1
|
Vadhel A, Kumar A, Bashir S, Malik T, Mohan A. Synergistic and non-synergistic impact of HAP-based nano fertilizer and PGPR for improved nutrient utilization and metabolite variation in hemp crops. ENVIRONMENTAL SCIENCE: NANO 2023; 10:3101-3110. [DOI: 10.1039/d3en00380a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Nanofertilizer prepared with urea-hydroxyapatite amalgamation along with PGPR promotes urea availability over longer period of plant growth and reduces wasteful urea expense in soil, curtailing environmental pollution.
Collapse
Affiliation(s)
- Agrataben Vadhel
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Sabreen Bashir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
2
|
Tronco MC, Cassel JB, Dos Santos LA. α-TCP-based Calcium Phosphate Cements: a critical review. Acta Biomater 2022; 151:70-87. [PMID: 36028195 DOI: 10.1016/j.actbio.2022.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Calcium phosphates are promising materials for applications in bone repair and substitution, particularly for their bioactivity and ability to form self-setting cements. Among them, α-tricalcium phosphate (α-TCP) stands out due to its high solubility, its hydration reaction and bioresorbability. The synthesis of α-TCP is particularly complex and the interactions between some of the synthesis parameters are still not completely understood. The variety of methods available to synthesize α-TCP has provided a substantial variance in the properties of α-TCP-based cements and the decision about which method, parameters and starting reagents will be used for the powder's synthesis is determinant of the properties of the resulting material. Therefore, this review paper focuses on α-TCP's synthesis and properties, presenting the synthesis methods currently in use as well as a discussion of how the synthesis parameters and the cement preparation affect the reactivity and mechanical properties of the material, providing a guide for the selection of the most suitable process for each α-TCP application. STATEMENT OF SIGNIFICANCE: α-TCP is a calcium phosphate and it is currently one of the most investigated bioceramics for applications that explore its bioresorbability and the hydration reaction of α-TCP-based cements. Despite the increasing number of publications on the topic, there are still aspects not well understood. This review article aims at contributing to this fascinating subject by offering an update on the state of the art of α-TCP's synthesis methods, while also addressing topics that are not often discussed about this material, such as the preparation of α-TCP-based cements and how its parameters affect the properties of the resulting cements.
Collapse
Affiliation(s)
- Matheus C Tronco
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Júlia B Cassel
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| | - Luís A Dos Santos
- Biomaterials Laboratory, Materials Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| |
Collapse
|
3
|
Nevado P, Lopera A, Bezzon V, Fulla MR, Palacio J, Zaghete MA, Biasotto G, Montoya A, Rivera J, Robledo SM, Estupiñan H, Paucar C, Garcia C. Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111013. [PMID: 32993985 DOI: 10.1016/j.msec.2020.111013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 02/02/2023]
Abstract
Ceramic materials such as calcium phosphates (CaPs) with a composition similar to the mineral phase of bones and polymeric polylactic acid (PLA) are potential candidates for the manufacturing of scaffolds to act as bone substitutes and for tissue engineering applications, due to their bioresorbability and biocompatibility. Variables such as porosity, topography, morphology, and mechanical properties play an essential role in the scaffolds response. In this paper, a polymer/ceramic composite filament of 1.7 mm in diameter based on PLA and biphasic calcium phosphates (BCPs) was obtained by hot-melt extrusion in a single screw extruder. The particles of BCP were obtained by solution-combustion synthesis, and the PLA used was commercial grade. The BCPs ceramics were characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM), transmission electron microscopy (TEM), and Brunauer, Emmett, and Teller (BET). It was possible to confirm that the main inorganic phases were hydroxyapatite (HAP) and tricalcium phosphate (TCP) with grain sizes below 100 nm and with high porosity. The Filaments obtained are a bit fragile but were able to be used in fused deposition modelling (FDM) using low-cost commercial printers. The filaments were characterized by SEM and energy dispersive X-ray (EDX). The in-vitro tests of filaments showed deposition of apatite phases on their surface, non-cytotoxic behavior, adequate cell proliferation and cell adhesion.
