1
|
Megha M, Mohan CC, Joy A, Unnikrishnan G, Thomas J, Haris M, Bhatt SG, Kolanthai E, Senthilkumar M. Vanadium and strontium co-doped hydroxyapatite enriched polycaprolactone matrices for effective bone tissue engineering: A synergistic approach. Int J Pharm 2024; 659:124266. [PMID: 38788971 DOI: 10.1016/j.ijpharm.2024.124266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Scientific research targeted at enhancing scaffold qualities has increased significantly during the last few decades. This emphasis frequently centres on adding different functions to scaffolds in order to increase their usefulness as instruments in the field of regenerative medicine. This study aims to investigate the efficacy of a multifunctional sustainable polymer scaffold, specifically Polycaprolactone (PCL) embedded with hydroxyapatite co-doped with vanadium and strontium (HVS), for bone tissue engineering applications. Polycaprolactone was used to fabricate the scaffold, while hydroxyapatite co-doped with vanadium and strontium (HVS) served as the nanofiller. A thorough investigation of the physicochemical and biological characteristics of the HVS nanofiller was carried out using cutting-edge techniques including Dynamic Light Scattering (DLS), and X-ray Photoelectron Spectroscopy (XPS) and in vitro cell studies. A cell viability rate of more than 70 % demonstrated that the synthesised nanofiller was cytotoxic, but in an acceptable range. The mechanical, biological, and physicochemical properties of the scaffold were extensively evaluated after the nanofiller was integrated. The water absorption characteristics of scaffold were enhanced by the addition of HVS nanofillers, leading to increased swelling, porosity, and hydrophilicity. These improvements speed up the flow of nutrients and the infiltration of cells into the scaffold. The scaffold has been shown to have important properties that stimulate bone cell activity, including better biodegradability and improved mechanical strength, which increased from 5.30 ± 0.37 to 10.58 ± 0.42 MPa. Further, its considerable antimicrobial qualities, blood-compatible nature, and capacity to promote biomineralization strengthen its appropriateness for usage in biomedical applications. Mainly, enhanced Alkaline phosphatase (ALP) activity, Alizarin Red Staining (ARS) activity, and excellent cell adhesive properties, indicating the outstanding osteogenic potential observed in rat bone marrow-derived stromal cells (rBMSC). These combined attributes highlight the pivotal role of these nanocomposite scaffolds in the field of bone tissue engineering.
Collapse
Affiliation(s)
- M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Chandni C Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India; College of Arts and Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jibu Thomas
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Haris
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sarita G Bhatt
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India; Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | | |
Collapse
|
2
|
Mohan AS, Ravindran DR, Marudhamuthu M, Rajan M. Investigation of Osteomyelitis Inducing Methicillin-Resistant Staphylococcus aureus Inhibition Effect by Strontium-Substituted Borate Bioactive Glasses. ACS APPLIED BIO MATERIALS 2024; 7:3828-3840. [PMID: 38750624 DOI: 10.1021/acsabm.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Borate glass transforms into hydroxycarbonate apatite more rapidly than silicate glass. This research aims to evaluate strontium's structural and biological effects on borate bioactive glass (BBG) and the influence of strontium concentrations (0%, 5%, 10%, and 15% Sr) prepared via the sol-gel method. The study reveals significant findings related to the physicochemical properties of the glass. Immersion of the glass powders in a simulated body fluid (SBF) led to the development of a hydroxyapatite (HAP) layer on the glass surfaces. This transformation was verified through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) analyses. In particular, 5% strontium exhibited gradual degradation, resulting in particle sizes below 100 nm. The BBG-15%Sr demonstrates heightened pathogenic activity as it shows a significant inhibition zone of 14 mm at 250 μg/mL, surpassing other substituted BBGs. It effectively combats Gram-positive bacteria, completely inhibiting MRSA growth at 50 μg/mL. This underscores its robust biofilm disruption capabilities, eradicating biofilms, even at minimal concentrations after prolonged exposure. C. elegans when subjected to BBG-15%Sr shows less ROS production when compared with the others. Moreover, the results suggest that the modified glass could be a potential material for the treatment of osteomyelitis-affected bone repair.
Collapse
Affiliation(s)
- Anne Seles Mohan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | | |
Collapse
|
3
|
Sebastiammal S, Lesly Fathima AS, Alarifi S, Mahboob S, Henry J, Kavipriya MR, Govindarajan M, Nicoletti M, Vaseeharan B. Synthesis and physicochemical characteristics of Ag-doped hydroxyapatite nanoparticles, and their potential biomedical applications. ENVIRONMENTAL RESEARCH 2022; 210:112979. [PMID: 35218714 DOI: 10.1016/j.envres.2022.112979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In this present scenario, hydroxyapatite (HAp) nanostructures were synthesized through green routes for biomedical applications, particularly remediation towards human pathogens and cancer cells. The present study aims at forming non-toxic and eco-friendly silver (Ag+) doped HAp using Polyethylene glycol (PEG), Cetyl Trimethyl ammonium bromide (CTAB) and curcumin. Ag+ doped HAp nanoparticles (NPs) were prepared by the sol-gel method with a cube and rod-like morphology. Ag-HApNPs showed a sharp and well-defined diffraction peak, which possesses the hexagonal crystalline structure with space group P63/m. The Fourier-transform infrared spectroscopy and Raman spectra confirmed the formation of Ag-HApNPs, and the bandgap values were obtained using UV-DRS analysis. The Ag-HApNPs with PEG, CTAB and curcumin might be fabricated materials were examined against antibacterial, antifungal, antioxidant, and cytotoxic activities, which provided exemplary biomedical applications. Overall, Ag-HApNPs can be used as potential drug delivery and perspectives to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Saleth Sebastiammal
- Research Department of Physics, Holy Cross College (Autonomous), Nagercoil, 629004, Tamil Nadu, India; Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India.
| | - Arul Sigamani Lesly Fathima
- Research Department of Physics, Holy Cross College (Autonomous), Nagercoil, 629004, Tamil Nadu, India; Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Johnson Henry
- Department of Physics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - M R Kavipriya
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612001, Tamil Nadu, India.
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Department of Animal Health and Management, Alagappa University, Science Campus, Karaikudi, 630004, Tamil Nadu, India
| |
Collapse
|
4
|
Arokiasamy P, Al Bakri Abdullah MM, Abd Rahim SZ, Luhar S, Sandu AV, Jamil NH, Nabiałek M. Synthesis methods of hydroxyapatite from natural sources: A review. CERAMICS INTERNATIONAL 2022; 48:14959-14979. [DOI: 10.1016/j.ceramint.2022.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Chen D, Zhao J, Jiang X. Synthesis and characterization of silver substituted strontium phosphate silicate apatite using solid-state reaction for osteoregenerative applications. Bioengineered 2021; 12:1111-1125. [PMID: 33818276 PMCID: PMC8806222 DOI: 10.1080/21655979.2021.1899670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Strontium phosphosilicate is one of the fastest-growing apatite in bone regeneration application due to the presence of strontium and silica components in the parent materials. However, bacterial infections cause setbacks to the bone regeneration process often leading to surgical revisions, and is a big issue that needs to be addressed. Silver on this front has proven to be a great substituent as seen in the case of calcium phosphate-based ceramics that addresses the bactericidal properties of a biomaterial. Apatite strontium phosphosilicate substituted with a stoichiometric amount of silver as a dopant was synthesized using a high-temperature solid-state reaction. The phase formation was characterized by XRD and FT-IR coupled with morphological features visualized using Electron Microscopy. Antibacterial properties were investigated quantitatively using Colony-forming unit method against both Gram-positive as well as Gram-negative bacteria. Cytotoxicity assay was performed against MG-63 Cell lines and it showed excellent biocompatibility at 25ug/ml with optimal doping of 2% silver. Further, apatite seeding and formation were characterized after immersion in simulated body fluid solution which showed apatite phase formation initiated after 4 days of treatment characterized by XRD and FT-IR studies. This apatite formation was also visualized and confirmed using SEM.
