1
|
Protopapa M, Schraad M, Pape K, Steffen F, Steenken L, Zipp F, Fleischer V, Bittner S. Recurrent late-onset neutropenia following treatment with different B cell-depleting strategies in multiple sclerosis. MED 2024:S2666-6340(24)00404-5. [PMID: 39515320 DOI: 10.1016/j.medj.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND As B cell-depleting therapies in multiple sclerosis (MS) have gained significant importance in the last several years, their long-term safety profile is of considerable clinical interest. Late-onset neutropenia (LON) is a rare, but potentially severe, adverse event that was first described in patients with rheumatic disorders under therapy with rituximab. Ofatumumab was approved in 2021 for the treatment of relapsing-remitting multiple sclerosis (RRMS). Neutropenia occurred in 0.2% of patients in clinical phase 3 trials, and to date, no cases of LON have been reported under ofatumumab treatment. METHODS Here, we report a case of repetitive symptomatic LON under ocrelizumab as well as ofatumumab treatment. Additionally, we review the literature on rare occurrences of LON in patients with MS, neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) undergoing B cell-depleting therapies, including rituximab, ocrelizumab, ofatumumab, inebilizumab, and ublituximab. FINDINGS In our case, the patient presented with repetitive symptomatic LON under ocrelizumab as well as ofatumumab treatment leading to febrile infections, subsequent use of antibiotics, and application of granulocyte-colony-stimulating factor. After repetitive episodes of LON under both B cell-depleting strategies, cladribine was subsequently initiated. A nine-month follow-up showed a normal neutrophil count and no evidence of disease activity. CONCLUSIONS This case highlights the significance of symptomatic late-onset blood count changes under both ocrelizumab and ofatumumab and emphasizes the importance of continuous monitoring of the differential blood count under B cell-depleting treatment. FUNDING This study was supported by the Deutsche Forschungsgemeinschaft (DFG; SFB CRC-TR-128 to F.Z., V.F., and S.B..; SFB 1080 and SFB CRC-1292 to F.Z..; and SFB/TRR 355 to S.B.) and the Hermann and Lilly Schilling Foundation (to S.B.).
Collapse
Affiliation(s)
- Maria Protopapa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muriel Schraad
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Livia Steenken
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
2
|
Schirò G, Iacono S, Salemi G, Ragonese P. The pharmacological management of myelin oligodendrocyte glycoprotein-immunoglobulin G associated disease (MOGAD): an update of the literature. Expert Rev Neurother 2024; 24:985-996. [PMID: 39110029 DOI: 10.1080/14737175.2024.2385941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Myelin oligodendrocyte glycoprotein-immunoglobulin G associated disease (MOGAD) is a clinical entity distinct from multiple sclerosis and aquaporin-4 (AQP4+)-IgG-positive neuromyelitis optica spectrum disorder. There is a lack of evidence regarding the efficacy and safety of current treatments used for MOGAD. AREAS COVERED In this article, the authors review the currently available literature on the pharmacological management of MOGAD. This article is based on an extensive search for articles including meta-analyses, clinical trials, systematic reviews, observational studies, case series and case reports. EXPERT OPINION Intravenous high-dose methylprednisolone is the most common therapy for acute attack with patients having a good treatment response. In cases with poor recovery, intravenous immunoglobulins (IVIG) or plasma-exchange proved to be effective. Maintenance therapies include mycophenolate mofetil, azathioprine, IVIG, oral corticosteroids, rituximab, and interleukin-6 receptor (IL6-R) antagonists. Rituximab is the most used drug while IL6-R antagonists emerged as an effective option for people not responding to current treatments. Larger prospective studies with longer follow-ups are needed to confirm whether the blockage of the IL6-R is an effective and safe option. Since there is no evidence of major safety issues related to the new available therapies, the authors believe that waiting for disease activity to consider a possible treatment change, is an unwise approach.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Neurology and Multiple Sclerosis Center, Neurology Unit, Foundation Institute "G. Giglio", Cefalù, Italy