Collapse
Affiliation(s)
- P Nevado
- Grupo de Materiales Cerámicos y Vítreos, Escuela de Física Universidad Nacional de Colombia, Calle 59A.63-20, Medellín 050034, Colombia
| | - A Lopera
- Grupo de Materiales Cerámicos y Vítreos, Escuela de Física Universidad Nacional de Colombia, Calle 59A.63-20, Medellín 050034, Colombia; Grupo GICEI, Institución Universitaria Pascual Bravo, Facultad de Ingeniería, Calle 73 No. 73A - 226, Medellín 050034, Colombia
| | - V Bezzon
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, CEP 09210580, Brazil
| | - M R Fulla
- Grupo de Materiales Cerámicos y Vítreos, Escuela de Física Universidad Nacional de Colombia, Calle 59A.63-20, Medellín 050034, Colombia; Grupo GICEI, Institución Universitaria Pascual Bravo, Facultad de Ingeniería, Calle 73 No. 73A - 226, Medellín 050034, Colombia
| | - J Palacio
- Grupo GICEI, Institución Universitaria Pascual Bravo, Facultad de Ingeniería, Calle 73 No. 73A - 226, Medellín 050034, Colombia
| | - M A Zaghete
- LIEC, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP 14800-060, Brazil
| | - G Biasotto
- LIEC, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, SP 14800-060, Brazil
| | - A Montoya
- PECET-Instituto de Investigaciones Médicas, Universidad de Antioquia, Facultad de Medicina, Calle 62 No. 52-59, Medellín 050010, Colombia
| | - J Rivera
- Grupo GICEI, Institución Universitaria Pascual Bravo, Facultad de Ingeniería, Calle 73 No. 73A - 226, Medellín 050034, Colombia
| | - S M Robledo
- PECET-Instituto de Investigaciones Médicas, Universidad de Antioquia, Facultad de Medicina, Calle 62 No. 52-59, Medellín 050010, Colombia
| | - H Estupiñan
- Grupo de Investigación en Biosuperficies, Departamento de Materiales, Universidad Nacional de Colombia, Sede Medellín, Calle 59A.63-20, Medellín 050034, Colombia
| | - C Paucar
- Grupo de Materiales Cerámicos y Vítreos, Escuela de Física Universidad Nacional de Colombia, Calle 59A.63-20, Medellín 050034, Colombia
| | - C Garcia
- Grupo de Materiales Cerámicos y Vítreos, Escuela de Física Universidad Nacional de Colombia, Calle 59A.63-20, Medellín 050034, Colombia.
| |
Collapse
|
4
|
Liquid phase oxidation of benzyl alcohol to benzaldehyde over chromium borophosphate catalyst synthesized by solution combustion method using different types of fuel. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04155-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Top Curr Chem (Cham) 2019; 378:7. [DOI: 10.1007/s41061-019-0272-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
|
6
|
Singh H, Rajput JK. Novel perovskite nanocatalyst (BiFeO3) for the photodegradation of rhodamine B/tartrazine and swift reduction of nitro compounds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01710-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Synthesis of Wollastonite Powders by Combustion Method: Role of Amount of Fuel. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1155/2018/6213568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this work has been the synthesis of wollastonite by solution combustion method. The novelty of this work has been obtaining the crystalline phase without the need of thermal treatments after the synthesis. For this purpose, urea was used as fuel. Calcium nitrate was selected as a source of calcium and colloidal silica served as a source of silicon. The effect of the amount of fuel on the combustion process was investigated. Temperature of the combustion reaction was followed by digital pyrometry. The obtained products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and specific surface area. The results showed that the combustion synthesis provides nanostructured powders characterized by a high surface area. When excess of urea was used, wollastonite-2M was obtained with a submicronic structure.
Collapse
|
8
|
Lopera A, Montoya A, Vélez I, Robledo S, Garcia C. Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis. Photodiagnosis Photodyn Ther 2018; 21:138-146. [DOI: 10.1016/j.pdpdt.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/05/2023]
|
9
|
Mondal S, Dorozhkin SV, Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1504. [PMID: 29171173 DOI: 10.1002/wnan.1504] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 01/19/2023]
Abstract
Through this brief review, we provide a comprehensive historical background of the development of nanostructured hydroxyapatite (nHAp), and its application potentials for controlled drug delivery, drug conjugation, and other biomedical treatments. Aspects associated with efficient utilization of hydroxyapatite (HAp) nanostructures such as their synthesis, interaction with drug molecules, and other concerns, which need to be resolved before they could be used as a potential drug carrier in body system, are discussed. This review focuses on the evolution of perceptions, practices, and accomplishments in providing improved delivery systems for drugs until date. The pioneering developments that have presaged today's fascinating state of the art drug delivery systems based on HAp and HAp-based composite nanostructures are also discussed. Special emphasis has been given to describe the application and effectiveness of modified HAp as drug carrier agent for different diseases such as bone-related disorders, carriers for antibiotics, anti-inflammatory, carcinogenic drugs, medical imaging, and protein delivery agents. As only a very few published works made comprehensive evaluation of HAp nanostructures for drug delivery applications, we try to cover the three major areas: concepts, practices and achievements, and applications, which have been consolidated and patented for their practical usage. The review covers a broad spectrum of nHAp and HAp modified inorganic drug carriers, emphasizing some of their specific aspects those needed to be considered for future drug delivery applications. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale.
