1
|
Sabahi Mohammadi N, Sowti Khiabani M, Ghanbarzadeh B, Rezaei Mokarram R, Tizchang S. Dispersion of halloysite nanotube/lipase nanohybrids as nanofillers into polyvinyl alcohol-sodium alginate cryogel: Characterization and bio-catalytic activity analysis. Int J Biol Macromol 2024; 281:136529. [PMID: 39401624 DOI: 10.1016/j.ijbiomac.2024.136529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
The purpose of this study is to formulate and characterize the cryogels containing halloysite nanotube (HNT)/lipase nanohybrid (NH-cryogel) in comparison to pure cryogels as well as cryogels containing lipase (lipase-cryogel). The cryogels were synthesized using polyvinyl alcohol (PVA) and sodium alginate (SA). The products are tested to explore the influence of the HNT/lipase nanohybride (NH) as nanofillers on the cryogel properties using methods such as swelling degree, water uptake measurement, TGA, XRD, FESEM and FTIR. Additionally, the effects of cryogels on the stability and biocatalytic activities of lipase and NH, were studied and compared to the free lipase to evaluate their potential applications as enzyme carriers. The addition of nanofillers into the cryogel improved is thermal stability. The results implied that NH-cryogel had better enzyme activity than lipase-cryogel and free lipase at different temperatures and pH values. The NH-cryogel residual activity was 85.5 % after ten cycles of reuse while lipase-cryogel showed lower residual activity (60.3 %). Furthermore, the NH-cryogel retained 81.1 % of its residual activity while this was 51.0 % for lipase-cryogel after thirty days of storage. Therefore, the presented results in this study provide a pathway to show that produced nano-composite cryogels could be useful substances for food and pharmaceutical industries applications.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Samira Tizchang
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
2
|
Li L, Zhang W, Chen H, Zhao Z, Wang M, Chen J. Visual and electrochemical determination of breast cancer marker CA15-3 based on etching of Au@Ag core/shell nanoparticles. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Khmaissa M, Hadrich B, Ktata A, Chamkha M, Sayari A, Fendri A. The response surface methodology for optimization of Halomonas sp. C2SS100 lipase immobilization onto CaCO 3 for treatment of tuna wash processing wastewater. Prep Biochem Biotechnol 2022:1-13. [PMID: 36369762 DOI: 10.1080/10826068.2022.2142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An immobilized enzyme could exhibit selectively modified physicochemical properties, and it might offer a better environment for the enzyme activity. In this study, the immobilization yield of crude Halomonas sp. lipase was optimized to improve its stability. Thanks to its high adsorption capacity, CaCO3 has been chosen as support for the immobilization process. Furthermore, response surface methodology (RSM) was used to determine optimal conditions for the immobilization of the bacterial lipase. Five tested factors (enzyme solution, support amount, time, temperature, and acetone volume) were optimized applying a central composite design of RSM. The maximum yield of lipase immobilization was improved to 96%. Furthermore, a biochemical characterization proved a significant improvement of the immobilized lipase stability. The immobilized enzyme is more stable at extreme pH values and high temperatures than the free one. We also tested the reusability of the immobilized lipase by evaluating the recovery of the support using simple filtration. Thanks to its high stability, the immobilized lipase was invested in an effective treatment of tuna wash processing wastewater. The oil biodegradation efficiency was established at 81.5% and was confirmed by Fourier transformation infrared spectrometry. Likewise, the biological oxygen demand values were reduced which makes a possible reduction of the wastewater pollution degree.
Collapse
Affiliation(s)
- Marwa Khmaissa
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh, Saudi Arabia
| | - Ameni Ktata
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Li L, Zhang W, Wei Y, Yu L, Feng D. A Sensitive Fluorescent Immunoassay for Prostate Specific Antigen Detection Based on Signal Amplify Strategy of Horseradish Peroxidase and Silicon Dioxide Nanospheres. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:6209731. [PMID: 35912019 PMCID: PMC9328979 DOI: 10.1155/2022/6209731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
A simple, sensitive, and fluorescent immunoassay for the detection of prostate-specific antigen (PSA) based on horseradish peroxidase and silicon dioxide nanospheres as a signal amplification strategy has been described. In the design, the primary antibody (Ab1) of PSA was first immobilized on the 96-well plates via physical adsorption between polystyrene and hydrophobic groups of the antibody molecule. The silicon dioxide nanospheres (SiO2 NSs), with large surface area and good biocompatibility, were loaded with horseradish peroxidase (HRP) and horseradish peroxidase-labeled secondary antibodies (HRP-Ab2) as signal amplification systems. In the presence of PSA, a sandwich-type immunocomplex composed of Ab1-Ag-HRP-Ab2 had been formed. Fluorescence technology was employed to obtain the response signal of the immunoassay in the L-tyrosine and H2O2 systems. Experiment results showed that a strong and stable fluorescent signal at 416 nm (excitation wavelength: 325 nm) was observed, and the changes in fluorescent intensity were related to the levels of PSA. Under the optimal conditions, the relative fluorescence intensity was linear with the logarithm of PSA concentration from 0.03 to 100 ng·mL-1, with a detection limit of 0.01 ng·mL-1 (at a signal/noise ratio of 3). In contrast to other fluorescent immunoassays, the sandwich-type immunoreaction based on the high binding ELISA plates has the advantages of being simple, stable, and easy to operate, high selectivity, small sample quantity, etc., which can be widely used in the selective detection of a variety of targets, from DNA to proteins and small molecules. Such fluorescent immunoassays should be feasible for the fields of molecular diagnosis and other life science fields in the future.
