrospinal fluid. Studies have shown that EBV can infect neurons directly or indirectly via infected B-lymphocytes, induce neuroinflammation and demyelination, promote the proliferation, degeneration, and necrosis of glial cells, promote proliferative disorders of B- and T-lymphocytes, and contribute to the occurrence and development of nervous system diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, acute cerebellar ataxia, meningitis, acute disseminated encephalomyelitis, and brain tumors. However, the specific underlying molecular mechanisms are unclear. In this paper, we review the mechanisms underlying the role of EBV in the development of central nervous system diseases, which could bebeneficial in providing new research ideas and potential clinical therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- Hunan Dongkou People’s Hospital, Shaoyang, China
| | - Yuxin Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Liping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Peng
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Xu Huang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Lielian Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Lielian Zuo,
| |
Collapse
|
10
|
Ahangar-Sirous R, Poudineh M, Ansari A, Nili A, Dana SMMA, Nasiri Z, Hosseini ZS, Karami D, Mokhtari M, Deravi N. Pharmacotherapeutic Potential of Garlic in Age-Related Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:377-398. [PMID: 34579639 DOI: 10.2174/1871527320666210927101257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
Age-related neurological disorders [ANDs] involve neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD], the most frequent kind of dementia in elderly people, and Parkinson's disease [PD], and also other disorders like epilepsy and migraine. Although ANDs are multifactorial, Aging is a principal risk factor for them. The common and most main pathologic features among ANDs are inflammation, oxidative stress, and misfolded proteins accumulation. Since failing brains caused by ANDs impose a notable burden on public health and their incidence is increasing, a lot of works has been done to overcome them. Garlic, Allium sativum, has been used for different medical purposes globally and more than thousands of publications have reported its health benefits. Garlic and aged garlic extract are considered potent anti-inflammatory and antioxidants agents and can have remarkable neuroprotective effects. This review is aimed to summarize knowledge on the pharmacotherapeutic potential of garlic and its components in ANDs.
Collapse
Affiliation(s)
| | | | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Ali Nili
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | | | - Zahra Nasiri
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Dariush Karami
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran. Iran
| | - Niloofar Deravi
- Student's Research Committee, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
11
|
Knerr JM, Kledal TN, Rosenkilde MM. Molecular Properties and Therapeutic Targeting of the EBV-Encoded Receptor BILF1. Cancers (Basel) 2021; 13:4079. [PMID: 34439235 PMCID: PMC8392491 DOI: 10.3390/cancers13164079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The γ-herpesvirus Epstein-Barr Virus (EBV) establishes lifelong infections in approximately 90% of adults worldwide. Up to 1,000,000 people yearly are estimated to suffer from health conditions attributed to the infection with this virus, such as nasopharyngeal and gastric carcinomas as well as several forms of B, T and NK cell lymphoma. To date, no EBV-specific therapeutic option has reached the market, greatly reducing the survival prognoses of affected patients. Similar to other herpesviruses, EBV encodes for a G protein-coupled receptor (GPCR), BILF1, affecting a multitude of cellular signaling pathways. BILF1 has been identified to promote immune evasion and tumorigenesis, effectively ensuring a life-long persistence of EBV in, and driving detrimental health conditions to its host. This review summarizes the epidemiology of EBV-associated malignancies, their current standard-of-care, EBV-specific therapeutics in development, GPCRs and their druggability, and most importantly consolidates the findings of over 15 years of research on BILF1 in the context of EBV-specific drug development. Taken together, BILF1 constitutes a promising target for the development of novel EBV-specific therapeutics.
Collapse
Affiliation(s)
- Julius Maximilian Knerr
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| | | | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| |
Collapse
|
12
|
B cell depletion changes the immune cell profile in multiple sclerosis patients: One-year report. J Neuroimmunol 2021; 359:577676. [PMID: 34364105 DOI: 10.1016/j.jneuroim.2021.577676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023]
Abstract
B cell depletion therapy has been shown to be beneficial in multiple sclerosis (MS). However, the mechanism by which B cell depletion mediates its beneficial effects in MS is still unclear. To better understand how B cell depletion may benefit patients with a disease previously thought to be primarily mediated by CD4 T cells, immune profiles were monitored in 48 patients in a phase II trial of ublituximab, a glycoengineered CD20 monoclonal antibody, at 18 time points over a year. As we previously described there was a significant shift in the percentages of T cells, NK cells, and myeloid cells following the initial dose of ublituximab, but this shift normalized within a week and these populations remained stable for the duration of the study. However, T cell subsets changed with an increase in the percentage of naïve CD4 and CD8 T cells and a decline in memory T cells. Importantly, the percentage of Th1 and CD4+GM-CSF+ T cells decreased, while the percentage of Tregs continued to increase over the year. Ublituximab not only depleted CD20+ B cells, but also CD20+ T cells. The favorable changes in the T cell subsets may contribute to the beneficial effects of B cell depletion therapy.
