1
|
Tarlinton R, Tanasescu R, Shannon-Lowe C, Gran B. Ocrelizumab B cell depletion has no effect on HERV RNA expression in PBMC in MS patients. Mult Scler Relat Disord 2024; 86:105597. [PMID: 38598954 DOI: 10.1016/j.msard.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Epstein barr virus (EBV) infection of B cells is now understood to be one of the triggering events for the development of Multiple Sclerosis (MS), a progressive immune-mediated disease of the central nervous system. EBV infection is also linked to expression of human endogenous retroviruses (HERVs) of the HERV-W group, a further risk factor for the development of MS. Ocrelizumab is a high-potency disease-modifying treatment (DMT) for MS, which depletes B cells by targeting CD20. OBJECTIVES We studied the effects of ocrelizumab on gene expression in peripheral blood mononuclear cells (PBMC) from paired samples from 20 patients taken prior to and 6 months after beginning ocrelizumab therapy. We hypothesised that EBV and HERV-W loads would be lower in post-treatment samples. METHODS Samples were collected in Paxgene tubes, subject to RNA extraction and Illumina paired end short read mRNA sequencing with mapping of sequence reads to the human genome using Salmon and differential gene expression compared with DeSeq2. Mapping was also performed separately to the HERV-D database of HERV sequences and the EBV reference sequence. RESULTS Patient samples were more strongly clustered by individual rather than disease type (relapsing/remitting or primary progressive), treatment (pre and post), age, or sex. Fourteen genes, all clearly linked to B cell function were significantly down regulated in the post treatment samples. Interestingly only one pre-treatment sample had detectable EBV RNA and there were no significant differences in HERV expression (of any group) between pre- and post-treatment samples. CONCLUSIONS While EBV and HERV expression are clearly linked to triggering MS pathogenesis, it does not appear that high level expression of these viruses is a part of the ongoing disease process or that changes in virus load are associated with ocrelizumab treatment.
Collapse
Affiliation(s)
- Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.
| | - Radu Tanasescu
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bruno Gran
- Department of Neurology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Road, Nottingham, United Kingdom; School of Medicine, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
2
|
Dungan L, Dunne J, Savio M, Kalaszi M, McElheron M, Lynagh Y, O'Driscoll K, Roche C, Qureshi A, Crowley B, Conlon N, Kearney H. Disease-Modifying Treatments for Multiple Sclerosis Affect Measures of Cellular Immune Responses to EBNA-1 Peptides. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200217. [PMID: 38547427 DOI: 10.1212/nxi.0000000000200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND OBJECTIVES Epstein-Barr virus (EBV) has been strongly implicated in the pathogenesis of multiple sclerosis (MS). Despite this, there are no routinely used tests to measure cellular response to EBV. In this study, we analyzed the cellular response to EBV nuclear antigen-1 (EBNA-1) in people with MS (pwMS) using a whole blood assay. METHODS This cross-sectional study took place in a dedicated MS clinic in a university hospital. We recruited healthy controls, people with epilepsy (PWE), and pwMS taking a range of disease-modifying treatments (DMTs) including natalizumab, anti-CD20 monoclonal antibodies (mAbs), dimethyl fumarate (DMF), and also treatment naïve. Whole blood samples were stimulated with commercially available PepTivator EBNA1 peptides and a control virus-cytomegalovirus (CMV) peptide. We recorded the cellular response to stimulation with both interferon gamma (IFN-γ) and interleukin-2 (IL-2). We also compared the cellular responses to EBNA1 with IgG responses to EBNA1, viral capsid antigen (VCA), and EBV viral load. RESULTS We recruited 86 pwMS, with relapsing remitting MS, in this group, and we observed a higher level of cellular response recorded with IFN-γ (0.79 IU/mL ± 1.36) vs healthy controls (0.29 IU/mL ± 0.90, p = 0.0048) and PWE (0.17 IU/mL ± 0.33, p = 0.0088). Treatment with either anti-CD20 mAbs (0.28 IU/mL ± 0.57) or DMF (0.07 IU/mL ± 0.15) resulted in a cellular response equivalent to control levels or in PWE (p = 0.26). The results of recording IL-2 response were concordant with IFN-γ: with suppression also seen with anti-CD20 mAbs and DMF. By contrast, we did not record any differential effect of DMTs on the levels of IgG to either EBNA-1 or VCA. Nor did we observe differences in cellular response to cytomegalovirus between groups. DISCUSSION This study demonstrates how testing and recording the cellular response to EBNA-1 in pwMS may be beneficial. EBNA-1 stimulation of whole blood samples produced higher levels of IFN-γ and IL-2 in pwMS compared with controls and PWE. In addition, we show a differential effect of currently available DMTs on this response. The functional assay deployed uses whole blood samples with minimal preprocessing suggesting that employment as a treatment response measure in clinical trials targeting EBV may be possible.