Collapse
Affiliation(s)
- Dong Chen
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, China
| | - Jingxin Zhao
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, China
| | - Xin Jiang
- Department of Orthopaedics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
6
|
Yedekçi B, Tezcaner A, Yılmaz B, Demir T, Evis Z. 3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2021; 125:104941. [PMID: 34749203 DOI: 10.1016/j.jmbbm.2021.104941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped HA that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HA and PCL-PEG-PCL copolymer were successfully synthesized. PCL-PEG-PCL composite scaffolds containing different amounts of hydroxyapatite (HA) (10% and 20 wt%) were produced with the desired porosity (50% and 60%) by compression-molding and particulate leaching method. The porosity of the scaffolds was determined between 47% and 59%. HA/PCL-PEG-PCL composite scaffolds were subjected to a 3-week degradation test and showed negligible (0.2-0.5%) degradation. The water uptake percentage of the composite scaffolds with 60% porosity was the highest among all groups. Presence of HA in the scaffolds improved the water adsorption and the mechanical properties. Compressive strength of the scaffolds was between 9.32 and 24.27 MPa and 20% 2Sr0.5BHA scaffolds were found to have the maximum compressive strength. Compressive strength of 50% porous samples was higher than that of 60% porous samples. In the relative cell viability (%) test, the highest viability was observed on the scaffolds with HA and 2Sr0.5BHA. The specific ALP activity level of the cells on the scaffolds containing 2Sr0.5BHA was significantly higher (2.6 times) than that of the control group. The amount of porosity did not make a significant difference in cellular response. It was concluded that PCL-PEG-PCL composite scaffolds with 2Sr0.5BHA have the potential to be used in BTE.
Collapse
Affiliation(s)
- Buşra Yedekçi
- Middle East Technical University, Department of Engineering Sciences, Ankara, Turkey
| | - Ayşen Tezcaner
- Middle East Technical University, Department of Engineering Sciences, Ankara, Turkey
| | - Bengi Yılmaz
- University of Health Sciences Turkey, Department of Biomaterials, Istanbul, Turkey
| | - Teyfik Demir
- TOBB University of Economics and Technology, Department of Mechanical Engineering, Ankara, Turkey
| | - Zafer Evis
- Middle East Technical University, Department of Engineering Sciences, Ankara, Turkey.
| |
Collapse
|
7
|
Kolanthai E, Fu Y, Kumar U, Babu B, Venkatesan AK, Liechty KW, Seal S. Nanoparticle mediated RNA delivery for wound healing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1741. [PMID: 34369096 DOI: 10.1002/wnan.1741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a complicated physiological process that comprises various steps, including hemostasis, inflammation, proliferation, and remodeling. The wound healing process is significantly affected by coexisting disease states such as diabetes, immunosuppression, or vascular disease. It can also be impacted by age, repeated injury, or hypertrophic scarring. These comorbidities can affect the rate of wound closure, the quality of wound closure, and tissues' function at the affected sites. There are limited options to improve the rate or quality of wound healing, creating a significant unmet need. Advances in nucleic acid research and the human genome project have developed potential novel approaches to address these outstanding requirements. In particular, the use of microRNA, short hairpin RNA, and silencing RNA is unique in their abilities as key regulators within the physiologic machinery of the cell. Although this innovative therapeutic approach using ribonucleic acid (RNA) is an attractive approach, the application as a therapeutic remains a challenge due to site-specific delivery, off-target effects, and RNA degradation obstacles. An ideal delivery system is essential for successful gene delivery. An ideal delivery system should result in high bioactivity, inhibit rapid dilution, controlled release, allow specific activation timings facilitating physiological stability, and minimize multiple dosages. Currently, these goals can be achieved by inorganic nanoparticle (NP) (e.g., cerium oxide, gold, silica, etc.) based delivery systems. This review focuses on providing insight into the preeminent research carried out on various RNAs and their delivery through NPs for effective wound healing. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Balaashwin Babu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,College of Medicine, Nanoscience Technology Center, Biionix Cluster, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
8
|
Chirică IM, Enciu AM, Tite T, Dudău M, Albulescu L, Iconaru SL, Predoi D, Pasuk I, Enculescu M, Radu C, Mihalcea CG, Popa AC, Rusu N, Niţă S, Tănase C, Stan GE. The Physico-Chemical Properties and Exploratory Real-Time Cell Analysis of Hydroxyapatite Nanopowders Substituted with Ce, Mg, Sr, and Zn (0.5-5 at.%). MATERIALS 2021; 14:ma14143808. [PMID: 34300727 PMCID: PMC8305395 DOI: 10.3390/ma14143808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Cation-substituted hydroxyapatite (HA), standalone or as a composite (blended with polymers or metals), is currently regarded as a noteworthy candidate material for bone repair/regeneration either in the form of powders, porous scaffolds or coatings for endo-osseous dental and orthopaedic implants. As a response to the numerous contradictions reported in literature, this work presents, in one study, the physico-chemical properties and the cytocompatibility response of single cation-doped (Ce, Mg, Sr or Zn) HA nanopowders in a wide concentration range (0.5–5 at.%). The modification of composition, morphology, and structure was multiparametrically monitored via energy dispersive X-ray, X-ray photoelectron, Fourier-transform infrared and micro-Raman spectroscopy methods, as well as by transmission electron microscopy and X-ray diffraction. From a compositional point of view, Ce and Sr were well-incorporated in HA, while slight and pronounced deviations were observed for Mg and Zn, respectively. The change of the lattice parameters, crystallite size, and substituting cation occupation factors either in the Ca(I) or Ca(II) sites were further determined. Sr produced the most important HA structural changes. The in vitro biological performance was evaluated by the (i) determination of leached therapeutic cations (by inductively coupled plasma mass spectrometry) and (ii) assessment of cell behaviour by both conventional assays (e.g., proliferation—3-(4,5-dimethyl thiazol-2-yl) 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay; cytotoxicity—lactate dehydrogenase release assay) and, for the first time, real-time cell analysis (RTCA). Three cell lines were employed: fibroblast, osteoblast, and endothelial. When monophasic, the substituted HA supported the cells’ viability and proliferation without signs of toxicity. The RTCA results indicate the excellent adherence of cells. The study strived to offer a perspective on the behaviour of Ce-, Mg-, Sr-, or Zn-substituted HAs and to deliver a well-encompassing viewpoint on their effects. This can be highly important for the future development of such bioceramics, paving the road toward the identification of candidates with highly promising therapeutic effects.
Collapse
Affiliation(s)
- Iuliana Maria Chirică
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
- Faculty of Physics, University of Bucharest, RO-077125 Măgurele, Romania
| | - Ana-Maria Enciu
- “Victor Babes” National Institute of Pathology, RO-050096 Bucharest, Romania; (A.-M.E.); (M.D.); (L.A.)
- Department of Cellular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, RO-050047 Bucharest, Romania
| | - Teddy Tite
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
- Correspondence: (T.T.); (C.T.); (G.E.S.); Tel./Fax: +40-21-319-4528 (C.T.); Tel.: +40-21-241-8128 (G.E.S.); Fax: +40-21-369-0177 (G.E.S.)
| | - Maria Dudău
- “Victor Babes” National Institute of Pathology, RO-050096 Bucharest, Romania; (A.-M.E.); (M.D.); (L.A.)
- Department of Cellular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, RO-050047 Bucharest, Romania
| | - Lucian Albulescu
- “Victor Babes” National Institute of Pathology, RO-050096 Bucharest, Romania; (A.-M.E.); (M.D.); (L.A.)
