1
|
Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. SENSORS 2020; 20:s20133692. [PMID: 32630267 PMCID: PMC7374321 DOI: 10.3390/s20133692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
Heme peroxidases are widely used as biological recognition elements in electrochemical biosensors for hydrogen peroxide and phenolic compounds. Various nature-derived and fully synthetic heme peroxidase mimics have been designed and their potential for replacing the natural enzymes in biosensors has been investigated. The use of semiconducting materials as transducers can thereby offer new opportunities with respect to catalyst immobilization, reaction stimulation, or read-out. This review focuses on approaches for the construction of electrochemical biosensors employing natural heme peroxidases as well as various mimics immobilized on semiconducting electrode surfaces. It will outline important advances made so far as well as the novel applications resulting thereof.
Collapse
|
2
|
Gkaniatsou E, Serre C, Mahy JP, Steunou N, Ricoux R, Sicard C. Enhancing microperoxidase activity and selectivity: immobilization in metal-organic frameworks. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microperoxidases 8 (MP8) and 11 (MP11) are heme-containing peptides obtained by the proteolytic digestion of Cytochrome c. They act as mini-enzymes that combine both peroxidase-like and Cytochrome P450-like activities that may be useful in the synthesis of fine chemicals or in the degradation of environmental pollutants. However, their use is limited by their instability in solution due to (i) the bleaching of the heme in the presence of an excess of H2O2, (ii) the decoordination of the distal histidine ligand of the iron under acidic conditions and, (iii) their tendency to aggregate in aqueous alkaline solutions, even at low concentrations. Additionally, both MP8 and MP11 show relatively low selectivity, due to the lack of control of the substrates by a specific catalytic pocket on the distal face of the heme. Both stability and selectivity issues can be effectively addressed by immobilization of microperoxidases in solid matrices, which can also lead to their possible recycling from the reaction medium. Considering their relatively small size, the pore inclusion of MPs into Metal-Organic Frameworks appeared to be more adequate compared to other immobilization methods that have been widely investigated for decades. The present minireview describes the catalytic activities of MP8 and MP11, their limitations, and various results describing their immobilization into MOFs which led to MP11- or MP8@MOF hybrid materials that display good activity in the oxidation of dyes and phenol derivatives, with remarkable recyclability due to the stabilization of the MPs inside the MOF cavities. An example of selective oxidation of dyes according to their charge by MP8@MOF hybrid materials is also highlighted.
Collapse
Affiliation(s)
- Effrosyni Gkaniatsou
- Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des Etat-Unis, Versailles, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, UMR-8004 CNRS-ENS-ESPCI, PSL Research University, 75005, Paris, France
| | - Jean-Pierre Mahy
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Université Paris Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Nathalie Steunou
- Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des Etat-Unis, Versailles, France
| | - Rémy Ricoux
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182, Université Paris Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Clémence Sicard
- Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des Etat-Unis, Versailles, France
| |
Collapse
|
3
|
Influence of heme c attachment on heme conformation and potential. J Biol Inorg Chem 2018; 23:1073-1083. [PMID: 30143872 DOI: 10.1007/s00775-018-1603-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Heme c is characterized by its covalent attachment to a polypeptide. The attachment is typically to a CXXCH motif in which the two Cys form thioether bonds with the heme, "X" can be any amino acid other than Cys, and the His serves as a heme axial ligand. Some cytochromes c, however, contain heme attachment motifs with three or four intervening residues in a CX3CH or CX4CH motif. Here, the impacts of these variations in the heme attachment motif on heme ruffling and electronic structure are investigated by spectroscopically characterizing CX3CH and CX4CH variants of Hydrogenobacter thermophilus cytochrome c552. In addition, a novel CXCH variant is studied. 1H and 13C NMR, EPR, and resonance Raman spectra of the protein variants are analyzed to deduce the extent of ruffling using previously reported relationships between these spectral data and heme ruffling. In addition, the reduction potentials of these protein variants are measured using protein film voltammetry. The CXCH and CX4CH variants are found to have enhanced heme ruffling and lower reduction potentials. Implications of these results for the use of these noncanonical motifs in nature, and for the engineering of novel heme peptide structures, are discussed.