Collapse
|
13
|
Mimpen M, Damoiseaux J, van Doorn W, Rolf L, Muris AH, Hupperts R, van Luijn MM, Gerlach O, Smolders J. Proportions of circulating transitional B cells associate with MRI activity in interferon beta-treated multiple sclerosis patients. J Neuroimmunol 2021; 358:577664. [PMID: 34280843 DOI: 10.1016/j.jneuroim.2021.577664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
B-cells contribute to MS pathogenesis. The association of circulating B-cell phenotypes with combined unique active lesions (CUA) on MRI at 48 weeks follow-up was investigated in 50 interferon beta-treated MS patients. Transitional B-cell proportions were lower in participants with CUA at week 0 and 48 [p = 0.004, p = 0.002]. A decrease in circulating anti-EBNA-1 IgG levels between week 0 and 48 associated with absence of CUA [p = 0.047], but not with B-cell profiles. In a multi-factor model for CUA-risk, transitional B-cell proportions contributed independent from NK/T-cell ratio, change in anti-EBNA-1 IgG, and vitamin D supplementation. Transitional B-cells may predict treatment response in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - William van Doorn
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands; CARIM School for vascular diseases, Maastricht, the Netherlands
| | - Linda Rolf
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Anne-Hilde Muris
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oliver Gerlach
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Jakhmola S, Upadhyay A, Jain K, Mishra A, Jha HC. Herpesviruses and the hidden links to Multiple Sclerosis neuropathology. J Neuroimmunol 2021; 358:577636. [PMID: 34174587 DOI: 10.1016/j.jneuroim.2021.577636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Herpesviruses like Epstein-Barr virus, human herpesvirus (HHV)-6, HHV-1, VZV, and human endogenous retroviruses, have an age-old clinical association with multiple sclerosis (MS). MS is an autoimmune disease of the nervous system wherein the myelin sheath deteriorates. The most popular mode of virus mediated immune system manipulation is molecular mimicry. Numerous herpesvirus antigens are similar to myelin proteins. Other mechanisms described here include the activity of cytokines and autoantibodies produced by the autoreactive T and B cells, respectively, viral déjà vu, epitope spreading, CD46 receptor engagement, impaired remyelination etc. Overall, this review addresses the host-parasite association of viruses with MS.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
15
|
Soldan SS, Su C, Lamontagne RJ, Grams N, Lu F, Zhang Y, Gesualdi JD, Frase DM, Tolvinski LE, Martin K, Messick TE, Fingerut JT, Koltsova E, Kossenkov A, Lieberman PM. Epigenetic Plasticity Enables CNS-Trafficking of EBV-infected B Lymphocytes. PLoS Pathog 2021; 17:e1009618. [PMID: 34106998 PMCID: PMC8216538 DOI: 10.1371/journal.ppat.1009618] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/21/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Subpopulations of B-lymphocytes traffic to different sites and organs to provide diverse and tissue-specific functions. Here, we provide evidence that epigenetic differences confer a neuroinvasive phenotype. An EBV+ B cell lymphoma cell line (M14) with low frequency trafficking to the CNS was neuroadapted to generate a highly neuroinvasive B-cell population (MUN14). MUN14 B cells efficiently infiltrated the CNS within one week and produced neurological pathologies. We compared the gene expression profiles of viral and cellular genes using RNA-Seq and identified one viral (EBNA1) and several cellular gene candidates, including secreted phosphoprotein 1/osteopontin (SPP1/OPN), neuron navigator 3 (NAV3), CXCR4, and germinal center-associated signaling and motility protein (GCSAM) that were selectively upregulated in MUN14. ATAC-Seq and ChIP-qPCR revealed that these gene expression changes correlated with epigenetic changes at gene regulatory elements. The neuroinvasive phenotype could be attenuated with a neutralizing antibody to OPN, confirming the functional role of this protein in trafficking EBV+ B cells to the CNS. These studies indicate that B-cell trafficking to the CNS can be acquired by epigenetic adaptations and provide a new model to study B-cell neuroinvasion associated CNS lymphoma and autoimmune disease of the CNS, including multiple sclerosis (MS).
Collapse
Affiliation(s)
- Samantha S. Soldan
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Chenhe Su
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Nicholas Grams
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Yue Zhang
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - James D. Gesualdi
- The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Drew M. Frase
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Lois E. Tolvinski
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kayla Martin
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Troy E. Messick
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Ekaterina Koltsova
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Andrew Kossenkov
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Ruprecht K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev Clin Immunol 2020; 16:1143-1157. [PMID: 33152255 DOI: 10.1080/1744666x.2021.1847642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. While its exact etiology is unknown, it is generally believed that MS is caused by environmental triggers in genetically predisposed individuals. Strong and consistent evidence suggests a key role of Epstein-Barr virus (EBV), a B lymphotropic human gammaherpesvirus, in the etiology of MS. Areas covered: This review summarizes recent developments in the field of EBV and MS with a focus on potential mechanisms underlying the role of EBV in MS. PubMed was searched for the terms 'Epstein-Barr virus' and 'multiple sclerosis'. Expert opinion: The current evidence is compatible with the working hypothesis that MS is a rare complication of EBV infection. Under the premise of a causative role of EBV in MS, it needs to be postulated that EBV causes a specific, and likely persistent, change(s) that is necessarily required for the development of MS. However, although progress has been made, the nature of that change and thus the precise mechanism explaining the role of EBV in MS remain elusive. The mechanism of EBV in MS therefore is a pressing question, whose clarification may substantially advance the pathophysiological understanding, rational therapies, and prevention of MS.