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
| | - Daniela Predoi
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
| | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
| | - Monica Enculescu
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
| | - Cristian Radu
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
- Faculty of Physics, University of Bucharest, RO-077125 Măgurele, Romania
| | - Cătălina Gabriela Mihalcea
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
- Faculty of Physics, University of Bucharest, RO-077125 Măgurele, Romania
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
| | - Nicoleta Rusu
- National Institute for Chemical Pharmaceutical Research and Development, RO-031299 Bucharest, Romania; (N.R.); (S.N.)
| | - Sultana Niţă
- National Institute for Chemical Pharmaceutical Research and Development, RO-031299 Bucharest, Romania; (N.R.); (S.N.)
| | - Cristiana Tănase
- “Victor Babes” National Institute of Pathology, RO-050096 Bucharest, Romania; (A.-M.E.); (M.D.); (L.A.)
- “Nicolae Cajal” Institute, “Titu Maiorescu” University, RO-004051 Bucharest, Romania
- Correspondence: (T.T.); (C.T.); (G.E.S.); Tel./Fax: +40-21-319-4528 (C.T.); Tel.: +40-21-241-8128 (G.E.S.); Fax: +40-21-369-0177 (G.E.S.)
| | - George E. Stan
- National Institute of Materials Physics, RO-077125 Măgurele, Romania; (I.M.C.); (S.L.I.); (D.P.); (I.P.); (M.E.); (C.R.); (C.G.M.); (A.-C.P.)
- Correspondence: (T.T.); (C.T.); (G.E.S.); Tel./Fax: +40-21-319-4528 (C.T.); Tel.: +40-21-241-8128 (G.E.S.); Fax: +40-21-369-0177 (G.E.S.)
| |
Collapse
|
9
|
Liu L, Huang B, Liu X, Yuan W, Zheng Y, Li Z, Yeung KWK, Zhu S, Liang Y, Cui Z, Wu S. Photo-controlled degradation of PLGA/Ti 3C 2 hybrid coating on Mg-Sr alloy using near infrared light. Bioact Mater 2021; 6:568-578. [PMID: 32995680 PMCID: PMC7501411 DOI: 10.1016/j.bioactmat.2020.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 11/30/2022] Open
Abstract
A PLGA/Ti3C2 hybrid coating was successfully deposited on the surface of magnesium-strontium (Mg-Sr) alloys. Compared with the corrosion current density (i corr ) of the Mg-Sr alloy (7.13 × 10-5 A/cm2), the modified samples (Mg/PLGA/Ti3C2) was lower by approximately four orders of magnitude (7.65 × 10-9 A/cm2). After near infrared 808 nm laser irradiation, the i corr of the modified samples increased to 3.48 × 10-7 A/cm2. The mechanism is that the local hyperthermia induced the free volume expansion of PLGA, and the increase in intermolecular gap enhanced the penetration of electrolytes. Meanwhile, the cytotoxicity study showed that the hybrid coating endowed the Mg-Sr alloy with enhanced biocompatibility.
Collapse
Affiliation(s)
- Li Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Bo Huang
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Wei Yuan
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
10
|
Chetan, Vijayalakshmi U. Structural phase formation and in vitro bioactivity evaluations of strontium phosphosilicate for orthopedic applications. J Biomed Mater Res B Appl Biomater 2020; 108:3286-3301. [DOI: 10.1002/jbm.b.34665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Chetan
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India
| | - Uthirapathy Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|
11
|
Ullah I, Zhang W, Yang L, Ullah MW, Atta OM, Khan S, Wu B, Wu T, Zhang X. Impact of structural features of Sr/Fe co-doped HAp on the osteoblast proliferation and osteogenic differentiation for its application as a bone substitute. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110633. [PMID: 32204069 DOI: 10.1016/j.msec.2020.110633] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023]
Abstract
The potential of external ions doped biomaterials has been extensively explored; however, the co-doped biomaterials remain typically unexplored for their biological properties for precise biomedical applications. The current study was aimed to explore the impact of structural features of Sr/Fe co-doped hydroxyapatite (HAp) bionanomaterial on osteoblastic proliferation and osteogenic differentiation for its application as a bone substitute. A 10 mol% isomorphous co-doping of strontium and iron with respect to calcium was carried into HAp in the solid solution. Raman spectroscopy verified the presence of major functional groups of apatite structure together with the carbonate peaks. The Sr/Fe co-doped HAp bionanomaterials showed slightly negative zeta potential (at neutral pH), versatile DLS particle size (140-205 nm), high BET surface area (186 m2/g), and narrow width pore size (13-19 nm). TG/DTA analysis showed low thermal stability of the Sr/Fe co-doped HAp groups. The nanoparticles showed an initial burst release of amoxicillin for 15 h followed by extended-release up to 81 h and demonstrated an excellent antibacterial activity by producing inhibition zones of 17.6 ± 0.3 mm and 19.5 mm ± 0.4 mm for Escherichia coli and Staphylococcus aureus. Live/dead cell staining and MTT assay confirmed the non-toxic nature of Sr/Fe co-doped HAp bionanomaterial towards MC3T3-E1 cells. Further, an improved ALP activity, increased calcium deposition, enhanced RUNX2 expression, and regulated OPN and OCN expression levels suggest in MC3T3-E1 cells demonstrate the maturation of osteoblasts. This study provides the unique advantages of the co-doping approach for the applications Sr/Fe co-doped HAp bionanomaterials as a bone substitute.
Collapse
|
12
|
Rajabnejadkeleshteri A, Kamyar A, Khakbiz M, bakalani ZL, Basiri H. Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Ullah I, Gloria A, Zhang W, Ullah MW, Wu B, Li W, Domingos M, Zhang X. Synthesis and Characterization of Sintered Sr/Fe-Modified Hydroxyapatite Bioceramics for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2019; 6:375-388. [PMID: 33463228 DOI: 10.1021/acsbiomaterials.9b01666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the current study, Sr/Fe co-substituted hydroxyapatite (HAp) bioceramics were prepared by the sonication-assisted aqueous chemical precipitation method followed by sintering at 1100 °C for bone tissue regeneration applications. The sintered bioceramics were analyzed for various structural and chemical properties through X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy, which confirmed the phase purity of HAp and Sr/Fe co-substitution into its lattice. The Vickers hardness measurement, high blood compatibility (less than 5% hemolysis), and ability to support the adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells suggest the suitability of Sr/Fe:HAp bioceramics for bone implant applications. The physicochemical analysis revealed that the developed Sr/Fe:HAp bioceramics exhibited a polyphasic nature (HAp and βTCP) with almost identical structural morphology having a particle size less than 0.8 μm. The dielectric constant (ε') and dielectric loss (ε″) were potentially affected by the incorporated foreign ions together with the polyphasic nature of the material. The Sr/Fe co-substituted samples demonstrated extended drug (5-fluorouracil and amoxicillin) release profiles at the pH of physiological medium. The multifunctional properties of the developed HAp bioceramics enabled them to be an auspicious candidate for potential biomedical applications, including targeted drug-delivery applications, heating mediator in hyperthermia, and bone tissue repair implants.