| | - Salvatore Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Neurology and Multiple Sclerosis Center, Neurology Unit, Foundation Institute "G. Giglio", Cefalù, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Hallberg S, Evertsson B, Lillvall E, Boremalm M, de Flon P, Wang Y, Salzer J, Lycke J, Fink K, Frisell T, Al Nimer F, Svenningsson A. Hypogammaglobulinaemia during rituximab treatment in multiple sclerosis: A Swedish cohort study. Eur J Neurol 2024; 31:e16331. [PMID: 38794973 PMCID: PMC11236063 DOI: 10.1111/ene.16331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND AND PURPOSE Mechanisms behind hypogammaglobulinaemia during rituximab treatment are poorly understood. METHODS In this register-based multi-centre retrospective cohort study of multiple sclerosis (MS) patients in Sweden, 2745 patients from six participating Swedish MS centres were identified via the Swedish MS registry and included between 14 March 2008 and 25 January 2021. The exposure was treatment with at least one dose of rituximab for MS or clinically isolated syndrome, including data on treatment duration and doses. The degree of yearly decrease in immunoglobulin G (IgG) and immunoglobulin M (IgM) levels was evaluated. RESULTS The mean decrease in IgG was 0.27 (95% confidence interval 0.17-0.36) g/L per year on rituximab treatment, slightly less in older patients, and without significant difference between sexes. IgG or IgM below the lower limit of normal (<6.7 or <0.27 g/L) was observed in 8.8% and 8.3% of patients, respectively, as nadir measurements. Six out of 2745 patients (0.2%) developed severe hypogammaglobulinaemia (IgG below 4.0 g/L) during the study period. Time on rituximab and accumulated dose were the main predictors for IgG decrease. Previous treatment with fingolimod and natalizumab, but not teriflunomide, dimethyl fumarate, interferons or glatiramer acetate, were significantly associated with lower baseline IgG levels by 0.80-1.03 g/L, compared with treatment-naïve patients. Switching from dimethyl fumarate or interferons was associated with an additional IgG decline of 0.14-0.19 g/L per year, compared to untreated. CONCLUSIONS Accumulated dose and time on rituximab treatment are associated with a modest but significant decline in immunoglobulin levels. Previous MS therapies may influence additional IgG decline.
Collapse
Affiliation(s)
- Susanna Hallberg
- Department of Clinical SciencesKarolinska Institutet, Danderyds SjukhusStockholmSweden
| | - Björn Evertsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ellen Lillvall
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Malin Boremalm
- Department of Clinical Science, NeurosciencesUmeå UniversityUmeåSweden
| | - Pierre de Flon
- Department of Clinical Sciences, Neurosciences, Unit of Neurology, ÖstersundUmeå UniversityUmeåSweden
| | - Yunzhang Wang
- Department of Clinical SciencesKarolinska Institutet, Danderyds SjukhusStockholmSweden
| | - Jonatan Salzer
- Department of Clinical Science, NeurosciencesUmeå UniversityUmeåSweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Katharina Fink
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Thomas Frisell
- Clinical Epidemiology Division, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| | - Faiez Al Nimer
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Anders Svenningsson
- Department of Clinical SciencesKarolinska Institutet, Danderyds SjukhusStockholmSweden
| |
Collapse
|
4
|
Gonzalez Caldito N, Graham EL, Grebenciucova E. Rituximab and pregnancy: Late-onset neutropenia in a 2-month infant whose mother received rituximab 2 weeks prior to childbirth. Mult Scler 2024; 30:272-274. [PMID: 38116592 PMCID: PMC10851620 DOI: 10.1177/13524585231214219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Late-onset neutropenia (LON) is a rare adverse event that has not been reported from in utero exposure. We describe a case of LON in an infant, whose mother had neuromyelitis optica and received rituximab in the third trimester due to re-emergence of CD19 B cells. The newborn was born without complications but 2 months later was found to have grade IV neutropenia. No etiology was identified. Neutropenia self-resolved within 1 week. This case emphasizes an unmet need for developing guidelines and protocols to manage in utero rituximab exposure.