Collapse
|
4
|
Kim S, Kim JH, Lee JS, Park CB. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3623-40. [PMID: 25929870 DOI: 10.1002/smll.201500169] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/28/2015] [Indexed: 05/19/2023]
Abstract
Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Jae Hong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Joon Seok Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
5
|
Kleingardner JG, Bren KL. Biological significance and applications of heme c proteins and peptides. Acc Chem Res 2015; 48:1845-52. [PMID: 26083801 DOI: 10.1021/acs.accounts.5b00106] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hemes are ubiquitous in biology and carry out a wide range of functions. The heme group is largely invariant across proteins with different functions, although there are a few variations seen in nature. The most common variant is heme c, which is formed by a post-translational modification in which heme is covalently linked to two Cys residues on the polypeptide via thioether bonds. In this Account, the influence of this covalent attachment on heme c properties and function is discussed, and examples of how covalent attachment has been used in selected applications are presented. Proteins that bind heme c are among the most well-characterized proteins in biochemistry. Most of these proteins are cytochromes c (cyts c) that serve as electron carriers in photosynthesis and respiration. Despite the intense study of cyts c, the functional significance of heme covalent attachment has remained elusive. One observation is that heme c reaches a lower reduction potential in nature than its noncovalently linked counterpart, heme b, when comparing proteins with the same axial ligands. Furthermore, covalent attachment is known to enhance protein stability and allow the heme to be relatively solvent exposed. However, an inorganic chemistry perspective on the effects of covalent attachment has been lacking. Spectroscopic measurements and computations on cyts c and model systems reveal a number of effects of covalent attachment on heme electronic structure and reactivity. One is that the predominant nonplanar ruffling distortion seen in heme c lowers heme reduction potential. Another is that covalent attachment influences the interaction of the heme iron with the proximal His ligand. Heme ruffling also has been shown to influence electronic coupling to redox partners and, therefore, electron transfer rates by altering the distribution of the orbital hole on the porphyrin in oxidized cyt c. Another consequence of heme covalent attachment is the strong vibrational coupling seen between the iron and the protein surface as revealed by nuclear resonance vibrational spectroscopy studies. Finally, heme covalent attachment is proposed to be an important feature supporting multiple roles of cyt c in programmed cell death (apoptosis). Heme covalent attachment is not only vital for the biological functions of cyt c but also provides a useful handle in a number of applications. For one, the engineering of heme c onto an exposed portion of a protein of interest has been shown to provide a visible affinity purification tag. In addition, peptides with covalently attached heme, known as microperoxidases, have been studied as model compounds and oxidation catalysts and, more recently, in applications for energy conversion and storage. The wealth of insight gained about heme c through fundamental studies of cyts c forms a basis for future efforts toward engineering natural and artificial cytochromes for a variety of applications.
Collapse
Affiliation(s)
- Jesse G. Kleingardner
- Department
of Chemistry, Ithaca College, Ithaca, New York 14850, United States
- Department
of Chemistry, University of Rochester, Rochester, New York 14618, United States
| | - Kara L. Bren
- Department
of Chemistry, University of Rochester, Rochester, New York 14618, United States
| |
Collapse
|
6
|
|
7
|
Yarman A, Neumann B, Bosserdt M, Gajovic-Eichelmann N, Scheller FW. Peroxide-dependent analyte conversion by the heme prosthetic group, the heme Peptide "microperoxidase-11" and cytochrome C on chitosan capped gold nanoparticles modified electrodes. BIOSENSORS-BASEL 2012; 2:189-204. [PMID: 25585710 PMCID: PMC4263574 DOI: 10.3390/bios2020189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 11/16/2022]
Abstract
In view of the role ascribed to the peroxidatic activity of degradation products of cytochrome c (cyt c) in the processes of apoptosis, we investigate the catalytic potential of heme and of the cyt c derived heme peptide MP-11 to catalyse the cathodic reduction of hydrogen peroxide and to oxidize aromatic compounds. In order to check whether cyt c has an enzymatic activity in the native state where the protein matrix should suppress the inherent peroxidatic activity of its heme prosthetic group, we applied a biocompatible immobilization matrix and very low concentrations of the co-substrate H2O2. The biocatalysts were entrapped on the surface of a glassy carbon electrode in a biocompatible chitosan layer which contained gold nanoparticles. The electrochemical signal for the peroxide reduction is generated by the redox conversion of the heme group, whilst a reaction product of the substrate oxidation is cathodically reduced in the substrate indication. The catalytic efficiency of microperoxidase-11 is sufficient for sensors indicating HRP substrates, e.g., p-aminophenol, paracetamol and catechol, but also the hydroxylation of aniline and dehalogenation of 4-fluoroaniline. The lower limit of detection for p-aminophenol is comparable to previously published papers with different enzyme systems. The peroxidatic activity of cyt c immobilized in the chitosan layer for catechol was found to be below 1 per mill and for p-aminophenol about 3% as compared with that of heme or MP-11.