Collapse
Affiliation(s)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, Naples 80125, Italy
| | | | | | | | - Wenchao Li
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Marco Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | | |
Collapse
|
14
|
Vinicius Beserra Dos Santos M, Bastos Nogueira Rocha L, Gomes Vieira E, Leite Oliveira A, Oliveira Lobo A, de Carvalho MAM, Anteveli Osajima J, Cavalcanti Silva-Filho E. Development of Composite Scaffolds Based on Cerium Doped-Hydroxyapatite and Natural Gums-Biological and Mechanical Properties. MATERIALS 2019; 12:ma12152389. [PMID: 31357470 PMCID: PMC6695794 DOI: 10.3390/ma12152389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Hydroxyapatite (HAp) is a ceramic material composing the inorganic portion of bones. Ionic substitutions enhance characteristics of HAp, for example, calcium ions (Ca2+) by cerium ions (Ce3+). The use of HAp is potentialized through biopolymers, cashew gum (CG), and gellan gum (GG), since CG/GG is structuring agents in the modeling of structured biocomposites, scaffolds. Ce-HApCG biocomposite was synthesized using a chemical precipitation method. The obtained material was frozen (–20 °C for 24 h), and then vacuum dried for 24 h. The Ce-HApCG was characterized by X-Ray diffractograms (XRD), X-ray photoemission spectra (XPS), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS). XRD and FTIR showed that Ce-HApCG was successfully synthesized. XRD showed characteristic peaks at 2θ = 25.87 and 32.05, corresponding to the crystalline planes (0 0 2) and (2 1 1), respectively, while phosphate bands were present at 1050 cm−1 and 1098 cm−1, indicating the success of composite synthesis. FESEM showed pores and incorporated nanostructured granules of Ce-HApCG. The mechanical test identified that Ce-HApCG has a compressive strength similar to the cancellous bone’s strength and some allografts used in surgical procedures. In vitro tests (MTT assay and hemolysis) showed that scaffold was non-toxic and exhibited low hemolytic activity. Thus, the Ce-HApCG has potential for application in bone tissue engineering.
Collapse
Affiliation(s)
- Marcus Vinicius Beserra Dos Santos
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Lorenna Bastos Nogueira Rocha
- NUPCELT, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64064-260 Piaui, Brazil
| | - Ewerton Gomes Vieira
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Ana Leite Oliveira
- Center of Biotechnology and Fine Chemical, Universidade Catolica Portuguesa, 4169-005 Porto, Portugal
| | - Anderson Oliveira Lobo
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Maria Acelina Martins de Carvalho
- NUPCELT, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64064-260 Piaui, Brazil
| | - Josy Anteveli Osajima
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil
| | - Edson Cavalcanti Silva-Filho
- LIMAV, Interdisciplinary Laboratory for Advanced Materials, Federal University of Piaui, Campus Universitário Ministro Petrônio Portella, Teresina, 64049-550 Piaui, Brazil.
| |
Collapse
|
15
|
Chen Y, Dou J, Yu H, Chen C. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. J Biomater Appl 2019; 33:1348-1372. [PMID: 30854910 DOI: 10.1177/0885328219834656] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnesium-based alloys exhibit biodegradable, biocompatible and excellent mechanical properties which enable them to serve as ideal candidate biomedical materials. In particular, their biodegradable ability helps patients to avoid a second surgery. The corrosion rate, however, is too rapid to sustain the healing process. Alloying is an effective method to slow down the corrosion rate. However, currently magnesium alloys used as biomaterials are mostly commercial alloys without considering cytotoxicity from the perspective of biosafety. This article comprehensively reviews the status of various existing and newly developed degradable magnesium-based alloys specially designed for biomedical application. The effects of critical alloying elements, compositions, heat treatment and processing technology on the microstructure, mechanical properties and corrosion resistance of magnesium alloys are discussed in detail. This article covers Mg-Ca based, Mg-Zn based, Mg-Sr based, Mg-RE based and Mg-Cu-based alloy systems. The novel methods of fabricating Mg-based biomaterials and surface treatment on Mg based alloys for potential biomedical applications are summarized.
Collapse
Affiliation(s)
- Yang Chen
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Jinhe Dou
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Huijun Yu
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,3 Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, School of Mechanical Engineering, Shandong University, Ji'nan, Shandong, P.R. China.,4 National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Ji'nan, Shandong, P.R. China
| | - Chuanzhong Chen
- 1 Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, P.R. China.,2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and engineering, Shandong University, Ji'nan, Shandong, P.R. China
| |
Collapse
|
16
|
Priyadarshini B, Vijayalakshmi U. Development of cerium and silicon co-doped hydroxyapatite nanopowder and its in vitro biological studies for bone regeneration applications. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.07.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2081. [PMID: 30355975 PMCID: PMC6266948 DOI: 10.3390/ma11112081] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/13/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.
Collapse
Affiliation(s)
- Teddy Tite
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - Adrian-Claudiu Popa
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
- Army Centre for Medical Research, RO-010195 Bucharest, Romania.
| | | | | | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| | - José M F Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - George E Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania.
| |
Collapse
|
18
|
Strontium doped hydroxyapatite from Mercenaria clam shells: Synthesis, mechanical and bioactivity study. J Mech Behav Biomed Mater 2018; 90:328-336. [PMID: 30399562 DOI: 10.1016/j.jmbbm.2018.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023]
Abstract
Synthesis of strontium-doped hydroxyapatite from Mercenaria clam shells has been carried out by hydrothermal method. The doping of bioceramic, processed from biogenic resources is mostly unexplored. The objective is to understand the effect of strontium (Sr) incorporation on phase stability, sintering behaviour, mechanical properties and cytotoxicity of hydroxyapatite (HAp) derived from clam shells. The different molar concentrations of Sr, varies from 10, 30, 50, 70% of Ca, were substituted into the HAp. The synthesized powders were sintered at 1200 °C in air. The as synthesized powders and sintered specimens were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy. The crystallite size and cell parameters of sintered specimens were analyzed from XRD. The XRD of hydrothermally synthesized powders mostly matched with HAp with slight shifting due to Sr doping. However, some distinct Sr based compounds were also observed where Sr substitution is more that 50% of Ca. The XRD of sintered specimen showed increasing β-tricalcium phosphate (β-TCP) phase with Sr substitution. The sintered density of solid samples gradually increased from 3.04 g/cc to 3.50 g/cc and surface energy decreased with increasing Sr substitution. Similarly, microhardness, fracture toughness and nanohardness of solid samples found to be enhanced with Sr substitution. The elastic modulus gradually increased from 130 to 137 GPa for HAp and Sr substituted HAp (70% of Ca). The in vitro cytotoxicity of sintered specimen against mouse osteoblast cell line showed that all the samples were nontoxic. However cell proliferation found low for the solid samples containing more than 50% Sr substitution.
Collapse
|
19
|
Sundarabharathi L, Parangusan H, Ponnamma D, Al-Maadeed MAA, Chinnaswamy M. In-vitro biocompatibility, bioactivity and photoluminescence properties of Eu 3+ /Sr 2+ dual-doped nano-hydroxyapatite for biomedical applications. J Biomed Mater Res B Appl Biomater 2017; 106:2191-2201. [PMID: 29052356 DOI: 10.1002/jbm.b.34023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/15/2017] [Accepted: 09/24/2017] [Indexed: 12/12/2022]
Abstract
In the present investigation, we have successfully synthesized luminescent Eu3+ -doped and Eu3+ /Sr2+ codoped hydroxyapatite (HA) nanoparticles through sol-gel assisted precipitation method with the aim of developing novel biomaterials containing osteoblast mineral (Sr2+ ) and luminescence activator (Eu3+ ). The structure, morphology, thermal stability, and luminescence properties of the resultant spherical nanoparticles (50-100 nm diameters) were studied. Moreover, the in-vitro bioactivity of Eu0.1 Sr0.1 HA nanoparticles was investigated by immersing in the simulated body fluid for many weeks. The antimicrobial activity results against gram positive and gram negative bacterial stains, showed better resistivity for the Eu0.1 Sr0.1 HA among the other compositions. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay of live/dead cells cultured with Eu3+ /Sr2+ -doped HA nanoparticles retained its normal morphology and did not show a significant impact on cell proliferation at various incubation days, which evidence for the material's superior biocompatible nature even at a higher concentration of 375 µg/mL. Thus, the incorporation of dual ions in HA nanoparticles with strong luminescence properties develops potential biomaterial for live cell imaging and in nanomedicine. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2191-2201, 2018.