Collapse
Affiliation(s)
| | - Edith L Graham
- Department of Neurology, Northwestern Medicine, Chicago, IL, USA
| | | |
Collapse
|
5
|
Alabdulqader RA, Alnasser W, Aljubran HJ, Alkhulaif HH. A Case of Late-Onset Neutropenia in Relapsing-Remitting Multiple Sclerosis Following Ocrelizumab Therapy. Cureus 2024; 16:e51729. [PMID: 38187018 PMCID: PMC10770766 DOI: 10.7759/cureus.51729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/09/2024] Open
Abstract
Ocrelizumab, a monoclonal antibody, has proven effective in treating both primary progressive and relapsing-remitting multiple sclerosis. Common adverse effects observed in clinical studies include flushing, sore throat, pruritus, and rash. This abstract discusses a case of severe, late-onset neutropenia in a patient with relapsing-remitting multiple sclerosis undergoing ocrelizumab treatment. The neutropenia emerged 46 days following the patient's most recent ocrelizumab dose. The patient responded well to treatment with intravenous meropenem and filgrastim. This rare and unforeseen adverse effect highlights the importance of regular blood monitoring for early detection of severe neutropenia in patients treated with ocrelizumab.
Collapse
Affiliation(s)
| | - Wafa Alnasser
- Infection Control, Imam Abdulrahman Bin Faisal Hospital, Dammam, SAU
| | | | | |
Collapse
|
6
|
Kümpfel T, Giglhuber K, Aktas O, Ayzenberg I, Bellmann-Strobl J, Häußler V, Havla J, Hellwig K, Hümmert MW, Jarius S, Kleiter I, Klotz L, Krumbholz M, Paul F, Ringelstein M, Ruprecht K, Senel M, Stellmann JP, Bergh FT, Trebst C, Tumani H, Warnke C, Wildemann B, Berthele A. Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD) - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: Attack therapy and long-term management. J Neurol 2024; 271:141-176. [PMID: 37676297 PMCID: PMC10770020 DOI: 10.1007/s00415-023-11910-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023]
Abstract
This manuscript presents practical recommendations for managing acute attacks and implementing preventive immunotherapies for neuromyelitis optica spectrum disorders (NMOSD), a rare autoimmune disease that causes severe inflammation in the central nervous system (CNS), primarily affecting the optic nerves, spinal cord, and brainstem. The pillars of NMOSD therapy are attack treatment and attack prevention to minimize the accrual of neurological disability. Aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) are a diagnostic marker of the disease and play a significant role in its pathogenicity. Recent advances in understanding NMOSD have led to the development of new therapies and the completion of randomized controlled trials. Four preventive immunotherapies have now been approved for AQP4-IgG-positive NMOSD in many regions of the world: eculizumab, ravulizumab - most recently-, inebilizumab, and satralizumab. These new drugs may potentially substitute rituximab and classical immunosuppressive therapies, which were as yet the mainstay of treatment for both, AQP4-IgG-positive and -negative NMOSD. Here, the Neuromyelitis Optica Study Group (NEMOS) provides an overview of the current state of knowledge on NMOSD treatments and offers statements and practical recommendations on the therapy management and use of all available immunotherapies for this disease. Unmet needs and AQP4-IgG-negative NMOSD are also discussed. The recommendations were developed using a Delphi-based consensus method among the core author group and at expert discussions at NEMOS meetings.
Collapse
Affiliation(s)
- Tania Kümpfel
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Katrin Giglhuber
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum Rechts der Isar, Munich, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Vivien Häußler
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kerstin Hellwig
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Markus Krumbholz
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Neurology & Stroke, University Hospital of Tübingen, Tübingen, Germany
| | - Friedemann Paul
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, and Berlin Institute of Health, and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jan-Patrick Stellmann
- Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- APHM, Hopital de la Timone, CEMEREM, Marseille, France
- Aix Marseille University, CNRS, CRMBM, Marseille, France
| | | | - Corinna Trebst
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | | - Clemens Warnke
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brigitte Wildemann
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke, Berg, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University Munich, Klinikum Rechts der Isar, Munich, Germany.
