1
|
Pontieri L, Greene N, Wandall-Holm MF, Geertsen SS, Asgari N, Jensen HB, Illes Z, Schäfer J, Jensen RM, Sejbæk T, Weglewski A, Mahler MR, Poulsen MB, Prakash S, Stilund M, Kant M, Rasmussen PV, Svendsen KB, Sellebjerg F, Magyari M. Patterns and predictors of multiple sclerosis phenotype transition. Brain Commun 2024; 6:fcae422. [PMID: 39713244 PMCID: PMC11660925 DOI: 10.1093/braincomms/fcae422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Indexed: 12/24/2024] Open
Abstract
Currently, there are limited therapeutic options for patients with non-active secondary progressive multiple sclerosis. Therefore, real-world studies have investigated differences between patients with relapsing-remitting multiple sclerosis, non-active secondary progressive multiple sclerosis and active secondary progressive multiple sclerosis. Here, we explore patterns and predictors of transitioning between these phenotypes. We performed a cohort study using data from The Danish Multiple Sclerosis Registry. We included patients with a relapsing-remitting phenotype, registered changes to secondary progressive multiple sclerosis and subsequent transitions between relapsing and non-relapsing secondary progressive multiple sclerosis, which was defined by the presence of relapses in the previous 2 years. We analysed predictors of transitioning from relapsing-remitting multiple sclerosis to relapsing and non-relapsing secondary progressive multiple sclerosis, as well as between the secondary progressive states using a multi-state Markov model. We included 4413 patients with relapsing-remitting multiple sclerosis. Within a median follow-up of 16.2 years, 962 were diagnosed with secondary progressive multiple sclerosis by their treating physician. Of these, we classified 729 as non-relapsing and 233 as relapsing secondary progressive multiple sclerosis. The risk of transitioning from relapsing-remitting to non-relapsing secondary progressive multiple sclerosis included older age (hazard ratio per increase of 1 year in age: 1.044, 95% confidence interval: 1.035-1.053), male sex (hazard ratio for female: 0.735, 95% confidence interval: 0.619-0.874), fewer relapses (hazard ratio per each additional relapse: 0.863, 95% confidence interval: 0.823-0.906), higher expanded disability status scale (hazard ratio per each additional point: 1.522, 95% confidence interval: 1.458-1.590) and longer time on disease-modifying therapies (hazard ratio per increase of 1 year in treatment, high-efficacy disease-modifying therapy: 1.095, 95% confidence interval: 1.051-1.141; hazard ratio, moderate-efficacy disease-modifying therapy: 1.073, 95% confidence interval: 1.051-1.095). We did not find significant predictors associated with the transition from relapsing secondary progressive multiple sclerosis to non-relapsing secondary progressive multiple sclerosis, whereas older age (hazard ratio per increase of 1 year in age: 0.956, 95% confidence interval: 0.942-0.971) prevented the transition from non-relapsing secondary progressive multiple sclerosis to relapsing secondary progressive multiple sclerosis. Our study suggests that transitioning from relapsing-remitting multiple sclerosis to non-relapsing secondary progressive multiple sclerosis depends on well-known factors affecting diagnosing secondary progressive multiple sclerosis. Further transitions between non-relapsing and relapsing secondary progressive multiple sclerosis are only affected by age. These findings add to the knowledge of non-active secondary progressive multiple sclerosis, a patient group with unmet needs in terms of therapies.