Collapse
Affiliation(s)
| | | | | | | | - Mahendran Chinnaswamy
- Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
20
|
Abinaya Sindu P, Kolanthai E, Suganthi RV, Thanigai Arul K, Manikandan E, Catalani LH, Narayana Kalkura S. Green synthesis of Si-incorporated hydroxyapatite using sodium metasilicate as silicon precursor and in vitro antibiotic release studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:163-172. [PMID: 28888169 DOI: 10.1016/j.jphotobiol.2017.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 01/23/2023]
Abstract
The aim of the current study is to synthesize nanosized silicon incorporated HAp (Si-HAP) using sodium metasilicate as the silicon source. The sol-gel derived samples were further subjected to microwave irradiation. Incorporation of Si into HAp did not alter the HAp phase, as confirmed by the X-ray diffraction analysis (XRD). Moreover, variation in the lattice parameters of the Si-incorporated HAp indicates that Si is substituted into the HAp lattice. The decrease in the intensity of the peaks attributed to hydroxyl groups, which appeared in the FTIR and Raman spectra of Si-HAp, further confirms the Si substitution in HAp lattices. The silicon incorporation enhanced the nanorods length by 70%, when compared to that of pure HAp. Microwave irradiation improved the crystallinity of Si-HAp when compared to as-synthesized Si-HAp samples. As-synthesized Si-incorporated HAp sample showed an intense blue emission under UV excitation. Microwave irradiation reduced the intensity of blue emission and exhibited red shift due to the reduction of defects in the Si-HAp crystal. The morphological change from rod to spherical and ribbon-like forms was observed with an increase in silicon content. Further, Si-HAp exhibited better bioactivity and low dissolution rate. Initially there was a burst release of amoxicillin from all the samples, subsequently it followed a sustained release. The microwave-irradiated HAp showed extended period of sustained release than that of as-synthesized HAp and Si-HAp. Similarly, the microwave-irradiated Si-incorporated samples exhibited prolonged drug release, as compared to that of the as-synthesized samples. Hence, Si-HAp is rapidly synthesized by a simple and cost effective method without inducing any additional phases, as compared to the conventional sintering process. This study provides a new insight into the rapid green synthesis of Si-HAp. Si-HAp could emerge as a promising material for the bone tissue replacement and as a drug delivery system.
Collapse
Affiliation(s)
- P Abinaya Sindu
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Elayaraja Kolanthai
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CP 26077, 05513-970 São Paulo, Brazil; Crystal Growth Centre, Anna University, Chennai 600 025, Tamil Nadu, India..
| | - R V Suganthi
- Crystal Growth Centre, Anna University, Chennai 600 025, Tamil Nadu, India
| | - K Thanigai Arul
- Crystal Growth Centre, Anna University, Chennai 600 025, Tamil Nadu, India
| | - E Manikandan
- Dept. of Physics, Thiruvalluvar University, TVUCAS Campus, Thennangur 604408, Tamil Nadu, India
| | - Luiz H Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CP 26077, 05513-970 São Paulo, Brazil
| | - S Narayana Kalkura
- Crystal Growth Centre, Anna University, Chennai 600 025, Tamil Nadu, India..
| |
Collapse
|
21
|
Sangeetha K, Girija EK. Tailor made alginate hydrogel for local infection prophylaxis in orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1046-1053. [PMID: 28575938 DOI: 10.1016/j.msec.2017.04.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 01/02/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022]
Abstract
Preventing implants associated infections is crucial in orthopedics. Local delivery of antibiotics through implants is a promising strategy to solve this issue. In this study, alginate is tailored to control its swelling, entrapment and release of ciprofloxacin (antibiotic) through the formation of interpenetrating polymer network and composite matrices using gelatin and hydroxyapatite. Developed matrices were characterized by Fourier transform infrared spectroscopy, x-ray diffraction and scanning electron microscopy. The individual tailoring approaches exerted significant influence on the swelling behavior of alginate matrix consequently enhanced the drug entrapment and extended the release period. However, the alginate matrix tailored with the combined approaches resulted in a superior matrix, which had a better control over the burst release of ciprofloxacin. Drug release prolonged from 5h to 240h for composite matrix as compared with alginate matrix showing that alginate combined with gelatin and hydroxyapatite sustained the release for longer periods. This matrix revealed excellent biocompatibility with osteoblast like MG-63 cell lines and showed good antibacterial activity against S. aureus and E. coli.
Collapse
Affiliation(s)
- K Sangeetha
- Department of Physics, Periyar University, Salem 636 011, Tamil Nadu, India
| | - E K Girija
- Department of Physics, Periyar University, Salem 636 011, Tamil Nadu, India.
| |
Collapse
|
22
|
Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:51. [PMID: 28197823 DOI: 10.1007/s10856-017-5846-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The in vitro and in vivo performance of hydroxyapatite (HAp) coatings can be modified by the addition of different trace ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HAp lattice, to more closely mirror the complex chemistry of human bone. To date, most of the work in the literature has considered single ion-substituted materials and coatings, with limited reports on co-substituted calcium phosphate systems. The aim of this study was to investigate the potential of radio frequency magnetron sputtering to deposit Sr and Zn co-substituted HAp coatings using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The FTIR and XPS results highlight that all of the Sr, Zn and Sr-Zn co-substituted surfaces produced are all dehydroxylated and are calcium deficient. All of the coatings contained HPO42- groups, however; only the pure HAp coating and the Sr substituted HAp coating contained additional CO32- groups. The XRD results highlight that none of the coatings produced in this study contain any other impurity CaP phases, showing peaks corresponding to that of ICDD file #01-072-1243 for HAp, albeit shifted to lower 2θ values due to the incorporation of Sr into the HAp lattice for Ca (in the Sr and Sr-Zn co-substituted surfaces only). Therefore, the results here clearly show that RF magnetron sputtering offers a simple means to deliver Sr and Zn co-substituted HAp coatings with enhanced surface properties. (a) XRD patterns for RF magnetron sputter deposited hydroxyapatite coatings and (b)-(d) for Sr, Zn and Sr-Zn co-substituted coatings, respectively. The XPS spectra in (b) confirms the presence of a HA sputter deposited coating as opposed to
Collapse
Affiliation(s)
- L Robinson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - K Salma-Ancane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV, 1007, Latvia
| | - L Stipniece
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV, 1007, Latvia
| | - B J Meenan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - A R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK.
| |
Collapse
|
23
|
Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:25-34. [DOI: 10.1016/j.msec.2016.09.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022]
|
24
|
Li K, Shen Q, Xie Y, You M, Huang L, Zheng X. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization. J Biomater Appl 2016; 31:1062-1076. [DOI: 10.1177/0885328216682362] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. Cerium oxide (CeO2) ceramics possess anti-oxidative properties and can be used to decrease mediators of inflammation, which makes them attractive for biomedical applications. In our work, two kinds of CeO2 incorporated hydroxyapatite coatings (HA-10Ce and HA-30Ce) were prepared via plasma spraying technique and the effects of CeO2 addition on the responses of bone mesenchymal stem cells (BMSCs) and RAW264.7 macrophages were investigated. An increase in CeO2 content in the HA coatings resulted in better osteogenic behaviors of BMSCs in terms of cell proliferation, alkaline phosphatase (ALP) activity and mineralized nodule formation. RT-PCR and western blot analysis suggested that the incorporation of CeO2 may promote the osteogenic differentiation of BMSCs through the Smad-dependent BMP signaling pathway, which activated Runx2 expression and subsequently enhanced the expression of ALP and OCN. The expression profiles of macrophages cultured on the CeO2 modified coating revealed a tendency toward a M2 phenotype, because of an upregulation of M2 surface markers (CD163 and CD206), anti-inflammatory cytokines (TNF-α and IL-6) and osteoblastogenesis-related genes (BMP2 and TGF-β1) as well as a downregulation of M1 surface markers (CCR7 and CD11c), proinflammatory cytokines (IL-10 and IL-1ra) and reactive oxygen species production. The results suggested the regulation of BMSCs behaviors and macrophage-mediated responses at the coating’s surface were associated with CeO2 incorporation. The incorporation of CeO2 in HA coatings can be a valuable strategy to promote osteogenic responses and reduce inflammatory reactions.