| |
Collapse
|
7
|
Karlowicz JR, Klakegg M, Aarseth JH, Bø L, Myhr KM, Torgauten HM, Torkildsen Ø, Wergeland S. Predictors of hospitalization due to infection in rituximab-treated MS patients. Mult Scler Relat Disord 2023; 71:104556. [PMID: 36842313 DOI: 10.1016/j.msard.2023.104556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Rituximab is extensively used off-label to treat multiple sclerosis (MS), and long-term vigilance for adverse events is needed. This study was conducted to determine frequencies and predictors of hematological adverse events, including hypogammaglobulinemia, severe lymphopenia, neutropenia, and infections leading to hospitalization. METHODS This retrospective cohort study included all patients with MS initiating rituximab treatment at Haukeland University Hospital between January 1st, 2017, and July 1st, 2021. Patients were followed by clinical monitoring and repeated blood sampling every six months. Clinical outcomes and laboratory results were retrieved from the Norwegian MS Registry and Biobank and the patient administrative system at Haukeland University Hospital. RESULTS Five hundred and fifty-six patients were included, 515 with relapsing-remitting MS (RRMS) and 41 with progressive MS. Overall, 33 patients (5.9%) experienced 56 episodes of infections requiring hospital admission. Sixty patients (10.8%) had confirmed hypogammaglobulinemia, 17 (3.1%) had confirmed severe lymphopenia, and 10 (1.8%) had confirmed severe neutropenia. Predictors of infection requiring hospital admission were progressive MS (adjusted OR (aOR): 4.81; 95%CI: 1.25-18.48), duration of treatment with rituximab (aOR: 1.52; 95%CI: 1.11-2.09) and confirmed severe lymphopenia (aOR: 13.58; 95%CI: 3.41-54.06) and neutropenia (aOR: 13.40; 95%CI: 2.93-61.25). Of the hematological abnormalities, only hypogammaglobulinemia was associated with treatment duration (aOR: 1.35; 95%CI: 1.09-1.69). CONCLUSION The risk of hospitalization due to infection is associated with time on rituximab treatment, in patients with lympho- or neutropenia, and in patients with primary progressive MS. We observed a time-dependent decline in IgG values, in contrast to neutrophil and lymphocyte count, suggesting a cumulative dose-dependent response. These predictors can assist clinicians in assessing and monitoring MS patients receiving rituximab.
Collapse
Affiliation(s)
| | - Mattias Klakegg
- Department of clinical medicine, University of Bergen, Norway
| | - Jan Harald Aarseth
- Norwegian MS-registry and biobank, Dept of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bø
- Department of clinical medicine, University of Bergen, Norway; Neuro-SysMed, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of clinical medicine, University of Bergen, Norway; Neuro-SysMed, Haukeland University Hospital, Bergen, Norway
| | - Hilde Marie Torgauten
- Department of clinical medicine, University of Bergen, Norway; Neuro-SysMed, Haukeland University Hospital, Bergen, Norway
| | - Øivind Torkildsen
- Department of clinical medicine, University of Bergen, Norway; Neuro-SysMed, Haukeland University Hospital, Bergen, Norway
| | - Stig Wergeland
- Department of clinical medicine, University of Bergen, Norway; Norwegian MS-registry and biobank, Dept of Neurology, Haukeland University Hospital, Bergen, Norway; Neuro-SysMed, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
8
|
de Sèze J, Maillart E, Gueguen A, Laplaud DA, Michel L, Thouvenot E, Zephir H, Zimmer L, Biotti D, Liblau R. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front Immunol 2023; 14:1004795. [PMID: 37033984 PMCID: PMC10076836 DOI: 10.3389/fimmu.2023.1004795] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system plays a significant role in multiple sclerosis. While MS was historically thought to be T cell-mediated, multiple pieces of evidence now support the view that B cells are essential players in multiple sclerosis pathogenic processes. High-efficacy disease-modifying therapies that target the immune system have emerged over the past two decades. Anti-CD20 monoclonal antibodies selectively deplete CD20+ B and CD20+ T cells and efficiently suppress inflammatory disease activity. These monotherapies prevent relapses, reduce new or active magnetic resonance imaging brain lesions, and lessen disability progression in patients with relapsing multiple sclerosis. Rituximab, ocrelizumab, and ofatumumab are currently used in clinical practice, while phase III clinical trials for ublituximab have been recently completed. In this review, we compare the four anti-CD20 antibodies in terms of their mechanisms of action, routes of administration, immunological targets, and pharmacokinetic properties. A deeper understanding of the individual properties of these molecules in relation to their efficacy and safety profiles is critical for their use in clinical practice.