Collapse
Affiliation(s)
- Lara Dungan
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Jean Dunne
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Michael Savio
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Marianna Kalaszi
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Matt McElheron
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Yvonne Lynagh
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Kate O'Driscoll
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Carmel Roche
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Ammara Qureshi
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Brendan Crowley
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Niall Conlon
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Hugh Kearney
- From the Department of Immunology (L.D., J.D., N.C.), St James's Hospital; School of Medicine (M.S., N.C.), Trinity College Dublin; MS Unit (M.K., H.K.), Department of Neurology, St James's Hospital; Department of Medical Gerontology (M.M.), School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin; Virology Laboratory (Y.L., K.O.D., C.R., A.Q., B.C.), St James's Hospital; and FutureNeuro SFI Research Centre (H.K.), Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
3
|
Gottlieb A, Pham HPT, Saltarrelli JG, Lindsey JW. Expanded T lymphocytes in the cerebrospinal fluid of multiple sclerosis patients are specific for Epstein-Barr-virus-infected B cells. Proc Natl Acad Sci U S A 2024; 121:e2315857121. [PMID: 38190525 PMCID: PMC10801919 DOI: 10.1073/pnas.2315857121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Epstein-Barr virus (EBV) infection has long been associated with multiple sclerosis (MS), but the role of EBV in the pathogenesis of MS is not clear. Our hypothesis is that a major fraction of the expanded clones of T lymphocytes in the cerebrospinal fluid (CSF) are specific for autologous EBV-infected B cells. We obtained blood and CSF samples from eight relapsing-remitting patients in the process of diagnosis. We stimulated cells from the blood with autologous EBV-infected lymphoblastoid cell lines (LCL), EBV, varicella zoster virus, influenza, and candida and sorted the responding cells with flow cytometry after 6 d. We sequenced the RNA for T cell receptors (TCR) from CSF, unselected blood cells, and the antigen-specific cells. We used the TCR Vβ CDR3 sequences from the antigen-specific cells to assign antigen specificity to the sequences from the CSF and blood. LCL-specific cells comprised 13.0 ± 4.3% (mean ± SD) of the total reads present in CSF and 13.3 ± 7.5% of the reads present in blood. The next most abundant antigen specificity was flu, which was 4.7 ± 1.7% of the reads in the CSF and 9.3 ± 6.6% in the blood. The prominence of LCL-specific reads was even more marked in the top 1% most abundant CSF clones with statistically significant 47% mean overlap with LCL. We conclude that LCL-specific sequences form a major portion of the TCR repertoire in both CSF and blood and that expanded clones specific for LCL are present in MS CSF. This has important implications for the pathogenesis of MS.