Collapse
Affiliation(s)
- Lihua Li
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Wenzhi Zhang
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yan Wei
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| | - Lizhen Yu
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Dexiang Feng
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
5
|
Ghatge S, Yang Y, Ko Y, Yoon Y, Ahn JH, Kim JJ, Hur HG. Degradation of sulfonated polyethylene by a bio-photo-fenton approach using glucose oxidase immobilized on titanium dioxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127067. [PMID: 34488097 DOI: 10.1016/j.jhazmat.2021.127067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Polyethylene (PE) plastics are highly recalcitrant and resistant to photo-oxidative degradation due to its chemically inert backbone structure. We applied two novel reactions such as, Bio-Fenton reaction using glucose oxidase (GOx) enzyme alone and Bio-Photo-Fenton reaction using GOx immobilized on TiO2 nanoparticles (TiO2-GOx) under UV radiation, for (bio)degradation of pre-activated PE with sulfonation (SPE). From both the reactions, GC-MS analyses identified small organic acids such as, acetic acid and butanoic acid as a major metabolites released from SPE. In the presence of UV radiation, 21 fold and 17 fold higher amounts of acetic acid (4.78 mM) and butanoic acid (0.17 mM) were released from SPE after 6 h of reaction using TiO2-GOx than free GOx, which released 0.22 mM and 0.01 mM of acetic acid and butanoic acid, respectively. Our results suggest that (bio)degradation and valorization of naturally weathered and oxidized PE using combined reactions of biochemistry, photochemistry and Fenton chemistry could be possible.
Collapse
Affiliation(s)
- Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yongseok Ko
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Younggun Yoon
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jae-Hyung Ahn
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong Jun Kim
- Bioremediation Team, National Institute of Agricultural Science, 166 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
6
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. J Biotechnol 2020; 323:189-202. [PMID: 32861701 DOI: 10.1016/j.jbiotec.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
In this study, the factors affecting lipase adsorption onto SiO2 nanoparticles including SiO2 nanoparticles amounts (8, 19 and 30 mg/mL), lipase concentrations (30, 90 and 150 μg/mL), adsorption temperatures (5, 20 and 35 °C) and adsorption times (1, 12.5 and 24 h) were optimized using central composite design. The optimal conditions were determined as a SiO2 nanoparticles amount of 8.5-14 mg/ml, a lipase concentration of 106-116 μg/mL, an adsorption temperature of 20 °C and an adsorption time of 12.5 h, which resulted in a specific activity and immobilization efficiency of 20,000 (U/g protein) and 60 %, respectively. The lipase adsorbed under optimal conditions (SiO2-lipase) was entrapped in a PVA/Alg hydrogel, successfully. FESEM and FTIR confirmed the two-step method of lipase immobilization. The entrapped SiO2-lipase retained 76.5 % of its initial activity after 30 days of storage at 4 °C while adsorbed and free lipase retained only 43.4 % and 13.7 %, respectively. SiO2-lipase activity decreased to 34.43 % after 10 cycles of use, while the entrapped SiO2-lipase retained about 64.59 % of its initial activity. Compared to free lipase, the Km values increased and decreased for SiO2-lipase and entrapped SiO2-lipase, respectively. Vmax value increased for both SiO2-lipase and entrapped SiO2-lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
7
|
Zheng W, Han B, E S, Sun Y, Li X, Cai Y, Zhang YN. Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Immobilization of β-glucosidase by self-catalysis and compared to crosslinking with glutaraldehyde. Int J Biol Macromol 2020; 154:1490-1495. [DOI: 10.1016/j.ijbiomac.2019.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
|
9
|
Liao L, Meng Y, Wang R, Jia B, Li P. Coupling and Regulation of Porous Carriers Using Plasma and Amination to Improve the Catalytic Performance of Glucose Oxidase and Catalase. Front Bioeng Biotechnol 2019; 7:426. [PMID: 31921828 PMCID: PMC6923177 DOI: 10.3389/fbioe.2019.00426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple enzyme systems are being increasingly used for their high-efficiency and co-immobilization is a key technology to lower the cost and improve the stability of enzymes. In this study, poly glycidyl methacrylate (PGMA) spheres were synthesized using suspension polymerization, and were used as a support to co-immobilize glucose oxidase (GOx) and catalase (CAT). Surface modification was carried out via a combination of plasma and amination to promote the properties of the catalyzer. The co-immobilized enzymes showed a more extensive range of optimum pH and temperature from 5.5 to 7.5 and 25 to 40°C, respectively, compared to free enzymes. Furthermore, the maximum activity and protein adsorption quantity of the co-immobilized enzymes reached 25.98 U/g and 6.07 mg/g, respectively. The enzymatic activity of the co-immobilized enzymes was maintained at ~70% after storage for 5 days and at 82% after three consecutive cycles, indicating that the immobilized material could be applied industrially.