Collapse
Affiliation(s)
- Jérôme de Sèze
- Department of Neurology, Hôpital de Hautepierre, Clinical Investigation Center, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France
- Fédération de Médecine Translationelle, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France
- *Correspondence: Jérôme de Sèze,
| | - Elisabeth Maillart
- Department of Neurology, Pitié Salpêtrière Hospital, Paris, France
- Centre de Ressources et de Compétences Sclérose en Plaques, Paris, France
| | - Antoine Gueguen
- Department of Neurology, Rothschild Ophthalmologic Foundation, Paris, France
| | - David A. Laplaud
- Department of Neurology, Centre Hospitalier Universitaire (CHU) Nantes, Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Investigation Clinique (CIC), Center for Research in Transplantation and Translational Immunology, UMR, UMR1064, Nantes, France
| | - Laure Michel
- Clinical Neuroscience Centre, CIC_P1414 Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes University Hospital, Rennes University, Rennes, France
- Microenvironment, Cell Differentiation, Immunology and Cancer Unit, Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes I University, French Blood Agency, Rennes, France
- Neurology Department, Rennes University Hospital, Rennes, France
| | - Eric Thouvenot
- Department of Neurology, Centre Hospitalier Universitaire (CHU) Nîmes, University of Montpellier, Nîmes, France
- Institut de Génomique Fonctionnelle, UMR, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Montpellier, Montpellier, France
| | - Hélène Zephir
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM) U1172, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Luc Zimmer
- Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, Lyon Neuroscience Research Center, Lyon, France
| | - Damien Biotti
- Centre Ressources et Compétences Sclérose En Plaques (CRC-SEP) and Department of Neurology, Centre Hospitalier Universitaire (CHU) Toulouse Purpan – Hôpital Pierre-Paul Riquet, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), UPS, Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
9
|
Spagni G, Sun B, Monte G, Sechi E, Iorio R, Evoli A, Damato V. Efficacy and safety of rituximab in myelin oligodendrocyte glycoprotein antibody-associated disorders compared with neuromyelitis optica spectrum disorder: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2023; 94:62-69. [PMID: 36283808 DOI: 10.1136/jnnp-2022-330086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Rituximab (RTX) efficacy in patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disorders (MOGADs) is still poorly understood, though it appears to be lower than in aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders (AQP4-IgG+NMOSDs). The aim of this systematic review and meta-analysis is to assess the efficacy and safety profile of RTX in patients with MOGAD and to compare RTX efficacy between MOGAD and AQP4-IgG+NMOSD. METHODS We searched original English-language articles published between 2012 and 2021 in MEDLINE, Cochrane, Central Register of Controlled Trials and clinicaltrials.gov, reporting data on RTX efficacy in patients with MOGAD. The main outcome measures were annualised relapse rate (ARR) and Expanded Disability Status Scale (EDSS) score mean differences (MDs) after RTX. The meta-analysis was performed with a random effects model. Covariates associated with the outcome measures were analysed with a linear meta-regression. RESULTS The systematic review included 315 patients (138 women, mean onset age 26.8 years) from 32 studies. Nineteen studies (282 patients) were included in the meta-analysis. After RTX, a significant decrease of ARR was found (MD: -0.92, 95% CI -1.24 to -0.60, p<0.001), markedly different from the AQP4-IgG+NMOSD (MD: -1.73 vs MOGAD -0.92, subgroup difference testing: Q=9.09, p=0.002). However, when controlling for the mean ARR pre-RTX, this difference was not significant. After RTX, the EDSS score decreased significantly (MD: -0.84, 95% CI -1.41 to -0.26, p=0.004). The frequency of RTX-related adverse events was 18.8% (36/192) and overall RTX-related mortality 0.5% (1/192). CONCLUSIONS RTX showed effective in MOGAD, although to a lesser extent than in AQP4-IgG+NMOSD, while the safety profile warrants some caution in its prescription. Randomised-controlled trials are needed to confirm these findings and provide robust evidence to improve treatment strategies in patients with MOGAD. PROSPERO REGISTRATION NUMBER CRD42020175439.