Collapse
Affiliation(s)
- Aysu Yarman
- Fraunhofer Institute for Biomedical Engineering, IBMT, D-14476 Potsdam, Germany.
| | - Bettina Neumann
- Fraunhofer Institute for Biomedical Engineering, IBMT, D-14476 Potsdam, Germany.
| | - Maria Bosserdt
- Fraunhofer Institute for Biomedical Engineering, IBMT, D-14476 Potsdam, Germany.
| | | | - Frieder W Scheller
- Fraunhofer Institute for Biomedical Engineering, IBMT, D-14476 Potsdam, Germany.
| |
Collapse
|
8
|
Yarman A, Peng L, Wu Y, Bandodkar A, Gajovic-Eichelmann N, Wollenberger U, Hofrichter M, Ullrich R, Scheibner K, Scheller FW. Can peroxygenase and microperoxidase substitute cytochrome P450 in biosensors. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12566-011-0023-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Yarman A, Nagel T, Gajovic-Eichelmann N, Fischer A, Wollenberger U, Scheller FW. Bioelectrocatalysis by Microperoxidase-11 in a Multilayer Architecture of Chitosan Embedded Gold Nanoparticles. ELECTROANAL 2011. [DOI: 10.1002/elan.201000535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
A MgO Nanoparticles Composite Matrix-Based Electrochemical Biosensor for Hydrogen Peroxide with High Sensitivity. ELECTROANAL 2010. [DOI: 10.1002/elan.200900429] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
El Ichi S, Marzouki MN, Korri-Youssoufi H. Direct monitoring of pollutants based on an electrochemical biosensor with novel peroxidase (POX1B). Biosens Bioelectron 2009; 24:3084-90. [PMID: 19423328 DOI: 10.1016/j.bios.2009.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/13/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
A biosensor for the monitoring of phenolic compounds based on a new protein named POX(1B) purified from garlic which demonstrates similar biochemical properties to peroxidase is investigated. The enzyme was immobilized into chitosan microspheres with covalent link. The properties of the biosensor were analyzed with Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). FT-IR demonstrates the covalent attachment of POX(1B) into chitosan and SEM shows high dispersion of the POX(1B) into the chitosan microspheres. The redox potential of POX(1B) in chitosan is 147 mV vs. SCE, which is much higher than reported works using HRP, demonstrating excellent direct electrochemical behaviour of the POX(1B). The electrocatalytic activity of the obtained biosensor towards chlorophenols derivatives in a large range from 10 pM to 10 microM was demonstrated. The mediator free POX(1B)-based biosensor exhibited high sensitivity towards 2,6-dichlorophenol, 4-chlorophenol and pentachlorophenol. A detection limit of 1 pM in the case of 4-chlorophenol was demonstrated with kinetic constant K(m,app) of 0.42 microM with high rapidity of electrochemical response of the biosensor of 1 s.
Collapse
Affiliation(s)
- Sarra El Ichi
- Equipe de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et Matériaux d'Orsay, Université Paris-sud, 91405 Orsay, France
| | | | | |
Collapse
|