Collapse
Affiliation(s)
- Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
| |
Collapse
|
17
|
Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol 2020; 11:587078. [PMID: 33391262 PMCID: PMC7773893 DOI: 10.3389/fimmu.2020.587078] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neurologic disease affecting myelinated nerves in the central nervous system (CNS). The disease often debuts as a clinically isolated syndrome, e.g., optic neuritis (ON), which later develops into relapsing-remitting (RR) MS, with temporal attacks or primary progressive (PP) MS. Characteristic features of MS are inflammatory foci in the CNS and intrathecal synthesis of immunoglobulins (Igs), measured as an IgG index, oligoclonal bands (OCBs), or specific antibody indexes. Major predisposing factors for MS are certain tissue types (e.g., HLA DRB1*15:01), vitamin D deficiency, smoking, obesity, and infection with Epstein-Barr virus (EBV). Many of the clinical signs of MS described above can be explained by chronic/recurrent EBV infection and current models of EBV involvement suggest that RRMS may be caused by repeated entry of EBV-transformed B cells to the CNS in connection with attacks, while PPMS may be caused by more chronic activity of EBV-transformed B cells in the CNS. In line with the model of EBV's role in MS, new treatments based on monoclonal antibodies (MAbs) targeting B cells have shown good efficacy in clinical trials both for RRMS and PPMS, while MAbs inhibiting B cell mobilization and entry to the CNS have shown efficacy in RRMS. Thus, these agents, which are now first line therapy in many patients, may be hypothesized to function by counteracting a chronic EBV infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Wang Z, Kennedy PG, Dupree C, Wang M, Lee C, Pointon T, Langford TD, Graner MW, Yu X. Antibodies from Multiple Sclerosis Brain Identified Epstein-Barr Virus Nuclear Antigen 1 & 2 Epitopes which Are Recognized by Oligoclonal Bands. J Neuroimmune Pharmacol 2020; 16:567-580. [PMID: 32808238 PMCID: PMC7431217 DOI: 10.1007/s11481-020-09948-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), the etiology of which is poorly understood. The most common laboratory abnormality associated with MS is increased intrathecal immunoglobulin G (IgG) synthesis and the presence of oligoclonal bands (OCBs) in the brain and cerebrospinal fluid (CSF). However, the major antigenic targets of these antibody responses are unknown. The risk of MS is increased after infectious mononucleosis (IM) due to EBV infection, and MS patients have higher serum titers of anti-EBV antibodies than control populations. Our goal was to identify disease-relevant epitopes of IgG antibodies in MS; to do so, we screened phage-displayed random peptide libraries (12-mer) with total IgG antibodies purified from the brain of a patient with acute MS. We identified and characterized the phage peptides for binding specificity to intrathecal IgG from patients with MS and from controls by ELISA, phage-mediated Immuno-PCR, and isoelectric focusing. We identified two phage peptides that share sequence homologies with EBV nuclear antigens 1 and 2 (EBNA1 and EBNA2), respectively. The specificity of the EBV epitopes found by panning with MS brain IgG was confirmed by ELISA and competitive inhibition assays. Using a highly sensitive phage-mediated immuno-PCR assay, we determined specific bindings of the two EBV epitopes to IgG from CSF from 46 MS and 5 inflammatory control (IC) patients. MS CSF IgG have significantly higher bindings to EBNA1 epitope than to EBNA2 epitope, whereas EBNA1 and EBNA2 did not significantly differ in binding to IC CSF IgG. Further, the EBNA1 epitope was recognized by OCBs from multiple MS CSF as shown in blotting assays with samples separated by isoelectric focusing. The EBNA1 epitope is reactive to MS intrathecal antibodies corresponding to oligoclonal bands. This reinforces the potential role of EBV in the etiology of MS. Antibodies purified from an MS brain plaque were panned by phage display peptide libraries to discern potential antigens. Phage displaying peptide sequences resembling Epstein-Barr Virus Nuclear Antigens 1 & 2 (EBNA1 & 2) epitopes were identified. Antibodies from sera and CSF from other MS patients also reacted to those epitopes. ![]()
Collapse
Affiliation(s)
- Zhe Wang
- National Engineering Research Center for Protein Drugs, Beijing, 102206, China
| | - Peter Ge Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Cecily Dupree
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Min Wang
- Immunoah Therapeutics, Inc., 12635 East Montview Boulevard, Aurora, CO, 80045, USA
| | - Catherin Lee
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tiffany Pointon
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T Dianne Langford
- Lewis Katz School of Medicine, Temple University, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
19
|
Carrasco L, Pisa D, Alonso R. Polymicrobial Infections and Neurodegenerative Diseases. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Abstract
The etiology and pathogenesis of MS is likely to involve multiple factors interacting with each other, and the role of infectious and viral agents is still under debate, however a consistent amount of studies suggests that some viruses are associated with the disease. The strongest documentation has come from the detection of viral nucleic acid or antigen or of an anti-viral antibody response in MS patients. A further step for the study of the mechanism viruses might be involved in can be made using in vitro and in vivo models. While in vitro models, based on glial and neural cell lines from various sources are widely used, in vivo animal models present challenges. Indeed neurotropic animal viruses are currently used to study demyelination in well-established models, but animal models of demyelination by human virus infection have only recently been developed, using animal gammaherpesviruses closely related to Epstein Barr virus (EBV), or using marmosets expressing the specific viral receptor for Human Herpesvirus 6 (HHV-6). The present review will illustrate the main potential mechanisms of MS pathogenesis possibly associated with viral infections and viruses currently used to study demyelination in animal models. Then the viruses most strongly linked with MS will be discussed, in the perspective that more than one virus might have a role, with varying degrees of interaction, contributing to MS heterogeneity.