Collapse
Affiliation(s)
- Gregorio Spagni
- Neuroscience Department, Universita Cattolica del Sacro Cuore Facolta di Medicina e Chirurgia, Roma, Italy.,Neurology Institute, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy, Roma, Italy
| | - Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele Monte
- Neuroscience Department, Universita Cattolica del Sacro Cuore Facolta di Medicina e Chirurgia, Roma, Italy.,Neuroscience, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Raffaele Iorio
- Neurology Institute, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy, Roma, Italy
| | - Amelia Evoli
- Neuroscience Department, Universita Cattolica del Sacro Cuore Facolta di Medicina e Chirurgia, Roma, Italy.,Neurology Institute, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy, Roma, Italy
| | - Valentina Damato
- Neuroscience Department, Universita Cattolica del Sacro Cuore Facolta di Medicina e Chirurgia, Roma, Italy .,Department of Neurosciences, Drugs and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
10
|
Ocrelizumab-related neutropenia: Effects of age, sex and bodyweight using the FDA Adverse Event Reporting System (FAERS). Mult Scler Relat Disord 2022; 65:104015. [DOI: 10.1016/j.msard.2022.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
|
11
|
Chisari CG, Sgarlata E, Arena S, Toscano S, Luca M, Patti F. Rituximab for the treatment of multiple sclerosis: a review. J Neurol 2022; 269:159-183. [PMID: 33416999 PMCID: PMC7790722 DOI: 10.1007/s00415-020-10362-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023]
Abstract
In the last decades, evidence suggesting the direct or indirect involvement of B cells on multiple sclerosis (MS) pathogenesis has accumulated. The increased amount of data on the efficacy and safety of B-cell-depleting therapies from several studies has suggested the addition of these drugs as treatment options to the current armamentarium of disease modifying therapies (DMTs) for MS. Particularly, rituximab (RTX), a chimeric monoclonal antibody directed at CD20 positive B lymphocytes resulting in cell-mediated apoptosis, has been demonstrated to reduce inflammatory activity, incidence of relapses and new brain lesions on magnetic resonance imaging (MRI) in patients with relapsing-remitting MS (RRMS). Additional evidence also demonstrated that patients with progressive MS (PMS) may benefit from RTX, which also showed to be well tolerated, with acceptable safety risks and favorable cost-effectiveness profile.Despite these encouraging results, RTX is currently approved for non-Hodgkin's lymphoma, chronic lymphocytic leukemia, several forms of vasculitis and rheumatoid arthritis, while it can only be administered off-label for MS treatment. Between Northern European countries exist different rules for using not licensed drug for treating MS. The Sweden MS register reports a high rate (53.5%) of off-label RTX prescriptions in relation to other annually started DMTs to treat MS patients, while Danish and Norwegian neurologists have to use other anti-CD20 drugs, as ocrelizumab, in most of the cases.In this paper, we review the pharmacokinetics, pharmacodynamics, clinical efficacy, safety profile and cost effectiveness aspects of RTX for the treatment of MS. Particularly, with the approval of new anti-CD20 DMTs, the recent worldwide COVID-19 emergency and the possible increased risk of infection with this class of drugs, this review sheds light on the use of RTX as an alternative treatment option for MS management, while commenting the gaps of knowledge regarding this drug.