Collapse
Affiliation(s)
- Lingtong Liao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuling Meng
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Baolei Jia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Piwu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
10
|
Meso-molding three-dimensionally ordered macroporous alumina: A new platform to immobilize enzymes with high performance. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Guo Y, Chen X, Zhang X, Pu S, Zhang X, Yang C, Li D. Comparative studies on ZIF-8 and SiO₂ nanoparticles as carrier for immobilized β-glucosidase. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
A Fiber Optic Biosensor Based on Hydrogel-Immobilized Enzyme Complex for Continuous Determination of Cholesterol and Glucose. Appl Biochem Biotechnol 2018; 187:1569-1580. [PMID: 30284208 DOI: 10.1007/s12010-018-2897-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
A multiparameter fiber optic biosensor for continuous determination of cholesterol and glucose was developed. This sensor was based on poly(N-isopropylacrylamide) (PNIPAAm)-immobilized glucose oxidase (GOx) complex (PIGC) and immobilized cholesterol oxidase (COD). The immobilized COD catalysis to the oxidation of cholesterol and PIGC catalysis to the oxidation of glucose could be performed at different temperatures. Therefore, the sensor could detect cholesterol and glucose continuously by changing temperature. The optimal detection conditions for glucose were achieved with pH 6.5, 30 °C, and 10 mg GOx (in 100-mg carrier), and those for cholesterol were achieved with pH 7.5, 33 °C, and 25 mg COD (in 250-mg carrier). The sensor has the cholesterol detection range of 20-250 mg/dL and the glucose detection range of 50-700 mg/dL. This biosensor has outstanding repeatability and selectivity, and the detection results of the practical samples are satisfactory.
Collapse
|
13
|
A temperature-triggered fiber optic biosensor based on hydrogel-magnetic immobilized enzyme complex for sequential determination of cholesterol and glucose. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Yuan Y, Yang X, Gong D, Liu F, Hu W, Cai W, Huang J, Yang M. Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs. OPTICS EXPRESS 2017; 25:3884-3898. [PMID: 28241599 DOI: 10.1364/oe.25.003884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glucose sensitive membrane (GSM) consists of glucose oxidases (GODs) and matrix material (for example, polyacrylamide gel). In this paper, we have investigated the optical property and adsorption isotherms of a GSM based on a terminal reflection optical fiber SPR sensor. Firstly, we reported the fabrication of one kind of GSM which was made of immobilized GODs on SiO2 nanoparticles and PAM gel. Then, we investigated the effects of GSM thickness, GOD content, solution pH and ambient temperature on the reflected spectrum of sensor, and the optimum parameters of the sensor, such as, GSM thickness of 12 times pulling, 4 mg/mL of GOD content in GSM, 7.0 of solution pH and 40 °C of measuring temperature were obtained. Thirdly, we measured the wavelength shifts of the optimized SPR sensor in the solutions with different glucose concentrations. As the glucose concentration increases from 0 to 80 mg/dL, the resonance wavelength decreases approximately linearly and the corresponding sensitivity is about 0.14 nm/(mg/dL). Finally, we investigated the RI of the GSM, the concentration of glucose into GSM and the adsorption isotherm of GSM by the combination of SPR experiment data, theoretical simulation and Gladstone-Dale mixing rule. As the glucose concentration is in the region of [0, 80] mg/dL, the adsorption of GSM for glucose can be explained by the Freundlich isotherm model. As the glucose concentration is in the region of [120, 500] mg/dL, the Langmuir isotherm model is more suitable to describe the adsorption process of GSM for glucose.