Collapse
Affiliation(s)
- Luigi Pontieri
- The Danish Multiple Sclerosis Registry, Department of Neurology, Copenhagen University Hospital—Rigshospitalet Glostrup, 2600 Glostrup, Denmark
| | | | - Malthe Faurschou Wandall-Holm
- The Danish Multiple Sclerosis Registry, Department of Neurology, Copenhagen University Hospital—Rigshospitalet Glostrup, 2600 Glostrup, Denmark
| | | | - Nasrin Asgari
- Department of Neurology, Naestved, Slagelse and Ringsted Hospitals, 4200 Slagelse, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik Boye Jensen
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Brain and Nerve Diseases, Lillebælt Hospital, 6000 Kolding, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Jakob Schäfer
- Department of Neurology, Aalborg University Hospital, 9100 Aalborg, Denmark
| | - Rikke Marie Jensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital—Rigshospitalet Glostrup, 2600 Glostrup, Denmark
| | - Tobias Sejbæk
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Southwest Jutland Hospital, University Hospital of Southern Denmark, 6700 Esbjerg, Denmark
| | - Arkadiusz Weglewski
- Department of Neurology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mie Reith Mahler
- The Danish Multiple Sclerosis Registry, Department of Neurology, Copenhagen University Hospital—Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital—Rigshospitalet Glostrup, 2600 Glostrup, Denmark
| | - Mai Bang Poulsen
- Department of Neurology, Copenhagen University Hospital—North Zealand, 3400 Hillerød, Denmark
| | - Sivagini Prakash
- Department of Neurology, Viborg Regional Hospital, 8800 Viborg, Denmark
| | - Morten Stilund
- Department of Neurology, Physiotherapy and Occupational Therapy, Gødstrup Hospital, 7400 Herning, Denmark
- NIDO | Centre for Research and Education, Gødstrup Hospital, 7400 Herning, Denmark
| | - Matthias Kant
- Department of Neurology, Southern Jutland Hospital, University of Southern Denmark, 6200 Aabenraa, Denmark
| | | | | | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital—Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Melinda Magyari
- The Danish Multiple Sclerosis Registry, Department of Neurology, Copenhagen University Hospital—Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital—Rigshospitalet Glostrup, 2600 Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Chisari CG, Amato MP, Di Sapio A, Foschi M, Iaffaldano P, Inglese M, Fermo SL, Lugaresi A, Lus G, Mascoli N, Montepietra S, Pesci I, Quatrale R, Salemi G, Torri Clerici V, Totaro R, Valentino P, Filippi M, Patti F. Active and non-active secondary progressive multiple sclerosis patients exhibit similar disability progression: results of an Italian MS registry study (ASPERA). J Neurol 2024; 271:6801-6810. [PMID: 39190108 PMCID: PMC11446943 DOI: 10.1007/s00415-024-12621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
'Active' and 'non-active' secondary progressive MS (SPMS) have distinct pathophysiological mechanisms and clinical characteristics, but there is still no consensus regarding the frequency of these MS forms in the real-world setting. We aimed to evaluate the frequency of 'active' and 'non-active' SPMS in a large cohort of Italian MS patients and the differences in terms of clinical and MRI characteristics and disease progression. This multicenter study collected data about MS patients who have transitioned to the SP form in the period between 1st January 2014 and 31st December 2019 and followed by the MS centers contributing to the Italian MS Registry. Patients were divided into 'active SPMS' and 'non-active SPMS', based on both reported MRI data and relapse activity in the year before conversion to SPMS. Out of 68,621, 8,316 (12.1%) patients were diagnosed with SPMS. Out of them, 872 (10.5%) were classified into patients with either 'active' or 'non-active' SPMS. A total of 237 were classified into patients with 'active SPMS' (27.2%) and 635 as 'non-active SPMS' (72.8%). 'Non-active SPMS' patients were older, with a longer disease duration compared to those with 'active SPMS'. The percentages of patients showing progression independent of relapse activity (PIRA) at 24 months were similar between 'active' and 'non-active' SPMS patients (67 [27.4%] vs 188 [29.6%]; p = 0.60). In the 'active' group, 36 (15.2%) patients showed relapse-associated worsening (RAW). Comparison of the survival curves to EDSS 6 and 7 according to disease activity did not show significant differences (p = 0.68 and p = 0.71). 'Active' and 'non-active' SPMS patients had a similar risk of achieving disability milestones, suggesting that progression is primarily attributed to PIRA and only to a small extent to disease activity.