Collapse
Affiliation(s)
- Kai Li
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China; Shanghai Stomatological Disease Center, Shanghai, China
| | - Qingyi Shen
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China; Shanghai Stomatological Disease Center, Shanghai, China
| | - Youtao Xie
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China; Shanghai Stomatological Disease Center, Shanghai, China
| | - Mingyu You
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China; Shanghai Stomatological Disease Center, Shanghai, China
| | - Liping Huang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China; Shanghai Stomatological Disease Center, Shanghai, China
| | - Xuebin Zheng
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China; Shanghai Stomatological Disease Center, Shanghai, China
| |
Collapse
|
25
|
Chozhanathmisra M, Ramya S, Kavitha L, Gopi D. Development of zinc-halloysite nanotube/minerals substituted hydroxyapatite bilayer coatings on titanium alloy for orthopedic applications. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:72-84. [DOI: 10.1016/j.msec.2016.04.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/10/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022]
|
27
|
Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:779-86. [DOI: 10.1016/j.msec.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/04/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
|
28
|
Agrawal S, Kelkar M, De A, Kulkarni AR, Gandhi MN. Surfactant free novel one-minute microwave synthesis, characterization and cell toxicity study of mesoporous strontium hydroxyapatite nanorods. RSC Adv 2016. [DOI: 10.1039/c6ra21708g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Synthesis of mesoporous strontium hydroxyapatite (SrHAp) nanorods was carried out in microwave without using any capping agent or surfactant.
Collapse
Affiliation(s)
- Shital Agrawal
- Centre for Research in Nanotechnology and Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Madhura Kelkar
- Molecular Functional Imaging Lab
- Advanced Centre for Treatment, Research and Education in Cancer
- Tata Memorial Centre
- Mumbai 410210
- India
| | - Abhijit De
- Molecular Functional Imaging Lab
- Advanced Centre for Treatment, Research and Education in Cancer
- Tata Memorial Centre
- Mumbai 410210
- India
| | - A. R. Kulkarni
- Department of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - M. N. Gandhi
- Centre for Research in Nanotechnology and Science
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
29
|
Vahabzadeh S, Roy M, Bandyopadhyay A, Bose S. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater 2015; 17:47-55. [PMID: 25638672 DOI: 10.1016/j.actbio.2015.01.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/21/2014] [Accepted: 01/16/2015] [Indexed: 11/26/2022]
Abstract
In this work we have investigated the effects of strontium (Sr) dopant on in vitro protein release kinetics and in vivo osteogenic properties of plasma sprayed hydroxyapatite (HA) coatings, along with their dissolution behavior. Plasma sprayed HA coatings are widely used in load-bearing implants. Apart from osseointegration, the new generation of HA coating is expected to deliver biomolecules and/or drugs that can induce osteoinduction. This paper reports the preparation of crystalline and amorphous HA coatings on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray, and their stability at different solution pH. Coatings prepared at 110 mm working distance from the nozzle showed an average Ca ion release of 18 and 90 ppm in neutral and acidic environments, respectively. Decreasing the working distance to 90 mm resulted in the formation of a coating with less crystalline HA and phases with higher solubility products, and consequently higher dissolution over 32 days. A 92% release of a model protein bovine serum albumin (BSA) in phosphate buffer with pH of 7.4 was measured for Sr-doped HA (Sr-HA) coating, while only a 72% release could be measured for pure HA coating. Distortion of BSA during adsorption on coatings revealed a strong interaction between the protein and the coating, with an increase in α-helix content. Osteoid formation was found on Sr-HA implants as early as 7 weeks post implantation compared to HA coated and uncoated Ti implants. After 12 weeks post implantation, osteoid new bone was formed on HA implants; whereas, bone mineralization started on Sr-HA samples. While no osteoid was formed on bare Ti surfaces, bone was completely mineralized on HA and Sr-HA coatings after 16 weeks post implantation. Our results show that both phase stability and chemistry can have a significant influence toward in vitro and in vivo response of HA coatings on Ti implants.
Collapse
|
30
|
Boyd AR, Rutledge L, Randolph LD, Mutreja I, Meenan BJ. The deposition of strontium-substituted hydroxyapatite coatings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:65. [PMID: 25631262 DOI: 10.1007/s10856-014-5377-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Strontium substituted hydroxyapatite (SrHA) coatings have received a lot of interest recently as strontium (Sr) has been shown to have the dual benefit of promoting bone formation and reducing bone resorption, in vivo. In this work, SrHA coatings were deposited onto polycrystalline titanium surfaces using radio frequency (RF) magnetron co-sputtering and compared to those deposited from HA alone. In particular, the influence of different levels of Sr-substitution of the sputtering targets (5 and 13% Sr-substituted HA targets) on the properties of the deposited coatings produced at a low discharge power level (150 W) were investigated using FTIR, XPS, XRD, ToFSIMS and AFM techniques (both before and after annealing at 500 °C). The results show that Sr could be successfully incorporated into the HA lattice to form SrHA coatings and that they contained no other impurities. However, the coating produced from the 13% Sr-substituted target had a higher Ca+Sr/P ratio (1.95±0.14) and Sr content when compared to the coating produced from the 5% Sr-substituted target (1.58±0.20). The deposition rate also decreased with increasing Sr content of the sputtering targets. Furthermore, as the Sr content of the coatings increased, so did the preferred 002 orientation of the coating along with increased surface roughness and heterogeneity of the surface features. Therefore, this study has shown that RF magnetron sputtering offers a means to control attendant properties of Sr-substituted HA, such as the crystallinity, stoichiometry, phase purity and surface topography.
Collapse
Affiliation(s)
- Adrian R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Room 25B14, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, UK,
| | | | | | | | | |
Collapse
|
31
|
Optimization of process parameters for solution combustion synthesis of Strontium substituted Hydroxyapatite nanocrystals using Design of Experiments approach. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2014.10.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Gopi D, Murugan N, Ramya S, Shinyjoy E, Kavitha L. Ball flower like manganese, strontium substituted hydroxyapatite/cerium oxide dual coatings on the AZ91 Mg alloy with improved bioactive and corrosion resistance properties for implant applications. RSC Adv 2015. [DOI: 10.1039/c5ra03432a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mn, Sr-HAP/CeO2dual layer coated AZ91 Mg alloy will be a revolutionary potential material for orthopedic implants.