Collapse
Affiliation(s)
- Donatella Donati
- Neurologia e Neurofisiologia Clinica, Azienda Ospedaliera Universitaria Senese I 53100 Siena, Italy
| |
Collapse
|
21
|
Lupia T, Milia MG, Atzori C, Gianella S, Audagnotto S, Imperiale D, Mighetto L, Pirriatore V, Gregori G, Lipani F, Ghisetti V, Bonora S, Di Perri G, Calcagno A. Presence of Epstein-Barr virus DNA in cerebrospinal fluid is associated with greater HIV RNA and inflammation. AIDS 2020; 34:373-380. [PMID: 31764071 PMCID: PMC7773520 DOI: 10.1097/qad.0000000000002442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The current study aimed to investigate whether cerebrospinal fluid (CSF) Epstein-Barr virus (EBV) or cytomegalovirus (CMV) DNA was associated with viral, inflammatory and neuronal damage biomarkers in people living with HIV (PLWH). DESIGN A cross-sectional diagnostic study on CSF fluid samples in patients undergoing lumbar punctures for clinical reasons, to better understand the role of EBV and CMV in the CNS on HIV RNA replication, blood-brain-barrier (BBB) damage and biomarkers of neuronal damage/inflammation. METHODS EBV, CMV DNA and HIV RNA were measured on CSF, through real time (RT)-PCR, from PLWHs undergoing lumbar punctures for clinical reasons (excluding oncho-haematological comorbidities). Immune-enzymatic assays evaluated blood-brain barrier inflammation and damage. Patients were stratified according to plasma HIV RNA levels in viremic (≥50 copies/ml) and aviremic (<50 copies/ml). RESULTS We included 297 participants. Among 167 viremic patients CSF EBV and CMV DNA were detectable in 42 (25.1%) and 10 (6.3%) participants; among 130 aviremic individuals CSF EBV and CMV DNA were detectable in 12 (9.2%) and 0 (0%) participants, respectively. In viremic group detectable CSF EBV DNA was associated with CSF pleocytosis (P < 0.001), higher CSF HIV RNA (P < 0.001) and neopterin levels (P = 0.002). In aviremic participants detectable EBV DNA was associated with pleocytosis (P = 0.056), higher neopterin (P = 0.027) and immune globulins (P = 0.016) in the CSF; CSF escape was more common in those with detectable EBV DNA (50 vs. 21.2%, P = 0.036). CONCLUSION EBV DNA was frequently detected in the CSF of viremic and fewer aviremic patients on antiretroviral treatment. In PLWH without clinical evidence of encephalitis CSF EBV DNA was associated with higher biomarkers levels of neuronal damage/inflammation. The role of EBV reactivation in HIV-associated central nervous system disorders warrants further studies.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Maria Grazia Milia
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Cristiana Atzori
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Sara Gianella
- University of California San Diego, La Jolla, California, USA
| | - Sabrina Audagnotto
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Daniele Imperiale
- Unit of Neurology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Lorenzo Mighetto
- Laboratory of Immunology, Ospedale Maria Vittoria, ASL ‘Città di Torino’, Torino, Italy
| | - Veronica Pirriatore
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Gabriella Gregori
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Filippo Lipani
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Valeria Ghisetti
- Laboratory of Virology and Molecular Biology, Ospedale Amedeo di Savoia, ASL ‘Città di Torino’
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino
| |
Collapse
|
22
|
Mohammed EM. Environmental Influencers, MicroRNA, and Multiple Sclerosis. J Cent Nerv Syst Dis 2020; 12:1179573519894955. [PMID: 32009827 PMCID: PMC6971968 DOI: 10.1177/1179573519894955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a complex neurological disorder characterized by an aberrant immune system that affects patients' quality of life. Several environmental factors have previously been proposed to associate with MS pathophysiology, including vitamin D deficiency, Epstein-Barr virus (EBV) infection, and cigarette smoking. These factors may influence cellular molecularity, interfering with cellular proliferation, differentiation, and apoptosis. This review argues that small noncoding RNA named microRNA (miRNA) influences these factors' mode of action. Dysregulation in the miRNAs network may deeply impact cellular hemostasis, thereby possibly resulting in MS pathogenicity. This article represents a literature review and an author's theory of how environmental factors may induce dysregulations in the miRNAs network, which could ultimately affect MS pathogenicity.
Collapse
|
23
|
Cladribine for people with multiple sclerosis. Hippokratia 2020. [DOI: 10.1002/14651858.cd013524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Atkins SL, Motaib S, Wiser LC, Hopcraft SE, Hardy PB, Shackelford J, Foote P, Wade AH, Damania B, Pagano JS, Pearce KH, Whitehurst CB. Small molecule screening identifies inhibitors of the Epstein-Barr virus deubiquitinating enzyme, BPLF1. Antiviral Res 2020; 173:104649. [PMID: 31711927 PMCID: PMC7017600 DOI: 10.1016/j.antiviral.2019.104649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Herpesviral deubiquitinating enzymes (DUBs) were discovered in 2005, are highly conserved across the family, and are proving to be increasingly important players in herpesviral infection. EBV's DUB, BPLF1, is known to regulate both cellular and viral target activities, yet remains largely unstudied. Our work has implicated BPLF1 in a wide range of processes including infectivity, viral DNA replication, and DNA repair. Additionally, knockout of BPLF1 delays and reduces human B-cell immortalization and lymphoma formation in humanized mice. These findings underscore the importance of BPLF1 in viral infectivity and pathogenesis and suggest that inhibition of EBV's DUB activity may offer a new approach to specific therapy for EBV infections. We set out to discover and characterize small molecule inhibitors of BPLF1 deubiquitinating activity through high-throughput screening. An initial small pilot screen resulted in discovery of 10 compounds yielding >80% decrease in BPLF1 DUB activity at a 10 μM concentration. Follow-up dose response curves of top hits identified several compounds with an IC50 in the low micromolar range. Four of these hits were tested for their ability to cleave ubiquitin chains as well as their effects on viral infectivity and cell viability. Further characterization of the top hit, commonly known as suramin was found to not be selective yet decreased viral infectivity by approximately 90% with no apparent effects on cell viability. Due to the conserved nature of Herpesviral deubiquitinating enzymes, identification of an inhibitor of BPLF1 may prove to be an effective and promising new avenue of therapy for EBV and other herpesviral family members.