Collapse
Affiliation(s)
- Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX77030
| | - H. Phuong T. Pham
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Jerome G. Saltarrelli
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - J. William Lindsey
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| |
Collapse
|
4
|
Dobson R, Holden D, Vickaryous N, Bestwick J, George K, Sayali T, Bianchi L, Wafa M, Gold J, Giovannoni G. A phase 2a open-label clinical trial to determine the effect of famciclovir on EBV activity as measured by EBV shedding in the saliva of patients with multiple sclerosis. Mult Scler 2024; 30:63-70. [PMID: 38131621 PMCID: PMC10782647 DOI: 10.1177/13524585231215268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Despite increasing evidence that Epstein-Barr virus (EBV) plays a causal role in MS, no treatments have been shown to reduce EBV turnover. We studied the effect of famciclovir on salivary EBV shedding in people with MS (NCT05283551) in a pilot, proof-of-concept study. METHODS People with MS receiving natalizumab provided weekly saliva samples for 12 weeks before starting famciclovir 500 mg twice daily for 12 weeks. Twelve saliva samples were provided on treatment and 12 following treatment. A real-time qPCR Taqman assay was used to detect EBV DNA in saliva. The proportion of saliva samples containing EBV DNA was compared using the Friedman test. RESULTS Of 30 participants (19 F; mean age 41 years; median EDSS 3.5), 29 received famciclovir, and 24 completed the 12-week course. Twenty-one participants provided at least one usable saliva sample in all epochs. Ten of the 21 had shedding in at least one sample pre-drug; 7/21 when taking famciclovir (not significant). No difference in EBV DNA copy number was seen. There were no drug-related serious adverse events. CONCLUSION No significant effect of famciclovir on EBV shedding was seen in this small pilot study. Given the low numbers, a small effect of famciclovir cannot be excluded. Salivary EBV shedding in this natalizumab-treated cohort was lower than in previous studies, which requires replication.
Collapse
Affiliation(s)
- Ruth Dobson
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, UK
- Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - David Holden
- Blizard Institute, Queen Mary University London, UK
| | - Nicola Vickaryous
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, UK
| | - Jonathan Bestwick
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, UK
| | - Katila George
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University London, London, UK
- Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Tatiana Sayali
- Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Lucia Bianchi
- Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Department of Brain Sciences, Imperial College London, UK
| | - Mohammad Wafa
- Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Julian Gold
- The Albion Centre, School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Gavin Giovannoni
- Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, UK
- Blizard Institute, Queen Mary University London, UK
| |
Collapse
|
5
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Rød BE, Wergeland S, Bjørnevik K, Holmøy T, Ulvestad E, Njølstad G, Myhr KM, Torkildsen Ø. Humoral response to Epstein-Barr virus in patients with multiple sclerosis treated with B cell depletion therapy. Mult Scler Relat Disord 2023; 79:105037. [PMID: 37804765 DOI: 10.1016/j.msard.2023.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND B cell depletion therapy is highly effective in relapsing-remitting multiple sclerosis (RRMS). However, the precise underlying mechanisms of action for its biological effects in MS have still not been clarified. Epstein-Barr virus (EBV) is a known risk factor for MS and seems to be a prerequisite for disease development. EBV resides latently in the memory B cells, and may not only increase the risk of developing MS, but also contribute to disease activity and disability progression. Therefore, the effects of B cell depletion in MS could be associated with the depletion of EBV-infected cells and the altered immune response to the virus. In this study, we investigate the impact of B cell depletion on the humoral immune response specific to EBV in patients with MS. METHODS Newly diagnosed, treatment-naïve patients with RRMS were followed up to 18 months after initiation of B-cell depletion therapy in the Overlord-MS study, a phase III trial (NCT04578639). We analyzed serum sampled before treatment and after 3, 6, 12 and 18 months for immunoglobulin γ (IgG) against Epstein-Barr nuclear antigen 1 (EBNA1) and Epstein-Barr viral capsid antigen (VCA). We analyzed antibodies to cytomegalovirus (CMV) and total IgG in serum, as controls for viral and overall humoral immunity. The risk allele, HLA-DRB1*15:01, and the protective allele, HLA-A*02:01, were determined in all participants. In addition, polymerase chain reaction (PCR) for circulating EBV-DNA was performed in the first 156 samples drawn. The associations between time on B cell-depletion therapy and serum anti-EBV antibody levels were estimated using linear mixed-effects models. RESULTS A total of 290 serum samples from 99 patients were available for analysis. After 6, 12 and 18 months, the EBNA1 IgG levels decreased by 12.7 % (95 % CI -18.8 to -6.60, p < 0.001), 12.1 % (95 % CI -19.8 to -3.7, p = 0.006) and 14.6 % (95 % CI to -25.3 to -2.4, p = 0.02) respectively, compared to baseline level. Carriers of the HLA-DRB1*15:01 allele had higher EBNA1 IgG levels at baseline (p = 0.02). The VCA IgG levels significantly increased by 13.7 % (95 % CI 9.4 to 18.1, p < 0.001) after 3 months, compared to baseline, and persisted at this level throughout the follow-up. CMV IgG levels decreased, but to a lesser extent than the decrease of EBNA1 IgG, and total IgG levels decreased during therapy. Circulating EBV-DNA was found in only three of 156 samples from 64 patients. CONCLUSIONS EBNA1 IgG levels decreased, while VCA IgG levels increased, during B cell depletion therapy. This supports the hypothesis that the mechanism of action for B cell depletion therapy might be mediated by effects on EBV infection, which, in turn, mitigate immune cross-reactivity and disease perpetuation.