Collapse
Affiliation(s)
- Clara Grazia Chisari
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", Multiple Sclerosis Center, University of Catania, Catania, Italy
- Multiple Sclerosis Unit; Neurology Clinic, Policlinico "G. Rodolico- San Marco", Catania, Italy
| | - Maria Pia Amato
- Department of NEUROFARBA, Section of Neurosciences, University of Florence, Florence, Italy
| | - Alessia Di Sapio
- Department of Neurology, Regional Referral Multiple Sclerosis Center, University Hospital San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center, S. Maria delle Croci Hospital of Ravenna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, L'Aquila, Italy
| | - Pietro Iaffaldano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Salvatore Lo Fermo
- Multiple Sclerosis Unit; Neurology Clinic, Policlinico "G. Rodolico- San Marco", Catania, Italy
| | - Alessandra Lugaresi
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, Second Division of Neurology, Department of Advanced Medical and Surgical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nerina Mascoli
- Neurology Unit, Department of Medicine, S. Anna Hospital, Como, Italy
| | - Sara Montepietra
- MS Centre, SMN Hospital, AUSL Reggio Emilia, Reggio Emilia, Italy
| | - Ilaria Pesci
- Centro Sclerosi Multipla Unità Operativa Neurologia, Azienda Unità Sanitaria Locale, Ospedale Di Vaio, Fidenza, Parma, Italy
| | - Rocco Quatrale
- Dipartimento Di Scienze Neurologiche, UOC Di Neurologia, Ospedale Dell'Angelo AULSS 3 Serenissima, Venice Mestre, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Torri Clerici
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rocco Totaro
- Demyelinating Disease Center, San Salvatore Hospital, L'Aquila, Italy
| | - Paola Valentino
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", Multiple Sclerosis Center, University of Catania, Catania, Italy.
- Multiple Sclerosis Unit; Neurology Clinic, Policlinico "G. Rodolico- San Marco", Catania, Italy.
| |
Collapse
|
3
|
Oreja-Guevara C, Meca-Lallana JE, Díaz-Díaz J, Ara JR, Hernández Pérez MÁ, Gracia Gil J, Alonso Torres AM, Pilo de la Fuente B, Ramió-Torrentà L, Eichau Madueño S, Gascón-Giménez F, Casanova B, Martínez-Yélamos S, Aguado Valcárcel M, Martínez Ginés ML, El Berdei Montero Y, López Real AM, González-Quintanilla V, De Torres L, Martínez-Rodríguez JE, Costa-Frossard L, Garcés Redondo M, Labiano Fontcuberta A, Castellanos-Pinedo F, García Merino JA, Muñoz Fernández C, Castillo-Triviño T, Meca-Lallana V, Peña Martínez J, Rodríguez-Antigüedad A, Prieto González JM, Agüera Morales E, Pérez Molina I, Solar Sánchez DM, Herrera Varo N, Romero Sevilla R, Gómez Vicente L, Río J. Clinical characteristics and impact on patient-reported outcomes and quality of life of people with ambulatory secondary progressive multiple sclerosis: DISCOVER study. Mult Scler Relat Disord 2024; 90:105787. [PMID: 39142050 DOI: 10.1016/j.msard.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND People with secondary progressive multiple sclerosis (pwSPMS) experience increasing disability, which impacts negatively on their health-related quality of life (HRQoL). Our aims were to assess the impact of secondary progressive multiple sclerosis (SPMS) on functional status and HRQoL and describe the clinical profile in this population. METHODS DISCOVER is an observational, cross-sectional, multicenter study with retrospective data collection in real-world clinical practice in Spain. Sociodemographic and clinical variables, functional and cognitive scales, patient-reported outcomes (PROs), and direct healthcare, and non-healthcare and indirect costs were collected. RESULTS A total of 297 evaluable pwSPMS with a EDSS score between 3-6.5 participated: 62.3 % were female and 18.9 % had active SPMS. At the study visit, 77 % of them presented an Expanded Disability Scale Score (EDSS) of 6-6.5. Nearly 40 % did not receive any disease-modifying treatment. Regarding the working situation, 61.6 % were inactive due to disability. PROs: 99.3 % showed mobility impairment in EuroQoL-5 Dimensions-5 Levels, and about 60 % reported physical impact on the Multiple Sclerosis Impact Scale-29. Fatigue was present in 76.1 %, and almost 40 % reported anxiety or depression. The Symbol Digit Modalities Test was used to assess cognitive impairment; 80 % of the patients were below the mean score. Participants who presented relapses two years before and had high EDSS scores had a more negative impact on HRQoL. PwSPMS with a negative impact on HRQoL presented a higher cost burden, primarily due to indirect costs. CONCLUSIONS PwSPMS experience a negative impact on their HRQoL, with a high physical impact, fatigue, cognitive impairment, and a high burden of indirect costs.