Collapse
Affiliation(s)
- Sage L Atkins
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Safiyyah Motaib
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura C Wiser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon E Hopcraft
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul B Hardy
- Eshelman School of Pharmacy, Center for Integrative Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia Shackelford
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Ashley H Wade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph S Pagano
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Pearce
- Eshelman School of Pharmacy, Center for Integrative Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
New Viral Facets in Oral Diseases: The EBV Paradox. Int J Mol Sci 2019; 20:ijms20235861. [PMID: 31766729 PMCID: PMC6929135 DOI: 10.3390/ijms20235861] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
The oral cavity contributes to overall health, psychosocial well-being and quality of human life. Oral inflammatory diseases represent a major global health problem with significant social and economic impact. The development of effective therapies, therefore, requires deeper insights into the etiopathogenesis of oral diseases. Epstein–Barr virus (EBV) infection results in a life-long persistence of the virus in the host and has been associated with numerous oral inflammatory diseases including oral lichen planus (OLP), periodontal disease and Sjogren’s syndrome (SS). There is considerable evidence that the EBV infection is a strong risk factor for the development and progression of these conditions, but is EBV a true pathogen? This long-standing EBV paradox yet needs to be solved. This review discusses novel viral aspects of the etiopathogenesis of non-tumorigenic diseases in the oral cavity, in particular, the contribution of EBV in OLP, periodontitis and SS, the tropism of EBV infection, the major players involved in the etiopathogenic mechanisms and emerging contribution of EBV-pathogenic bacteria bidirectional interaction. It also proposes the involvement of EBV-infected plasma cells in the development and progression of oral inflammatory diseases. A new direction for preventing and treating these conditions may focus on controlling pathogenic EBV with anti-herpetic drugs.
Collapse
|
26
|
Zachova K, Kosztyu P, Zadrazil J, Matousovic K, Vondrak K, Hubacek P, Kostovcikova K, Tlaskalova Hogenova H, Mestecky J, Raska M. Multiparametric flow cytometry analysis of peripheral blood B cell trafficking differences among Epstein-Barr virus infected and uninfected subpopulations. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 164:247-254. [PMID: 31723302 DOI: 10.5507/bp.2019.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/27/2019] [Indexed: 11/23/2022] Open
Abstract
AIMS Epstein-Barr virus (EBV) targets predominantly B cells and these cells could acquire new phenotype characteristics. Here we analyzed whether EBV-infected and -uninfected B cells from healthy subjects differ in proportion of dominant phenotypes, maturation stage, and homing receptors expression. METHODS EBV-infected and -uninfected cells were identified by flow cytometry using fluorophore-labeled EBV RNA-specific DNA probes combined with fluorophore-labeled antibody to surface lineage markers, integrins, chemokine receptors, and immunoglobulin isotypes, including intracellular ones. RESULTS Our results show that the trafficking characteristics of EBERpos B cells are distinct from EBERneg B cells with most dominant differences detected for α4β1 and α4β7 and CCR5 and CCR7. EBV-positive cells are predominantly memory IgM+ B cells or plasmablasts/plasma cells (PB/PC) positive for IgA or less for IgM. In comparison to uninfected B cells, less EBV-positive B cells express α4β7 and almost no cells express α4β1. EBV-positive B cells contained significantly higher proportion of CCR5+ and CCR7+ cells in comparison to EBV-negative cells. In vitro exposure of blood mononuclear cells to pro-inflammatory cytokine IL-6 reduces population of EBV-positive B cell. CONCLUSION Although EBV-infected B cells represent only a minor subpopulation, their atypical functions could contribute in predisposed person to development abnormities such as some autoimmune diseases or tumors. Using multi-parameter flow cytometry we characterized differences in migration of EBV-positive and -negative B cells of various maturation stage and isotype of produced antibodies particularly different targeting to mucosal tissues of gastrointestinal and respiratory tracts.
Collapse
Affiliation(s)
- Katerina Zachova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Josef Zadrazil
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | | | | | | | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Tlaskalova Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Mestecky
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
Alexopoulos H, Dalakas MC. The immunobiology of autoimmune encephalitides. J Autoimmun 2019; 104:102339. [PMID: 31611142 DOI: 10.1016/j.jaut.2019.102339] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune encephalitides, with an estimated incidence of 1.5 per million population per year, although described only 15 years ago, have already had a remarkable impact in neurology and paved the field to autoimmune neuropsychiatry. Many patients traditionally presented with aberrant behavior, especially of acute or subacute onset, and treated with anti-psychotic therapies, turn out to have a CNS autoimmune disease with pathogenic autoantibodies against synaptic antigens responding to immunotherapies. The review describes the clinical spectrum of these disorders, and the pathogenetic role of key autoantibodies directed against: a) cell surface synaptic antigens and receptors, including NMDAR, GABAa, GABAb, AMPA and glycine receptors; b) channels such as AQP4 water-permeable channel or voltage-gated potassium channels; c) proteins that stabilize voltage-gated potassium channel complex into the membrane, like the LGI1 and CASPR2; and d) enzymes that catalyze the formation of neurotransmitters such as Glutamic Acid Decarboxylase (GAD). These antibodies, effectively target excitatory or inhibitory synapses in the limbic system, basal ganglia or brainstem altering synaptic function and resulting in uncontrolled neurological excitability disorder clinically manifested with psychosis, agitation, behavioral alterations, depression, sleep disturbances, seizure-like phenomena, movement disorders such as ataxia, chorea and dystonia, memory changes or coma. Some of the identified triggering factors include: viruses, especially herpes simplex, accounting for the majority of relapses occurring after viral encephalitis, which respond to immunotherapy rather than antiviral agents; tumors especially teratoma, SCLC and thymomas; and biological cancer therapies (immune-check-point inhibitors). As anti-synaptic antibodies persist after viral infections or tumor removal, augmentation of autoreactive B cells which release autoantigens to draining lymph nodes, molecular mimicry and infection-induced bystander immune activation products play a role in autoimmunization process or perpetuating autoimmune neuroinflammation. The review stresses the importance of early detection, clinical recognition, proper antibody testing and early therapy initiation as these disorders, regardless of a known or not trigger, are potentially treatable responding to systemic immunotherapy with intravenous steroids, IVIg, rituximab or even bortezomid.