Collapse
Affiliation(s)
- Brit Ellen Rød
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Stig Wergeland
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; The Norwegian Multiple Sclerosis Registry and Biobank, Haukeland University Hospital, Bergen, Norway
| | - Kjetil Bjørnevik
- Departments of Epidemiology and Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elling Ulvestad
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Gro Njølstad
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øivind Torkildsen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Frau J, Coghe G, Lorefice L, Fenu G, Cocco E. The Role of Microorganisms in the Etiopathogenesis of Demyelinating Diseases. Life (Basel) 2023; 13:1309. [PMID: 37374092 DOI: 10.3390/life13061309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS), neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) are inflammatory diseases of the central nervous system (CNS) with a multifactorial aetiology. Environmental factors are important for their development and microorganisms could play a determining role. They can directly damage the CNS, but their interaction with the immune system is even more important. The possible mechanisms involved include molecular mimicry, epitope spreading, bystander activation and the dual cell receptor theory. The role of Epstein-Barr virus (EBV) in MS has been definitely established, since being seropositive is a necessary condition for the onset of MS. EBV interacts with genetic and environmental factors, such as low levels of vitamin D and human endogenous retrovirus (HERV), another microorganism implicated in the disease. Many cases of onset or exacerbation of neuromyelitis optica spectrum disorder (NMOSD) have been described after infection with Mycobacterium tuberculosis, EBV and human immunodeficiency virus; however, no definite association with a virus has been found. A possible role has been suggested for Helicobacter pylori, in particular in individuals with aquaporin 4 antibodies. The onset of MOGAD could occur after an infection, mainly in the monophasic course of the disease. A role for the HERV in MOGAD has been hypothesized. In this review, we examined the current understanding of the involvement of infectious factors in MS, NMO and MOGAD. Our objective was to elucidate the roles of each microorganism in initiating the diseases and influencing their clinical progression. We aimed to discuss both the infectious factors that have a well-established role and those that have yielded conflicting results across various studies.
Collapse
Affiliation(s)
- Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Giancarlo Coghe
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
| | | | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, 09126 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
8
|
Aloisi F, Giovannoni G, Salvetti M. Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy. Lancet Neurol 2023; 22:338-349. [PMID: 36764322 DOI: 10.1016/s1474-4422(22)00471-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 02/10/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the CNS that results from the interplay between heritable and environmental factors. Mounting evidence from different fields of research supports the pivotal role of the Epstein-Barr virus (EBV) in the development of multiple sclerosis. However, translating this knowledge into clinically actionable information requires a better understanding of the mechanisms linking EBV to pathophysiology. Ongoing research is trying to clarify whether EBV causes neuroinflammation via autoimmunity or antiviral immunity, and if the interaction of EBV with genetic susceptibility to multiple sclerosis can explain why a ubiquitous virus promotes immune dysfunction in susceptible individuals. If EBV also has a role in driving disease activity, the characterisation of this role will help diagnosis, prognosis, and treatment in people with multiple sclerosis. Ongoing clinical trials targeting EBV and new anti-EBV vaccines provide hope for future treatments and preventive interventions.