Collapse
Affiliation(s)
- Celia Oreja-Guevara
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid, Spain; Department of Medicine, Medicine University, Complutense University of Madrid (UCM), Madrid, Spain.
| | - José E Meca-Lallana
- CSUR Multiple Sclerosis and Clinical Neuroimmunology Unit, Neurology Department, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, Murcia, Spain
| | - Judit Díaz-Díaz
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid, Spain
| | - José-Ramón Ara
- Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | | | - Julia Gracia Gil
- Neurology Department, Albacete University Hospital Complex, Albacete, Spain
| | - Ana María Alonso Torres
- CSUR Multiple Sclerosis, Neurology Department, Málaga Regional University Hospital, Málaga, Spain
| | | | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, IDIBGI, Girona, Spain
| | | | | | - Bonaventura Casanova
- Neuroinmunology Unit, University and Polytechnic La Fe Hospital, València, Spain
| | - Sergio Martínez-Yélamos
- Neurology Department, Bellvitge-IDIBELL University Hospital, L'Hospitalet De Llobregat, Barcelona, Spain
| | | | | | | | | | | | - Laura De Torres
- Neurology Department, Torrejón University Hospital, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | - José María Prieto González
- Neurology Department, Santiago Clinical University Hospital, Instituto de Investigaciones Sanitarias de Santiago, Santiago de Compostela, Spain
| | | | | | | | | | | | | | - Jordi Río
- Neurology Department, CEMCAT, Vall d'Hebrón University Hospital, Barcelona, Spain
| |
Collapse
|
4
|
Hardy TA, Aouad P, Barnett MH, Blum S, Broadley S, Carroll WM, Crimmins D, Griffiths D, Hodgkinson S, Lechner-Scott J, Lee A, Malhotra R, McCombe P, Parratt J, Plummer C, Van der Walt A, Martel K, Walker RA. Onboarding of siponimod in secondary progressive multiple sclerosis patients in Australia: Novel, real-world evidence from the MSGo digital support programme. Mult Scler J Exp Transl Clin 2024; 10:20552173231226106. [PMID: 38222025 PMCID: PMC10787529 DOI: 10.1177/20552173231226106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Background Siponimod is approved for use in people with secondary progressive multiple sclerosis (pwSPMS). An integrated digital platform, MSGo, was developed for pwSPMS and clinicians to help navigate the multiple steps of the pre-siponimod work-up. Objective To explore real-world onboarding experiences of siponimod amongst pwSPMS in Australia. Methods Retrospective, non-interventional, longitudinal, secondary analysis of data extracted from MSGo (20 April 2022). The primary endpoint was the average time for siponimod onboarding; secondary endpoints were adherence and sub-group analyses of variables influencing onboarding. Results Mixed-cure modelling estimated that 58% of participants (N = 368, females 71%, median age of 59 years) registered in MSGo would ever initiate siponimod. The median time to initiation was 56 days (95% CI [47-59] days). Half of the participants cited 'waiting for vaccination' as the reason for initiation delay. Cox regression analyses found participants with a nominated care partner had faster onboarding (HR 2.1, 95% CI [1.5-3.0]) and were more likely to continue self-reporting daily siponimod dosing than were those without a care partner (HR 2.2, 95% CI [1.3-3.7]). Conclusions Despite the limitations of self-reported data and the challenges of the COVID-19 pandemic, this study provides insights into siponimod onboarding in Australia and demonstrates the positive impact of care partner support.