Collapse
Affiliation(s)
- Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos C Dalakas
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
28
|
West Nile Virus infection triggering autoimmune encephalitis: Pathophysiological and therapeutic implications. Clin Immunol 2019; 207:97-99. [PMID: 31454696 DOI: 10.1016/j.clim.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND A contributing factor in triggering autoimmune phenomena is pathogen infections. Here we describe a case that expands the spectrum of infection-associated autoimmune encephalitis and discuss plausible pathogenetic mechanisms. DESIGN Case report and in silico analysis. RESULTS A patient with West Nile Virus infection developed autoimmune encephalitis with positive anti-glycine receptor antibodies. Combination therapy with corticosteroids and intravenous immunoglobulin resulted in the resolution of encephalitis signs and symptoms. An in silico analysis unveiled certain sequence similarities between viral antigens and receptor sequence fragments suggesting a molecular mimicry autoimmunization process. CONCLUSIONS Our case indicates that West Nile Virus infections can trigger autoimmune encephalitis. Our finding expands the spectrum of autoimmune conditions that can develop following an infection. Whether the autoimmunization process is due to molecular mimicry or due to the expansion of natural autoantibody clones merits further investigation.
Collapse
|
29
|
Laurence M, Benito-León J, Calon F. Malassezia and Parkinson's Disease. Front Neurol 2019; 10:758. [PMID: 31396143 PMCID: PMC6667642 DOI: 10.3389/fneur.2019.00758] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common debilitating neurodegenerative disease caused by a loss of dopamine neurons in the substantia nigra within the central nervous system (CNS). The process leading to this neuronal loss is poorly understood. Seborrheic dermatitis (SD) is a common benign inflammatory condition of the skin which mainly affects lipid-rich regions of the head and trunk. SD is caused by over proliferation of the lipophilic fungus Malassezia. PD and SD are strongly associated. The increased PD risk following an SD diagnosis (OR = 1.69, 95% CI 1.36, 2.1; p < 0.001) reported by Tanner and colleagues remains unexplained. Malassezia were historically considered commensals confined to the skin. However, many recent studies report finding Malassezia in internal organs, including the CNS. This raises the possibility that Malassezia might be directly contributing to PD. Several lines of evidence support this hypothesis. AIDS is causally associated with both parkinsonism and SD, suggesting that weak T cell-mediated control of commensal microbes such as Malassezia might contribute to both. Genetic polymorphisms associated with PD (LRRK2, GBA, PINK1, SPG11, SNCA) increase availability of lipids within human cells, providing a suitable environment for Malassezia. Four LRRK2 polymorphisms which increase PD risk also increase Crohn's disease risk; Crohn's disease is strongly associated with an immune response against fungi, particularly Malassezia. Finally, Malassezia hypha formation and melanin synthesis are stimulated by L-DOPA, which could promote Malassezia invasiveness of dopamine neurons, and contribute to the accumulation of melanin in these neurons. Although Malassezia's presence in the substantia nigra remains to be confirmed, if Malassezia play a role in PD etiology, antifungal drugs should be tested as a possible therapeutic intervention.
Collapse
Affiliation(s)
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain.,Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Frédéric Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada.,Neurosciences Unit, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
| |
Collapse
|
30
|
Baker D, Pryce G, Amor S, Giovannoni G, Schmierer K. Learning from other autoimmunities to understand targeting of B cells to control multiple sclerosis. Brain 2019; 141:2834-2847. [PMID: 30212896 DOI: 10.1093/brain/awy239] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
Although many suspected autoimmune diseases are thought to be T cell-mediated, the response to therapy indicates that depletion of B cells consistently inhibits disease activity. In multiple sclerosis, it appears that disease suppression is associated with the long-term reduction of memory B cells, which serves as a biomarker for disease activity in many other CD20+ B cell depletion-sensitive, autoimmune diseases. Following B cell depletion, the rapid repopulation by transitional (immature) and naïve (mature) B cells from the bone marrow masks the marked depletion and slow repopulation of lymphoid tissue-derived, memory B cells. This can provide long-term protection from a short treatment cycle. It seems that memory B cells, possibly via T cell stimulation, drive relapsing disease. However, their sequestration in ectopic follicles and the chronic activity of B cells and plasma cells in the central nervous system may drive progressive neurodegeneration directly via antigen-specific mechanisms or indirectly via glial-dependent mechanisms. While unproven, Epstein-Barr virus may be an aetiological trigger of multiple sclerosis. This infects mature B cells, drives the production of memory B cells and possibly provides co-stimulatory signals promoting T cell-independent activation that breaks immune tolerance to generate autoreactivity. Thus, a memory B cell centric mechanism can integrate: potential aetiology, genetics, pathology and response to therapy in multiple sclerosis and other autoimmune conditions with ectopic B cell activation that are responsive to memory B cell-depleting strategies.