Collapse
Affiliation(s)
- Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine and Blizard Institute, Queen Mary University, London, UK
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
9
|
Dyer Z, Tscharke D, Sutton I, Massey J. From bedside to bench: how existing therapies inform the relationship between Epstein-Barr virus and multiple sclerosis. Clin Transl Immunology 2023; 12:e1437. [PMID: 36844913 PMCID: PMC9947628 DOI: 10.1002/cti2.1437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Therapy for relapsing-remitting multiple sclerosis (MS) has advanced dramatically despite incomplete understanding of the cause of the condition. Current treatment involves inducing broad effects on immune cell populations with consequent off-target side effects, and no treatment can completely prevent disability progression. Further therapeutic advancement will require a better understanding of the pathobiology of MS. Interest in the role of Epstein-Barr virus (EBV) in multiple sclerosis has intensified based on strong epidemiological evidence of an association between EBV seroprevalence and MS. Hypotheses proposed to explain the biological relationship between EBV and MS include molecular mimicry, EBV immortalised autoreactive B cells and infection of glial cells by EBV. Examining the interaction between EBV and immunotherapies that have demonstrated efficacy in MS offers clues to the validity of these hypotheses. The efficacy of B cell depleting therapies could be consistent with a hypothesis that EBV-infected B cells drive MS; however, loss of T cell control of B cells does not exacerbate MS. A number of MS therapies invoke change in EBV-specific T cell populations, but pathogenic EBV-specific T cells with cross-reactivity to CNS antigen have not been identified. Immune reconstitution therapies induce EBV viraemia and expansion of EBV-specific T cell clones, but this does not correlate with relapse. Much remains unknown regarding the role of EBV in MS pathogenesis. We discuss future translational research that could fill important knowledge gaps.
Collapse
Affiliation(s)
- Zoe Dyer
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical ResearchDarlinghurstNSWAustralia,St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia
| | - David Tscharke
- John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Ian Sutton
- St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia,Department of NeurologySt Vincent's ClinicDarlinghurstNSWAustralia
| | - Jennifer Massey
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical ResearchDarlinghurstNSWAustralia,St. Vincent's Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW)DarlinghurstNSWAustralia,Department of NeurologySt Vincent's ClinicDarlinghurstNSWAustralia,Department of NeurologySt Vincent's HospitalDarlinghurstNSWAustralia
| |
Collapse
|
10
|
Pham HPT, Saroukhani S, Lindsey JW. The concentrations of antibodies to Epstein-Barr virus decrease during ocrelizumab treatment. Mult Scler Relat Disord 2023; 70:104497. [PMID: 36603289 DOI: 10.1016/j.msard.2023.104497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epstein-Barr Virus (EBV) is strongly associated with multiple sclerosis (MS). After initial infection, EBV maintains a life-long latent infection in B lymphocytes. Depletion of B lymphocytes from the blood with the anti-CD20 antibody ocrelizumab (OCR) markedly reduces disease activity in MS. Our objective was to measure the effect of OCR treatment on the antibody response to EBV and human antigens that are cross-reactive with EBV. METHODS Blood was collected from MS patients before and during OCR treatment. Antibodies to three EBV antigens (EBNA-1, BFRF3, and gp350) and three human proteins that are cross-reactive with EBV (septin-9, DLST, and HNRNPL) were quantified with Western blots. Antibodies to EBNA-1 and BFRF3 were also quantified with ELISA. RESULTS Antibodies to the EBV proteins BFRF3 and EBNA-1 measured on Western blot were significantly decreased after 12 months on OCR. Subsequent testing with ELISA confirmed the decrease for both BFRF3 and EBNA-1. With Western blots, there was a trend to decreased antibody response to septin-9 and DLST, but not HNRNPL. Total IgG concentration did not change. CONCLUSION The antibody response to some EBV antigens decreases in OCR treated patients. The benefit of OCR for MS may be through removal of EBV antigenic stimulus.