Collapse
Affiliation(s)
- TA Hardy
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - P Aouad
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - MH Barnett
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - S Blum
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - S Broadley
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - WM Carroll
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - D Crimmins
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - D Griffiths
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - S Hodgkinson
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - J Lechner-Scott
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - A Lee
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - R Malhotra
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - P McCombe
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - J Parratt
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - C Plummer
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - A Van der Walt
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - K Martel
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| | - RA Walker
- Novartis Pharmaceuticals Australia, Macquarie Park, NSW, Australia
| |
Collapse
|
5
|
Calvillo-Robledo A, Ramírez-Farías C, Valdez-Urias F, Huerta-Carreón EP, Quintanar-Stephano A. Arginine vasopressin hormone receptor antagonists in experimental autoimmune encephalomyelitis rodent models: A new approach for human multiple sclerosis treatment. Front Neurosci 2023; 17:1138627. [PMID: 36998727 PMCID: PMC10043225 DOI: 10.3389/fnins.2023.1138627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neurodegenerative disease that affects the central nervous system. MS is a heterogeneous disorder of multiple factors that are mainly associated with the immune system including the breakdown of the blood-brain and spinal cord barriers induced by T cells, B cells, antigen presenting cells, and immune components such as chemokines and pro-inflammatory cytokines. The incidence of MS has been increasing worldwide recently, and most therapies related to its treatment are associated with the development of several secondary effects, such as headaches, hepatotoxicity, leukopenia, and some types of cancer; therefore, the search for an effective treatment is ongoing. The use of animal models of MS continues to be an important option for extrapolating new treatments. Experimental autoimmune encephalomyelitis (EAE) replicates the several pathophysiological features of MS development and clinical signs, to obtain a potential treatment for MS in humans and improve the disease prognosis. Currently, the exploration of neuro-immune-endocrine interactions represents a highlight of interest in the treatment of immune disorders. The arginine vasopressin hormone (AVP) is involved in the increase in blood−brain barrier permeability, inducing the development and aggressiveness of the disease in the EAE model, whereas its deficiency improves the clinical signs of the disease. Therefore, this present review discussed on the use of conivaptan a blocker of AVP receptors type 1a and type 2 (V1a and V2 AVP) in the modulation of immune response without completely depleting its activity, minimizing the adverse effects associated with the conventional therapies becoming a potential therapeutic target in the treatment of patients with multiple sclerosis.