Collapse
Affiliation(s)
- D. Gopi
- Department of Chemistry
- Periyar University
- Salem 636 011
- India
- Centre for Nanoscience and Nanotechnology
| | - N. Murugan
- Department of Chemistry
- Periyar University
- Salem 636 011
- India
| | - S. Ramya
- Department of Chemistry
- Periyar University
- Salem 636 011
- India
| | - E. Shinyjoy
- Department of Chemistry
- Periyar University
- Salem 636 011
- India
| | - L. Kavitha
- Department of Physics
- School of Basic and Applied Sciences
- Central University of Tamilnadu
- Thiruvarur 610 101
- India
| |
Collapse
|
33
|
Li C, Ge X, Li G, Gao Q, Ding R. A facile hydrothermal method for synthesis of submillimeter-long octacalcium phosphate and hydroxyapatite as drug carriers with sustained release behaviors. ADV POWDER TECHNOL 2014. [DOI: 10.1016/j.apt.2014.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Rajeswari D, Gopi D, Ramya S, Kavitha L. Investigation of anticorrosive, antibacterial and in vitro biological properties of a sulphonated poly(etheretherketone)/strontium, cerium co-substituted hydroxyapatite composite coating developed on surface treated surgical grade stainless steel for orthopedic applications. RSC Adv 2014. [DOI: 10.1039/c4ra12207k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
35
|
Gopi D, Murugan N, Ramya S, Kavitha L. Electrodeposition of a porous strontium-substituted hydroxyapatite/zinc oxide duplex layer on AZ91 magnesium alloy for orthopedic applications. J Mater Chem B 2014; 2:5531-5540. [PMID: 32262186 DOI: 10.1039/c4tb00960f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnesium alloy is a potential biomedical implant because of its outstanding biodegradability and mechanical properties. But the poor corrosion resistance of AZ91 magnesium alloy in physiological solution limits its biomedical applications. In order to improve the corrosion resistance and biological performance of AZ91 magnesium alloy, we have fabricated a strontium-substituted porous hydroxyapatite (Sr-HAP)/zinc oxide (ZnO) duplex layer on AZ91 magnesium alloy by electrodeposition. The porous Sr-HAP/ZnO duplex-layer coating on AZ91 magnesium alloy was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, high-resolution scanning electron microscopy and energy dispersive X-ray analysis. Also, the mechanical properties of the duplex-layer coating were evaluated using adhesion and Vickers micro-hardness tests. The effects of the duplex-layer coating on the corrosion behavior of AZ91 magnesium alloy were also investigated in simulated body fluid using electrochemical studies. The potentiodynamic polarization and electrochemical impedance spectroscopy results indicated that the corrosion resistance of AZ91 magnesium alloy was significantly improved by the duplex-layer coating. The in vitro cell-material interaction of the duplex-layer coating was observed with human osteosarcoma MG63 cells for cell viability at 1, 4 and 7 days of incubation and the coating exhibited good biocompatibility. Hence, from the obtained results we believe that the duplex-layer made of ZnO together with porous Sr-HAP on AZ91 magnesium alloy could provide effective corrosion protection and enhanced bioactivity. Thus, duplex-layer-coated AZ91 magnesium alloy can serve as a promising candidate for orthopedic applications.
Collapse
Affiliation(s)
- D Gopi
- Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu, India.
| | | | | | | |
Collapse
|
36
|
Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.035] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Jiang F, Wang DP, Ye S, Zhao X. Strontium-substituted, luminescent and mesoporous hydroxyapatite microspheres for sustained drug release. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:391-400. [PMID: 24402509 DOI: 10.1007/s10856-013-5081-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 06/03/2023]
Abstract
The multifunctional strontium (Sr)-substituted hydroxyapatite microsphere was prepared via hydrothermal method, in which the luminescent and controlled drug release functions can be realized. The structure and morphology of the as-prepared microspheres were studied by using XRD, FTIR, SEM, TEM, HR-TEM, BET method. The optical properties was investigated by using photoluminescence (PL) and XPS measurement. Then, the as-prepared multifunctional microspheres were performed as a drug delivery carrier using vancomycin as a model drug. The experimental results show that the composition, morphology, luminescent properties and drug storage/release behaviour were obviously influenced by the amount of Sr. The microspheres with Sr(2+)/(Ca(2+) + Sr(2+)) = 0.3 of Sr substitution showed the maximum specific surface area, best pore structure and strongest PL intensity. All the samples presented remarkable sustained drug release kinetics. In addition, the PL intensity of SrHA in the drug delivery system increased with the cumulative release time (amount) of vancomycin, which would make the drug release might be possibly tracked by the change of the luminescent intensity. Our study indicated a potential prospect that the fabricated multifunctional SrHA mesoporous microspheres might be applied in the field of bone regeneration and drug delivery.
Collapse
Affiliation(s)
- Fei Jiang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | | | | | | |
Collapse
|
38
|
Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells. Colloids Surf B Biointerfaces 2014; 114:234-40. [DOI: 10.1016/j.colsurfb.2013.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 12/29/2022]
|
39
|
Magnesium implant alloy with low levels of strontium and calcium: The third element effect and phase selection improve bio-corrosion resistance and mechanical performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 35:267-82. [DOI: 10.1016/j.msec.2013.11.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 11/21/2022]
|
40
|
Kumar GS, Govindan R, Girija EK. In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis. J Mater Chem B 2014; 2:5052-5060. [DOI: 10.1039/c4tb00339j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of ciprofloxacin loaded hydroxyapatite nanoparticles has been synthesized by anin situprecipitation method for osteomyelitis treatment.
Collapse
Affiliation(s)
| | - R. Govindan
- Department of Physics
- Periyar University
- Salem 636 011, India
| | - E. K. Girija
- Department of Physics
- Periyar University
- Salem 636 011, India
| |
Collapse
|
41
|
Li H, Xie X, Zhao K, Wang Y, Zheng Y, Wang W, Qin L. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater 2013; 9:8561-73. [PMID: 23380208 DOI: 10.1016/j.actbio.2013.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/20/2013] [Accepted: 01/25/2013] [Indexed: 01/24/2023]
Abstract
In order to enhance the corrosion resistance of the Ca65Mg15Zn20 bulk metallic glass, which has too fast a degradation rate for biomedical applications, we fabricated the Ca20Mg20Zn20Sr20Yb20 high-entropy bulk metallic glass because of the unique properties of high-entropy alloys. Our results showed that the mechanical properties and corrosion behavior were enhanced. The in vitro tests showed that the Ca20Mg20Zn20Sr20Yb20 high-entropy bulk metallic glass could stimulate the proliferation and differentiation of cultured osteoblasts. The in vivo animal tests showed that the Ca20Mg20Zn20Sr20Yb20 high-entropy bulk metallic glass did not show any obvious degradation after 4 weeks of implantation, and they can promote osteogenesis and new bone formation after 2 weeks of implantation. The improved mechanical properties and corrosion behavior can be attributed to the different chemical composition as well as the formation of a unique high-entropy atomic structure with a maximum degree of disorder.
Collapse
|
42
|
Bornapour M, Muja N, Shum-Tim D, Cerruti M, Pekguleryuz M. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater 2013; 9:5319-30. [PMID: 22871640 DOI: 10.1016/j.actbio.2012.07.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
Magnesium is an attractive material for use in biodegradable implants due to its low density, non-toxicity and mechanical properties similar to those of human tissue such as bone. Its biocompatibility makes it amenable for use in a wide range of applications from bone to cardiovascular implants. Here we investigated the corrosion rate in simulated body fluid (SBF) of a series of Mg-Sr alloys, with Sr in the range of 0.3-2.5%, and found that the Mg-0.5 Sr alloy showed the slowest corrosion rate. The degradation rate from this alloy indicated that the daily Sr intake from a typical stent would be 0.01-0.02 mg day⁻¹, which is well below the maximum daily Sr intake levels of 4 mg day⁻¹. Indirect cytotoxicity assays using human umbilical vascular endothelial cells indicated that Mg-0.5 Sr extraction medium did not cause any toxicity or detrimental effect on the viability of the cells. Finally, a tubular Mg-0.5 Sr stent sample, along with a WE43 control stent, was implanted into the right and left dog femoral artery. No thrombosis effect was observed in the Mg-0.5 Sr stent after 3 weeks of implantation while the WE43 stent thrombosed. X-ray diffraction demonstrated the formation of hydroxyapatite and Mg(OH)₂ as a result of the degradation of Mg-0.5 Sr alloy after 3 days in SBF. X-ray photoelectron spectroscopy further showed the possibility of the formation of a hydroxyapatite Sr-substituted layer that presents as a thin layer at the interface between the Mg-0.5 Sr alloy and the corrosion products. We believe that this interfacial layer stabilizes the surface of the Mg-0.5 Sr alloy, and slows down its degradation rate over time.