Collapse
Affiliation(s)
- Clara Grazia Chisari
- Department "GF Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Eleonora Sgarlata
- Department "GF Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
- Stroke Unit, Department of Medicine, Umberto I Hospital, Siracusa, Italy
| | - Sebastiano Arena
- Department "GF Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Simona Toscano
- Department "GF Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Maria Luca
- Department "GF Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy
| | - Francesco Patti
- Department "GF Ingrassia", Section of Neurosciences, University of Catania, Catania, Italy.
| |
Collapse
|
12
|
Late-onset neutropenia after anti-CD20 therapy for multiple sclerosis, neuromyelitis optica spectrum disorders and MOG antibody-associated disease: A prospective study. Rev Neurol (Paris) 2021; 178:253-255. [PMID: 34579948 DOI: 10.1016/j.neurol.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
Late-onset neutropenia (LON) after anti-CD20 therapy is a poorly described side effect in inflammatory disorders of the CNS. In this prospective study, patients treated with Rituximab or Ocrelizumab for MS, neuromyelitis optica spectrum disorders or MOG antibody-associated disease (MOGAD) were asked to perform complete blood count (CBC) every two weeks for six months, with the aim of identifying LON. Out of 152 patients, two (1,32%) had an absolute neutrophil count <1,000/mm3: one patient with MOGAD had agranulocytosis and one patient with MS had grade 3 neutropenia. Both were asymptomatic. These results confirm that LON after anti-CD20 therapy in inflammatory disorders of the CNS is not exceptional. Nevertheless, this biological complication remains too infrequent to justify close systematic CBC follow-up.
Collapse
|
13
|
Rituximab- and ocrelizumab-induced early- and late-onset neutropenia in a multiple sclerosis patient. Neurol Sci 2021; 42:3893-3895. [PMID: 34075515 DOI: 10.1007/s10072-021-05357-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
|
14
|
Abstract
PURPOSE OF REVIEW Treatments targeting B cells are increasingly used for patients with multiple sclerosis (MS). We review the mechanisms of action, clinical effectiveness and safety of treatment, with emphasis on recently published studies. RECENT FINDINGS Several monoclonal antibodies targeting the surface molecule CD20 on B cells are approved or being developed for treatment of MS. Overall, they seem comparable in terms of strongly suppressing radiological disease activity and relapse biology. Novel approaches include anti-CD19 antibody therapy and treatment with oral drugs targeting Bruton's tyrosine kinase (BTK). The main safety issue with persistent B cell depletion is an increased risk of infections - possibly including an increased risk of severe COVID-19. Vaccine responses are also blunted in patients treated with anti-CD20 antibodies. Lower doses or longer infusion intervals may be sufficient for control of disease activity. Whether this might also improve the safety of treatment and increase vaccination responses remains to be determined. SUMMARY Available data support the widespread use of therapies targeting B cells in MS. Whether novel approaches targeting CD19 or BTK will have advantages compared to anti-CD20 antibody therapy remains to be established. Furthermore, trials investigating alternative dosing regimens for anti-CD20 antibody treatment are warranted.
Collapse
|
15
|
Zhong M, van der Walt A, Campagna MP, Stankovich J, Butzkueven H, Jokubaitis V. The Pharmacogenetics of Rituximab: Potential Implications for Anti-CD20 Therapies in Multiple Sclerosis. Neurotherapeutics 2020; 17:1768-1784. [PMID: 33058021 PMCID: PMC7851267 DOI: 10.1007/s13311-020-00950-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
There are a broad range of disease-modifying therapies (DMTs) available in relapsing-remitting multiple sclerosis (RRMS), but limited biomarkers exist to personalise DMT choice. All DMTs, including monoclonal antibodies such as rituximab and ocrelizumab, are effective in preventing relapses and preserving neurological function in MS. However, each agent harbours its own risk of therapeutic failure or adverse events. Pharmacogenetics, the study of the effects of genetic variation on therapeutic response or adverse events, could improve the precision of DMT selection. Pharmacogenetic studies of rituximab in MS patients are lacking, but pharmacogenetic markers in other rituximab-treated autoimmune conditions have been identified. This review will outline the wider implications of pharmacogenetics and the mechanisms of anti-CD20 agents in MS. We explore the non-MS rituximab literature to characterise pharmacogenetic variants that could be of prognostic relevance in those receiving rituximab, ocrelizumab or other monoclonal antibodies for MS.