Collapse
|
6
|
Bayas A, Christ M, Faissner S, Klehmet J, Pul R, Skripuletz T, Meuth SG. Disease-modifying therapies for relapsing/active secondary progressive multiple sclerosis - a review of population-specific evidence from randomized clinical trials. Ther Adv Neurol Disord 2023; 16:17562864221146836. [PMID: 36710720 PMCID: PMC9880589 DOI: 10.1177/17562864221146836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
Although the understanding of secondary progressive multiple sclerosis (SPMS) is evolving, early detection of relapse-independent progression remains difficult. This is further complicated by superimposed relapses and compensatory mechanisms that allow for silent progression. The term relapsing multiple sclerosis (RMS) subsumes relapsing-remitting multiple sclerosis (RRMS) and SPMS with relapses. The latter is termed 'active' SPMS, for which disease-modifying therapies (DMTs) approved for either RMS or active SPMS can be used. However, the level of evidence supporting efficacy and safety in SPMS differs between drugs approved for RMS and SPMS. Our review aims to identify current evidence from published clinical trials and European public assessment reports from the marketing authorization procedure on the efficacy, especially on progression, of DMTs approved for RMS and SPMS. To identify relevant evidence, a literature search has been conducted and European public assessment reports of DMTs approved for RMS have been screened for unpublished data specific to SPMS. Only two clinical trials demonstrated a significant reduction in disability progression in SPMS study populations: the EXPAND study for siponimod, which included a typical SPMS population, and the European study for interferon (IFN)-beta 1b s.c., which included patients with very early and active SPMS. Both DMTs also achieved significant reductions in relapse rates. Ocrelizumab, cladribine, ofatumumab, and ponesimod are all approved for RMS - ocrelizumab, ofatumumab, and ponesimod based on an RMS study, cladribine based on an RRMS study. Data on efficacy in SPMS are only available from post hoc analyses of very small subgroups, representing only up to 15% of the total study population. For these DMTs, approval for RMS, including active SPMS, was mainly based on the assumption that the reduction in relapse rate observed in patients with RRMS can also be applied to SPMS. Based on that, the potential of these drugs to reduce relapse-independent progression remains unclear.
Collapse
Affiliation(s)
- Antonios Bayas
- Department of Neurology, Faculty of Medicine,
University of Augsburg, Augsburg, Germany
| | - Monika Christ
- Department of Neurology, Faculty of Medicine,
University of Augsburg, Augsburg, Germany
| | - Simon Faissner
- Department of Neurology, St. Josef-Hospital,
Ruhr-University Bochum, Bochum, Germany
| | - Juliane Klehmet
- Department of Neurology, Jüdisches Krankenhaus
Berlin, Berlin, Germany
| | - Refik Pul
- Department of Neurology and Center for
Translational and Behavioral Neurosciences (C-TNBS), University Medicine
Essen, Essen, Germany
| | | | | |
Collapse
|
7
|
Putscher E, Hecker M, Fitzner B, Boxberger N, Schwartz M, Koczan D, Lorenz P, Zettl UK. Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Front Immunol 2022; 13:931831. [PMID: 36405756 PMCID: PMC9670805 DOI: 10.3389/fimmu.2022.931831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/12/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system to which a genetic predisposition contributes. Over 200 genetic regions have been associated with increased disease risk, but the disease-causing variants and their functional impact at the molecular level are mostly poorly defined. We hypothesized that single-nucleotide polymorphisms (SNPs) have an impact on pre-mRNA splicing in MS. METHODS Our study focused on 10 bioinformatically prioritized SNP-gene pairs, in which the SNP has a high potential to alter alternative splicing events (ASEs). We tested for differential gene expression and differential alternative splicing in B cells from MS patients and healthy controls. We further examined the impact of the SNP genotypes on ASEs and on splice isoform expression levels. Novel genotype-dependent effects on splicing were verified with splicing reporter minigene assays. RESULTS We were able to confirm previously described findings regarding the relation of MS-associated SNPs with the ASEs of the pre-mRNAs from GSDMB and SP140. We also observed an increased IL7R exon 6 skipping when comparing relapsing and progressive MS patients to healthy subjects. Moreover, we found evidence that the MS risk alleles of the SNPs rs3851808 (EFCAB13), rs1131123 (HLA-C), rs10783847 (TSFM), and rs2014886 (TSFM) may contribute to a differential splicing pattern. Of particular interest is the genotype-dependent exon skipping of TSFM due to the SNP rs2014886. The minor allele T creates a donor splice site, resulting in the expression of the exon 3 and 4 of a short TSFM transcript isoform, whereas in the presence of the MS risk allele C, this donor site is absent, and thus the short transcript isoform is not expressed. CONCLUSION In summary, we found that genetic variants from MS risk loci affect pre-mRNA splicing. Our findings substantiate the role of ASEs with respect to the genetics of MS. Further studies on how disease-causing genetic variants may modify the interactions between splicing regulatory sequence elements and RNA-binding proteins can help to deepen our understanding of the genetic susceptibility to MS.