Collapse
|
43
|
Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 2013; 34:1402-12. [DOI: 10.1016/j.biomaterials.2012.10.071] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 11/20/2022]
|
44
|
Li Z, Liu Z, Yin M, Yang X, Yuan Q, Ren J, Qu X. Aptamer-capped multifunctional mesoporous strontium hydroxyapatite nanovehicle for cancer-cell-responsive drug delivery and imaging. Biomacromolecules 2012; 13:4257-63. [PMID: 23140615 DOI: 10.1021/bm301563q] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel cancer-cells-triggered controlled-release gadolinium-doped luminescent and mesoporous strontium hydroxyapatite nanorods (designated as Gd:SrHap nanorods) system using cell-type-specific aptamers as caps has been constructed. Aptamers behave as a dual-functional molecule that acts as not only a lid but also a targeted molecular that can be used in an effective way for therapeutically special cancer cells. After incubated with cancer cells, for example, MCF-7 cells, the doxorubicin-loaded and aptamer-capped Gd:SrHap nanorods (designated as Gd:SrHap-Dox-aptamer) can be internalized into MCF-7 cells, resulting in the pore opening and drug releasing. Furthermore, the high biocompatibility and biodegradability Gd:SrHap nanorods with blue autofluorescence and paramagnetism could serve as a good contrast agent of targeting fluorescence and magnetic resonance imaging. We envision that this Gd:SrHap system could play a significant role in developing new generations of site-selective, controlled-release delivery and interactive sensory nanodevices.
Collapse
Affiliation(s)
- Zhenhua Li
- State Key Laboratory of Rare Earth Resource Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Chandra VS, Baskar G, Suganthi RV, Elayaraja K, Joshy MIA, Beaula WS, Mythili R, Venkatraman G, Kalkura SN. Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1200-10. [PMID: 22316071 DOI: 10.1021/am300140q] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanosize hydroxyapatite (nHAp) doped with varying levels of Fe(3+) (Fe-nHAp of average size 75 nm) was synthesized by hydrothermal and microwave techniques. The samples were characterized for physiochemical properties by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma optical emission spectrometer (ICP-OES), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), mechanical and dielectric properties. The biological properties like hemocompatibility, antibacterial efficacy, in vitro bioactivity and the cell proliferation of the samples were determined. XRD pattern of the samples were of single phase hydroxyapatite. As the content of Fe(3+) increased, the crystallite size as well as crystallinity decreased along with a morphological change from spherulites to rods. The dielectric constants and Vickers hardness were enhanced on Fe(3+) doping. The VSM studies revealed that the saturation magnetization (M(s)) and retentivity (M(r)) were found to increase for Fe-nHAp. nHAp impregnated with an antibiotic as a new system for drug delivery in the treatment of chronic osteomyelitis was also attempted. The in vitro drug release with an antibiotic amoxicillin and anticancer drug 5-fluorouracil showed sustained release for the lowest concentration of Fe(3+), while with an increase in the content; there was a rapid release of the drug. The hemolytic assay of Fe(3+) doped samples revealed high blood compatibility (<5% hemolysis). The antibacterial activities of the antibiotic impregnated materials were tested against a culture of E. coli, S. epidermidis and S. aureus by agar diffusion test. The in vitro bioactivity test using simulated body fluid (SBF) showed better bone bonding ability by the formation of an apatite layer on the doped samples. The growth of the apatite layer on the samples surface has been confirmed by EDS analysis. The proliferative potential of MG63 cells by MTT assay confirmed the noncytotoxicity of the samples.
Collapse
|
46
|
Brar HS, Wong J, Manuel MV. Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater 2012; 7:87-95. [DOI: 10.1016/j.jmbbm.2011.07.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 11/30/2022]
|
47
|
Bazin D, Daudon M, Chappard C, Rehr JJ, Thiaudière D, Reguer S. The status of strontium in biological apatites: an XANES investigation. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:912-918. [PMID: 21997917 DOI: 10.1107/s0909049511032651] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Osteoporosis represents a major public health problem and increases patient morbidity through its association with fragility fractures. Among the different treatments proposed, strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk. While the localization of Sr(2+) cations in the bone matrix has been extensively studied, little is known regarding the status of Sr(2+) cations in natural biological apatite. In this investigation the local environment of Sr(2+) cations has been investigated through XANES (X-ray absorption near-edge structure) spectroscopy in a set of pathological and physiological apatites. To assess the localization of Sr(2+) cations in these biological apatites, numerical simulations using the ab initio FEFF9 X-ray spectroscopy program have been performed. The complete set of data show that the XANES part of the absorption spectra may be used as a fingerprint to determine the localization of Sr(2+) cations versus the mineral part of calcifications. More precisely, it appears that a relationship exists between some features present in the XANES part and a Sr(2+)/Ca(2+) substitution process in site (I) of crystal apatite. Regarding the data, further experiments are needed to confirm a possible link between the relationship between the preparation mode of the calcification (cellular activity for physiological calcification and precipitation for the pathological one) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Is it possible to draw a line between life and chemistry through the localization of Sr in apatite? The question is open for discussion. A better structural description of these physiological and pathological calcifications will help to develop specific therapies targeting the demineralization process in the case of osteoporosis.
Collapse
Affiliation(s)
- D Bazin
- Laboratoire de Physique des Solides, Bâtiment 510, Université Paris XI, 91405 Orsay, France.
| | | | | | | | | | | |
Collapse
|
48
|
Vani R, Raja SB, Sridevi TS, Savithri K, Devaraj SN, Girija EK, Thamizhavel A, Kalkura SN. Surfactant free rapid synthesis of hydroxyapatite nanorods by a microwave irradiation method for the treatment of bone infection. NANOTECHNOLOGY 2011; 22:285701. [PMID: 21625039 DOI: 10.1088/0957-4484/22/28/285701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mesoporous nanocrystalline hydroxyapatite (nHAp) rods of size 40-75 nm long and 25 nm wide (resembling bone mineral) were synthesized under microwave irradiation without using any surfactants or modifiers. The surface area and average pore size of the nHAp were found to be 32 m(2) g(-1) and 4 nm, respectively. Rifampicin (RIF) and ciprofloxacin (CPF) loaded nHAp displayed an initial burst followed by controlled release (zero order kinetics). Combination of CPF and RIF loaded nHAp showed enhanced bacterial growth inhibition against Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli) compared to individual agent loaded nHAp and pure nHAp. In addition, decreased bacterial adhesion (90%) was observed on the surface of CPF plus RIF loaded nHAp. The biocompatibility test toward MG63 cells infected with micro-organisms showed better cell viability and alkaline phosphatase activity (ALP) for the combination of CPF and RIF loaded nHAp. The influence on cell viability of infected MG63 cells was attributed to the simultaneous and controlled release of CPF and RIF from nHAp, which prevented the emergence of subpopulations that were resistant to each other. Hence, apart from the issue of the rapid synthesis of nHAp without surfactants or modifiers, the simultaneous and controlled release of dual drugs from nHAp would be a simple, non-toxic and cost-effective method to treat bone infections.
Collapse
Affiliation(s)
- R Vani
- Crystal Growth Centre, Anna University, Chennai 600 025, India
| | | | | | | | | | | | | | | |
Collapse
|