1
|
Alshehri A, Al-iedani O, Koussis N, Khormi I, Lea R, Lechner-Scott J, Ramadan S. Stability of longitudinal DTI metrics in MS with treatment of injectables, fingolimod and dimethyl fumarate. Neuroradiol J 2023; 36:388-396. [PMID: 36395524 PMCID: PMC10588600 DOI: 10.1177/19714009221140511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Diffusion MRI (dMRI) is sensitive to microstructural changes in white matter of people with relapse-remitting multiple sclerosis (pw-RRMS) that lead to progressive disability. The role of diffusion in assessing the efficacy of different therapies requires more investigation. This study aimed to evaluate selected dMRI metrics in normal-appearing white matter and white matter-lesion in pw-RRMS and healthy controls longitudinally and compare the effect of therapies given. MATERIAL AND METHODS Structural and dMRI scans were acquired from 78 pw-RRMS (29 injectables, 36 fingolimod, 13 dimethyl fumarate) and 43 HCs at baseline and 2-years follow-up. Changes in dMRI metrics and correlation with clinical parameters were evaluated. RESULTS Differences were observed in most clinical parameters between pw-RRMS and HCs at both timepoints (p ≤ 0.01). No significant differences in average changes over time were observed for any dMRI metric between treatment groups in either tissue type. Diffusion metrics in NAWM and WML correlated negatively with most cognitive domains, while FA correlated positively at baseline but only for NAWM at follow-up (p ≤ 0.05). FA correlated negatively with disability in NAWM and WML over time, while MD and RD correlated positively only in NAWM. CONCLUSIONS This is the first DTI study comparing the effect of different treatments on dMRI parameters over time in a stable cohort of pw-RRMS. The results suggest that brain microstructural changes in a stable MS cohort are similar to HCs independent of the therapies used.
Collapse
Affiliation(s)
- Abdulaziz Alshehri
- School of Health Sciences, University of Newcastle College of Health, Medicine and Wellbeing, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Radiology, Imam Abdulrahman Bin Faisal University King Fahd University Hospital, Dammam, Saudi Arabia
| | - Oun Al-iedani
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle College of Health, Medicine and Wellbeing, Callaghan, NSW, Australia
| | - Nikitas Koussis
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, University of Newcastle College of Health, Medicine and Wellbeing, Callaghan, NSW, Australia
| | - Ibrahim Khormi
- School of Health Sciences, University of Newcastle College of Health, Medicine and Wellbeing, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Rodney Lea
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, University of Newcastle College of Health, Medicine and Wellbeing, Callaghan, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, University of Newcastle College of Health, Medicine and Wellbeing, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Breit S, Mazza E, Poletti S, Benedetti F. White matter integrity and pro-inflammatory cytokines as predictors of antidepressant response in MDD. J Psychiatr Res 2023; 159:22-32. [PMID: 36657311 DOI: 10.1016/j.jpsychires.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is a multifactorial, serious and heterogeneous mental disorder that can lead to chronic recurrent symptoms, treatment resistance and suicidal behavior. MDD often involves immune dysregulation with high peripheral levels of inflammatory cytokines that might have an influence on the clinical course and treatment response. Moreover, patients with MDD show brain volume changes as well as white matter (WM) alterations that are already existing in the early stage of illness. Mounting evidence suggests that both neuroimaging markers, such as WM integrity and blood markers, such as inflammatory cytokines might serve as predictors of treatment response in MDD. However, the relationship between peripheral inflammation, WM structure and antidepressant response is not yet clearly understood. The aim of the present review is to elucidate the association between inflammation and WM integrity and its impact on the pathophysiology and progression of MDD as well as the role of possible novel biomarkers of treatment response to improve MDD prevention and treatment strategies.
Collapse
Affiliation(s)
- Sigrid Breit
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Elena Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
3
|
Abnormal oligodendrocyte function in schizophrenia explains the long latent interval in some patients. Transl Psychiatry 2022; 12:120. [PMID: 35338111 PMCID: PMC8956594 DOI: 10.1038/s41398-022-01879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
A puzzling feature of schizophrenia, is the long latency between the beginning of neuropathological changes and the clinical presentation that may be two decades later. Abnormalities in oligodendrocyte function may explain this latency, because mature oligodendrocytes produce myelination, and if myelination were abnormal from the outset, it would cause the synaptic dysfunction and abnormal neural tracts that are underpinning features of schizophrenia. The hypothesis is that latency is caused by events that occur in some patients as early as in-utero or infancy, because clones of abnormal, myelinating oligodendrocytes may arise at that time; their number doubles every ~2 years, so their geometric increase between birth and age twenty, when clinical presentation occurs, is about 1000-fold plus the effect of compounding. For those patients in particular, the long latency is because of a small but ongoing increase in volume of the resulting, abnormally myelinated neural tracts until, after a long latent interval, a critical mass is reached that allows the full clinical features of schizophrenia. During latency, there may be behavioral aberrancies because of abnormally myelinated neural tracts but they are insufficiently numerous for the clinical syndrome. The occurrence of behavioral symptoms during the long latent period, substantiates the hypothesis that abnormal oligodendrocytes explain the latency in some patients. Treatment with fingolimod or siponimod benefits both oligodendrocytes and neural tracts. Clinical trial would validate their potential benefit in appropriate patients with schizophrenia and, concurrently, would validate the hypothesis.
Collapse
|