Collapse
Affiliation(s)
- Michael Zhong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
16
|
Efficacy and safety of long-term immunotherapy in adult patients with MOG antibody disease: a systematic analysis. J Neurol 2020; 268:4537-4548. [DOI: 10.1007/s00415-020-10236-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
|
17
|
Autoantibodies against central nervous system antigens in a subset of B cell-dominant multiple sclerosis patients. Proc Natl Acad Sci U S A 2020; 117:21512-21518. [PMID: 32817492 DOI: 10.1073/pnas.2011249117] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), with characteristic inflammatory lesions and demyelination. The clinical benefit of cell-depleting therapies targeting CD20 has emphasized the role of B cells and autoantibodies in MS pathogenesis. We previously introduced an enzyme-linked immunospot spot (ELISpot)-based assay to measure CNS antigen-specific B cells in the blood of MS patients and demonstrated its usefulness as a predictive biomarker for disease activity in measuring the successful outcome of disease-modifying therapies (DMTs). Here we used a planar protein array to investigate CNS-reactive antibodies in the serum of MS patients as well as in B cell culture supernatants after polyclonal stimulation. Anti-CNS antibody reactivity was evident in the sera of the MS cohort, and the antibodies bound a heterogeneous set of molecules, including myelin, axonal cytoskeleton, and ion channel antigens, in individual patients. Immunoglobulin reactivity in supernatants of stimulated B cells was directed against a broad range of CNS antigens. A group of MS patients with a highly active B cell component was identified by the ELISpot assay. Those antibody reactivities remained stable over time. These assays with protein arrays identify MS patients with a highly active B cell population with antibodies directed against a swathe of CNS proteins.
Collapse
|
18
|
Maniscalco GT, Annunziata M, Ranieri A, Alfieri G, Renna R, Iorio WD, Guarcello G, Cerillo I, Improta G, Florio C. Remission of early persistent cladribine-induced neutropenia after filgrastim therapy in a patient with Relapsing - Remitting Multiple Sclerosis. Mult Scler Relat Disord 2020; 43:102151. [PMID: 32417665 DOI: 10.1016/j.msard.2020.102151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cladribine tablets were recently approved for the treatment of Relapsing-Remitting Multiple Sclerosis (RRMS), reducing B cells and T cells, followed by reconstitution of the adaptive immune system, with transient and mild effects on the innate one. Cladribine is also the standard first-line and subsequent treatment for Hairy-Cell Leukemia (HCL), frequently complicated by neutropenic fever. Recombinant human Granulocyte Colony-Stimulating Factor (G-CSF; Filgrastim) has been proved to reduce neutropenia by increasing neutrophil count. CASE REPORT To the best of our knowledge, we report the first case of early and persistent high grade non febrile neutropenia after oral cladribine therapy in a 49-year-old RR-MS patient, successfully treated with Filgrastim. CONCLUSIONS This report suggests that in selected cases, cladribine requires early monitoring of blood sample as it may be responsible for early neutropenia, requiring specific treatment.
Collapse
Affiliation(s)
- Giorgia T Maniscalco
- Multiple Sclerosis Center "A. Cardarelli "Hospital, Naples, Italy; Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy.
| | | | - Angelo Ranieri
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | - Gennaro Alfieri
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | - Rosaria Renna
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | - Walter Di Iorio
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | | | - Ilaria Cerillo
- Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ciro Florio
- Multiple Sclerosis Center "A. Cardarelli "Hospital, Naples, Italy; Neurological Clinic and Stroke Unit "A. Cardarelli "Hospital, Naples, Italy
| |
Collapse
|