Collapse
|
15
|
Huang J, Zhang P, Li M, Zhang P, Ding L. Complex of hydrogel with magnetic immobilized GOD for temperature controlling fiber optic glucose sensor. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Garcia MAS, Heyder RS, Oliveira KCB, Costa JCS, Corio P, Gusevskaya EV, dos Santos EN, Bazito RC, Rossi LM. Support Functionalization with a Phosphine-Containing Hyperbranched Polymer: A Strategy to Enhance Phosphine Grafting and Metal Loading in a Hydroformylation Catalyst. ChemCatChem 2016. [DOI: 10.1002/cctc.201600070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco A. S. Garcia
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo Brazil
| | - Rodrigo S. Heyder
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo Brazil
| | - Kelley C. B. Oliveira
- Chemistry Department; Federal University of Minas Gerais; Av. Antônio Carlos, 6627 31270-901 Belo Horizonte Brazil
| | - Jean C. S. Costa
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo Brazil
| | - Paola Corio
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo Brazil
| | - Elena V. Gusevskaya
- Chemistry Department; Federal University of Minas Gerais; Av. Antônio Carlos, 6627 31270-901 Belo Horizonte Brazil
| | - Eduardo N. dos Santos
- Chemistry Department; Federal University of Minas Gerais; Av. Antônio Carlos, 6627 31270-901 Belo Horizonte Brazil
| | - Reinaldo C. Bazito
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo Brazil
| | - Liane M. Rossi
- Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo Brazil
| |
Collapse
|
17
|
Abstract
AbstractThe field of nanobiocatalysis has experienced a rapid growth due to recent advances in nanotechnology. However, biocatalytic processes are often limited by the lack of stability of the enzymes and their short lifetime. Therefore, immobilization is key to the successful implementation of industrial processes based on enzymes. Immobilization of enzymes on functionalized nanostructured materials could give higher stability to nanobiocatalysts while maintaining free enzyme activity and easy recyclability under various conditions. This review will discuss recent developments in nanobiocatalysis to improve the stability of the enzyme using various nanostructured materials such as mesoporous materials, nanofibers, nanoparticles, nanotubes, and individual nanoparticles enzymes. Also, this review summarizes the recent evolution of nanostructured biocatalysts with an emphasis on those formed with polymers. Based on the synthetic procedures used, established methods fall into two important categories: “grafting onto” and “grafting from”. The fundamentals of each method in enhancing enzyme stability and the use of these new nanobiocatalysts as tools for different applications in different areas are discussed.
Collapse
|
18
|
Dubey NC, Tripathi BP, Stamm M, Ionov L. Smart core-shell microgel support for acetyl coenzyme A synthetase: a step toward efficient synthesis of polyketide-based drugs. Biomacromolecules 2014; 15:2776-83. [PMID: 24938082 DOI: 10.1021/bm5006382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The flexibility in tuning the structure and charge properties of PNIPAm microgels during their synthesis makes them a suitable choice for various biological applications. Two-step free radical polymerization, a common method employed for synthesis of core-shell microgel has been well adopted to obtain cationic poly(N-isopropylacrylamide-aminoethyl methacrylate) (PNIPAm-AEMA) shell and PNIPAm core. Scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta potential, and ninhydrin assay suggests nearly monodispersed particles of cationic nature. Amino groups on the microgel provides suitable attachment point for covalent immobilization of acetyl coenzyme A synthetase (Acs) via 1-ethyl-3-(3-N,N- dimethylaminopropyl) carbodiimide (EDC) chemistry. On immobilization, 61.55% of initial activity of Acs has been retained, while Michaelis-Menten kinetics of the immobilized Acs indicates identical K(m) (Michaelis constant) but decrease in the V(max) (maximum substrate conversion rate) compared to free enzyme. Immobilized Acs shows an improvement in activity at wide temperature and pH range and also demonstrates good thermal, storage, and operational stability. The Acs-microgel bioconjugate has been successfully reused for four consecutive operation cycles with more than 50% initial activity.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, D-01069 Dresden, Germany
| | | | | | | |
Collapse
|
19
|
Zhu YT, Ren XY, Liu YM, Wei Y, Qing LS, Liao X. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 38:278-85. [DOI: 10.1016/j.msec.2014.02.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/06/2014] [Accepted: 02/08/2014] [Indexed: 11/12/2022]
|
20
|
Activity of glucose oxidase immobilized onto Fe3+ attached hydroxypropyl methylcellulose films. Colloids Surf B Biointerfaces 2013; 101:19-25. [DOI: 10.1016/j.colsurfb.2012.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/24/2012] [Accepted: 05/28/2012] [Indexed: 11/17/2022]
|
21
|
Zhou L, Jiang Y, Gao J, Zhao X, Ma L, Zhou Q. Oriented immobilization of glucose oxidase on graphene oxide. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.07.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Graphene Oxide as a Matrix for the Immobilization of Glucose Oxidase. Appl Biochem Biotechnol 2012; 168:1635-42. [DOI: 10.1007/s12010-012-9884-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
|