Collapse
Affiliation(s)
- David Baker
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth Pryce
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sandra Amor
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Pathology Department, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gavin Giovannoni
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Klaus Schmierer
- BartsMS, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
31
|
Lovett-Racke AE, Gormley M, Liu Y, Yang Y, Graham C, Wray S, Racke MK, Shubin R, Twyman C, Alvarez E, Bass A, Eubanks JL, Fox E. B cell depletion with ublituximab reshapes the T cell profile in multiple sclerosis patients. J Neuroimmunol 2019; 332:187-197. [DOI: 10.1016/j.jneuroim.2019.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 01/28/2023]
|
32
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
33
|
Hou R, Wu J, He D, Yan Y, Li L. Anti-N-methyl-D-aspartate receptor encephalitis associated with reactivated Epstein-Barr virus infection in pediatric patients: Three case reports. Medicine (Baltimore) 2019; 98:e15726. [PMID: 31096528 PMCID: PMC6531087 DOI: 10.1097/md.0000000000015726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most frequent autoimmune encephalitis in children, and its presentation is various. The disease can be triggered by various infections. PATIENT CONCERNS Case 1 was a 7-year-old female with the presentation of seizure, repeated fever, language disorder, and decreased muscle strength of the right limbs; Case 2 was a 7-year-old male with the manifestation of repeated emesis, headache, involuntary movement, altered personality, seizures, and cognitive impairment; Case 3 was a 2-year-old female with repeated fever, emesis, seizures, coma, and decreased muscle strength of limbs. Anti-NMDAR antibody was identified in cerebrospinal fluid (CSF) in the 3 cases, confirming the diagnosis of anti-NMDAR encephalitis. Pathogenic examinations revealed positive serum Epstein-Barr virus (EBV)-nuclear antigen and EBV-capsid antigen (CA)-IgG antibodies in the 3 cases, as well as positive EBV-early antigen (EA)-IgG antibody in CSF. Case 1 also had positive EBV-CA-IgA antibody; Case 3 also had positive EBV-CA-IgA and EBV-CA-IgG antibodies. DIAGNOSES Anti-NMDAR antibody and EBV-EA-IgG antibody in CSF were tested positive in the 3 cases. Thus, they were diagnosed as anti-NMDAR encephalitis associated with reactivated EBV infection. INTERVENTIONS All of the 3 cases received immunoglobulin, corticosteroid, and ganciclovir treatment. Cases 2 and 3 also received antiepileptic drugs due to repeated seizures. In addition, Case 3 also received assistant respiration, plasma exchange, and rituximab. OUTCOMES The 3 cases were substantially recovered after treatment. Repeat CSF analysis showed decreased titer of the anti-NMDAR antibody. LESSONS Reactivated EBV infection may trigger anti-NMDAR encephalitis in children, which has not been reported previously. Related possible virology tests should be completed while diagnosing the disease.
Collapse
|
34
|
Severa M, Rizzo F, Srinivasan S, Di Dario M, Giacomini E, Buscarinu MC, Cruciani M, Etna MP, Sandini S, Mechelli R, Farina A, Trivedi P, Hertzog PJ, Salvetti M, Farina C, Coccia EM. A cell type-specific transcriptomic approach to map B cell and monocyte type I interferon-linked pathogenic signatures in Multiple Sclerosis. J Autoimmun 2019; 101:1-16. [PMID: 31047767 DOI: 10.1016/j.jaut.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Alteration in endogenous Interferon (IFN) system may profoundly impact immune cell function in autoimmune diseases. Here, we provide evidence that dysregulation in IFN-regulated genes and pathways are involved in B cell- and monocyte-driven pathogenic contribution to Multiple Sclerosis (MS) development and maintenance. In particular, by using an Interferome-based cell type-specific approach, we characterized an increased susceptibility to an IFN-linked caspase-3 dependent apoptotic cell death in both B cells and monocytes of MS patients that may arise from their chronic activation and persistent stimulation by activated T cells. Ongoing caspase-3 activation functionally impacts on MS monocyte properties influencing the STAT-3/IL-16 axis, thus, driving increased expression and massive release of the bio-active IL-16 triggering and perpetuating CD4+ T cell migration. Importantly, our analysis also identified a previously unknown multi-component defect in type I IFN-mediated signaling and response to virus pathways specific of MS B cells, impacting on induction of anti-viral responses and Epstein-barr virus infection control in patients. Taking advantage of cell type-specific transcriptomics and in-depth functional validation, this study revealed pathogenic contribution of endogenous IFN signaling and IFN-regulated cell processes to MS pathogenesis with implications on fate and functions of B cells and monocytes that may hold therapeutic potential.
Collapse
Affiliation(s)
- Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sundararajan Srinivasan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Di Dario
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Chiara Buscarinu
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy
| | - Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Rosella Mechelli
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Roma Open University and IRCCS San Raffaele-Pisana, Rome, Italy
| | - Antonella Farina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paul J Hertzog
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Marco Salvetti
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University, Rome, Italy; Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Isernia, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
35
|
Castillo-Álvarez F, Marzo-Sola ME. El holobionte enfermo, el ejemplo de la esclerosis múltiple. Med Clin (Barc) 2019; 152:147-153. [DOI: 10.1016/j.medcli.2018.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
|
36
|
Balakrishnan B, Taneja V. Microbial modulation of the gut microbiome for treating autoimmune diseases. Expert Rev Gastroenterol Hepatol 2018; 12:985-996. [PMID: 30146910 DOI: 10.1080/17474124.2018.1517044] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many studies have shown the relationship between autoimmune diseases and the gut microbiome in humans: those with autoimmune conditions display gut microbiome dysbiosis. The big question that needs to be addressed is if restoring eubiosis of the gut microbiota can help suppress the autoimmune condition by activating various immune regulatory mechanisms. Inducing these self-healing mechanisms should prolong good health in affected individuals. Area covered: Here, we review the available clinical and preclinical studies that have used selective bacteria for modulating gut microbiota for treating autoimmune diseases. The potential bacterial candidates and their mechanism of action in treating autoimmune diseases will be discussed. We searched for genetically modified and potential probiotics for diseases and discuss the most likely candidates. Expert commentary: To achieve eubiosis, manipulation of the gut microbiota must occur in some form. Several approaches for modulating gut microbiota include prebiotic diets, antimicrobial interventions, fecal microbiota transplants, and selective probiotics. One novel approach showing promising results is the use of selective bacterial candidates to modulate microbial composition. Use of single microbe for treatment has an advantage as compared to multi-species as microbes grow at different rates and if needed, a single microbe is easy to target.