Collapse
Affiliation(s)
- H Phuong T Pham
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA; Biostatistics/Epidemiology/Research Design (BERD) component, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - J William Lindsey
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
11
|
Domínguez-Mozo MI, López-Lozano L, Pérez-Pérez S, García-Martínez Á, Torrejón MJ, Arroyo R, Álvarez-Lafuente R. Epstein-Barr Virus and multiple sclerosis in a Spanish cohort: A two-years longitudinal study. Front Immunol 2022; 13:991662. [PMID: 36189297 PMCID: PMC9515943 DOI: 10.3389/fimmu.2022.991662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives 1. To analyze the prevalence and levels of anti-EBNA-1 and anti-VCA IgG antibodies of Epstein-Barr virus (EBV) in a Spanish cohort of multiple sclerosis (MS) patients and their interactions with other environmental and genetic risk factors. 2. To analyze the association of the evolution of these antibodies with the clinical response to different disease modifying therapies (DMTs) after two-years of follow-up. 3. To assess their possible correlation with the class II HLA alleles as well as with several SNPs identified in GWAS related to disease susceptibility. Materials and methods We recruited 325 MS patients without DMT (serum samples were collected 1-3 months before starting a therapy) and 295 healthy controls (HC). For each patient we also collected serum samples 6, 12, 18 and 24 months after starting the DMT. EBNA-1 and VCA IgG titers were analyzed by ELISA; 25(OH)D levels were analyzed by immunoassay; HLA DRB1*15:01 allelic variant was analyzed by Taqman technology. Results 1. 97.8% (318/325) vs. 87.1% (257/295) positives for EBNA-1 in MS patients and HC, respectively (p<0.0001; O.R. = 6.7); 99.7% (324/325) vs. 94.6% (279/295) for VCA in MS patients and HC, respectively (p=0.0001; O.R. = 18.6). All MS patients were positive for EBNA-1 and/or VCA IgG antibodies vs. 280/295 (94.9%) HC (p<0.0001). IgG titers were also significantly higher in MS patients than in HC. 2. We did not find any statistical correlation in the variation of the EBNA-1 and VCA IgG titers between baseline and 24 month visits with the number of relapses, progression, clinical response, NEDA-3 condition or therapeutic failure. 3. When we compared different epidemiological and clinical variables between those with genetic factors associated with lower EBNA-1 IgG titers and all other MS patients, we found MS started 3.5 years later among the first. Conclusions These results confirm that MS occurs rarely in absence of EBV. An intriguing association between genetic burden and lower EBNA-1 IgG titers was associated with an earlier age of disease onset. Similar studies with B-cell–targeted therapies should be performed.
Collapse
Affiliation(s)
- María Inmaculada Domínguez-Mozo
- Grupo Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Lorena López-Lozano
- Servicio de Análisis Clínicos, Instituto de Medicina del Laboratorio, Hospital Clínico San Carlos, Madrid, Spain
| | - Silvia Pérez-Pérez
- Grupo Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ángel García-Martínez
- Grupo Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María José Torrejón
- Servicio de Análisis Clínicos, Instituto de Medicina del Laboratorio, Hospital Clínico San Carlos, Madrid, Spain
| | - Rafael Arroyo
- Servicio Neurología, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Grupo Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- *Correspondence: Roberto Álvarez-Lafuente,
| |
Collapse
|
12
|
Altered Immune Response to the Epstein-Barr Virus as a Prerequisite for Multiple Sclerosis. Cells 2022; 11:cells11172757. [PMID: 36078165 PMCID: PMC9454695 DOI: 10.3390/cells11172757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Strong epidemiologic evidence links Epstein–Barr virus (EBV) infection and its altered immune control to multiple sclerosis (MS) development. Clinical MS onset occurs years after primary EBV infection and the mechanisms linking them remain largely unclear. This review summarizes the epidemiological evidence for this association and how the EBV specific immune control is altered in MS patients. The two main possibilities of mechanisms for this association are further discussed. Firstly, immune responses that are induced during a symptomatic primary EBV infection, namely infectious mononucleosis, might be amplified during the following years to finally cause central nervous system (CNS) inflammation and demyelination. Secondly, genetic predisposition and environmental factors might not allow for an efficient immune control of the EBV-infected B cells that might drive autoimmune T cell stimulation or CNS inflammation. These two main hypotheses for explaining the association of the EBV with MS would implicate opposite therapeutic interventions, namely either dampening CNS inflammatory EBV-reactive immune responses or strengthening them to eliminate the autoimmunity stimulating EBV-infected B cell compartment. Nevertheless, recent findings suggest that EBV is an important puzzle piece in the pathogenesis of MS, and understanding its contribution could open new treatment possibilities for this autoimmune disease.
Collapse
|
13
|
MINI-review of Epstein-Barr virus involvement in multiple sclerosis etiology and pathogenesis. J Neuroimmunol 2022; 371:577935. [DOI: 10.1016/j.jneuroim.2022.577935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
|
14
|
Aloisi F, Salvetti M. Epstein-Barr virus and multiple sclerosis: supporting causality. Lancet Neurol 2022; 21:300-301. [DOI: 10.1016/s1474-4422(22)00086-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
|