Collapse
Affiliation(s)
- Elena Putscher
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Michael Hecker
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Brit Fitzner
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Nina Boxberger
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Margit Schwartz
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Dirk Koczan
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Uwe Klaus Zettl
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
8
|
Hecker M, Fitzner B, Putscher E, Schwartz M, Winkelmann A, Meister S, Dudesek A, Koczan D, Lorenz P, Boxberger N, Zettl UK. Implication of genetic variants in primary microRNA processing sites in the risk of multiple sclerosis. EBioMedicine 2022; 80:104052. [PMID: 35561450 PMCID: PMC9111935 DOI: 10.1016/j.ebiom.2022.104052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system with a well-established genetic contribution to susceptibility. Over 200 genetic regions have been linked to the inherited risk of developing MS, but the disease-causing variants and their functional effects at the molecular level are still largely unresolved. We hypothesised that MS-associated single-nucleotide polymorphisms (SNPs) affect the recognition and enzymatic cleavage of primary microRNAs (pri-miRNAs). Methods Our study focused on 11 pri-miRNAs (9 primate-specific) that are encoded in genetic risk loci for MS. The levels of mature miRNAs and potential isoforms (isomiRs) produced from those pri-miRNAs were measured in B cells obtained from the peripheral blood of 63 MS patients and 28 healthy controls. We tested for associations between SNP genotypes and miRNA expression in cis using quantitative trait locus (cis-miR-eQTL) analyses. Genetic effects on miRNA stem-loop processing efficiency were verified using luciferase reporter assays. Potential direct miRNA target genes were identified by transcriptome profiling and computational binding site assessment. Findings Mature miRNAs and isomiRs from hsa-mir-26a-2, hsa-mir-199a-1, hsa-mir-4304, hsa-mir-4423, hsa-mir-4464 and hsa-mir-4492 could be detected in all B-cell samples. When MS patient subgroups were compared with healthy controls, a significant differential expression was observed for miRNAs from the 5’ and 3’ strands of hsa-mir-26a-2 and hsa-mir-199a-1. The cis-miR-eQTL analyses and reporter assays pointed to a slightly more efficient Drosha-mediated processing of hsa-mir-199a-1 when the MS risk allele T of SNP rs1005039 is present. On the other hand, the MS risk allele A of SNP rs817478, which substitutes the first C in a CNNC sequence motif, was found to cause a markedly lower efficiency in the processing of hsa-mir-4423. Overexpression of hsa-mir-199a-1 inhibited the expression of 60 protein-coding genes, including IRAK2, MIF, TNFRSF12A and TRAF1. The only target gene identified for hsa-mir-4423 was TMEM47. Interpretation We found that MS-associated SNPs in sequence determinants of pri-miRNA processing can affect the expression of mature miRNAs. Our findings complement the existing literature on the dysregulation of miRNAs in MS. Further studies on the maturation and function of miRNAs in different cell types and tissues may help to gain a more detailed functional understanding of the genetic basis of MS. Funding This study was funded by the Rostock University Medical Center (FORUN program, grant: 889002), Sanofi Genzyme (grant: GZ-2016-11560) and Merck Serono GmbH (Darmstadt, Germany, an affiliate of Merck KGaA, CrossRef Funder ID: 10.13039/100009945, grant: 4501860307). NB was supported by the Stiftung der Deutschen Wirtschaft (sdw) and the FAZIT foundation. EP was supported by the Landesgraduiertenförderung Mecklenburg-Vorpommern.
Collapse
|