Collapse
Affiliation(s)
| | - Veena Taneja
- a Department of Immunology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
37
|
Gut microbiota, cannabinoid system and neuroimmune interactions: New perspectives in multiple sclerosis. Biochem Pharmacol 2018; 157:51-66. [PMID: 30171835 DOI: 10.1016/j.bcp.2018.08.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
The gut microbiota plays a fundamental role on the education and function of the host immune system. Immunological dysregulation is the cause of numerous human disorders such as autoimmune diseases and metabolic disorders frequently associated with inflammatory processes therefore is critical to explore novel mechanisms involved in maintaining the immune system homeostasis. The cannabinoid system and related bioactive lipids participate in multiple central and peripheral physiological processes that affect metabolic, gastrointestinal and neuroimmune regulatory mechanisms displaying a modulatory role and contributing to the maintenance of the organism's homeostasis. In this review, we gather the knowledge on the gut microbiota-endocannabinoids interactions and their impact on autoimmune disorders such as inflammatory bowel disease, rheumatoid arthritis and particularly, multiple sclerosis (MS) as the best example of a CNS autoimmune disorder. Furthermore, we contribute to this field with new data on changes in many elements of the cannabinoid system in a viral model of MS after gut microbiota manipulation by both antibiotics and probiotics. Finally, we highlight new therapeutic opportunities, under an integrative view, targeting the eCBS and the commensal microbiota in the context of neuroinflammation and MS.
Collapse
|
38
|
Alonso R, Fernández-Fernández AM, Pisa D, Carrasco L. Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiol Dis 2018; 117:42-61. [PMID: 29859870 DOI: 10.1016/j.nbd.2018.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is the prototypical inflammatory disease of the central nervous system (CNS), leading to multifocal demyelination and neurodegeneration. The etiology of this incurable disease is unknown and remains a matter of intensive research. The possibility that microbial infections, such as viruses or bacteria, can trigger an autoimmune reaction in CNS tissue has been suggested. However, the recent demonstration that bacteria are present in CNS tissue points to a direct involvement of microbial infections in the etiology of MS. In the present study, we provide the first evidence of fungal infection in CNS tissue of MS patients, and demonstrate that fungal DNA from different species can be detected in the CNS. We used, nested PCR assays together with next-generation sequencing to identify the fungal species in the nervous tissue of 10 patients with MS. Strikingly, Trichosporon mucoides was found in the majority of MS patients, and particularly high levels of this fungus were found in two patients. Importantly, T. mucoides was not detected in the CNS of control subjects. We were also able to visualize fungal structures in CNS tissue sections by immunohistochemistry using specific antifungal antibodies, which also revealed the accumulation of a number of microbial cells in microfoci. Again, microbial structures were not observed in CNS sections from controls. In addition to fungi, neural tissue from MS patients was also positive for bacteria. In conclusion, our present observations point to the novel concept that MS could be caused by polymicrobial infections. Thus, mycosis of the CNS may be accompanied by opportunistic bacterial infection, promoting neuroinflammation and directly causing focal lesions, followed by demyelination and axonal injury.
Collapse
Affiliation(s)
- Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana M Fernández-Fernández
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Diana Pisa
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
39
|
Benito-León J, Laurence M. The Role of Fungi in the Etiology of Multiple Sclerosis. Front Neurol 2017; 8:535. [PMID: 29085329 PMCID: PMC5650687 DOI: 10.3389/fneur.2017.00535] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 01/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system. Infectious triggers of MS are being actively investigated. Substantial evidence supports the involvement of the Epstein-Barr virus (EBV), though other viruses, bacteria, protists, and fungi are also being considered. Many links between fungi and diseases involving chronic inflammation have been found recently. Evidence linking MS and fungi is reviewed here. The HLA-DRB1*15 allele group is the most important genetic risk factor of MS, and is a risk factor in several other conditions linked to fungal infections. Many biomarkers of MS are consistent with fungal infections, such as IL-17, chitotriosidase, and antibodies against fungi. Dimethyl fumarate (DMF), first used as an industrial fungicide, was recently repurposed to reduce MS symptoms. Its mechanisms of action in MS have not been firmly established. The low risk of MS during childhood and its moderate association with herpes simplex virus type 2 suggest genital exposure to microbes (including fungi) should be investigated as a possible trigger. Molecular and epidemiological evidence support a role for infections such as EBV in MS. Though fungal infections have not been widely studied in MS, many lines of evidence are consistent with a fungal etiology. Future microbiome and serological studies should consider fungi as a possible risk factor for MS, and future clinical studies should consider the effect of fungicides other than DMF on MS symptoms.
Collapse
Affiliation(s)
- Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | |
Collapse
|
40
|
Editors’ Welcome. Mult Scler Relat Disord 2017; 16:A1-A2. [DOI: 10.1016/j.msard.2017.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022]
|