Collapse
Affiliation(s)
- Sudip Mondal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
10
|
Effect of salt concentration on the electrical and morphological properties of calcium phosphates obtained via microwave-induced combustion synthesis. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Wijesinghe WPS, Mantilaka MMMGPG, Rajapakse RMG, Pitawala HMTGA, Premachandra TN, Herath HMTU, Rajapakse RPVJ, Wijayantha KGU. Urea-assisted synthesis of hydroxyapatite nanorods from naturally occurring impure apatite rocks for biomedical applications. RSC Adv 2017. [DOI: 10.1039/c7ra02166f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite (HA) nanoparticles are heavily used materials in biomedical applications.
Collapse
Affiliation(s)
- W. P. S. L. Wijesinghe
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Department of Chemistry
| | - M. M. M. G. P. G. Mantilaka
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Sri Lanka Institute of Nanotechnology
| | - R. M. G. Rajapakse
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Department of Chemistry
| | - H. M. T. G. A. Pitawala
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Department of Geology
| | - T. N. Premachandra
- Department of Veterinary Pathobiology
- Faculty of Veterinary Medicine
- University of Peradeniya
- Peradeniya
- Sri Lanka
| | - H. M. T. U. Herath
- Department of Medical Laboratory Science
- Faculty of Allied Health Sciences
- University of Peradeniya
- Peradeniya
- Sri Lanka
| | - R. P. V. J. Rajapakse
- Department of Veterinary Pathobiology
- Faculty of Veterinary Medicine
- University of Peradeniya
- Peradeniya
- Sri Lanka
| | | |
Collapse
|
12
|
Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution Combustion Synthesis of Nanoscale Materials. Chem Rev 2016; 116:14493-14586. [PMID: 27610827 DOI: 10.1021/acs.chemrev.6b00279] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol-gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual properties are outlined. To demonstrate the versatility of the approach, several application categories of SCS produced materials, such as for energy conversion and storage, optical devices, catalysts, and various important nanoceramics (e.g., bio-, electro-, magnetic), are discussed.
Collapse
Affiliation(s)
- Arvind Varma
- School of Chemical Engineering, Purdue University , West Lafayette, Indiana 47907, United States
| | | | - Alexander S Rogachev
- Institute of Structural Macrokinetics and Materials Science, RAS , Chernogolovka 142432, Russia.,National University of Science and Technology, MISiS , Moscow 119049, Russia
| | | |
Collapse
|
13
|
Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO 4 ) bioceramics and their biomedical applications. CERAMICS INTERNATIONAL 2016; 42:6529-6554. [DOI: 10.1016/j.ceramint.2016.01.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
14
|
Gao Y, Meng F, Li X, Wen JZ, Li Z. Factors controlling nanosized Ni–Al2O3 catalysts synthesized by solution combustion for slurry-phase CO methanation: the ratio of reducing valences to oxidizing valences in redox systems. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01603k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ratio of urea to nitrates was investigated with regard to the precursor solution, combustion process, and Ni-Al2O3 catalyst structures and activity.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province
- Institute of Coal Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Fanhui Meng
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province
- Institute of Coal Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Xin Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province
- Institute of Coal Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - John Z. Wen
- Department of Mechanical and Mechatronics Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Zhong Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province
- Institute of Coal Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| |
Collapse
|
15
|
Colussi S, Gayen A, Boaro M, Llorca J, Trovarelli A. Influence of Different Palladium Precursors on the Properties of Solution-Combustion-Synthesized Palladium/Ceria Catalysts for Methane Combustion. ChemCatChem 2015. [DOI: 10.1002/cctc.201500390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Chen T, Lin H, Cao Q, Huang Z. Solution combustion synthesis of Ti0.75Ce0.15Cu0.05W0.05O2−δfor low temperature selective catalytic reduction of NO. RSC Adv 2014. [DOI: 10.1039/c4ra05862c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Lin K, Wu C, Chang J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater 2014; 10:4071-102. [PMID: 24954909 DOI: 10.1016/j.actbio.2014.06.017] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 01/02/2023]
Abstract
Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth. In addition, this review will also summarize studies on the controlled formation of nano-/microstructures on the surface of bulk ceramics, and the preparation of macroscopical bone grafts with 3-D architecture nano-/microstructured surfaces. Moreover, the possible directions of future research and development in this field, such as the detailed mechanisms behind the size and shape control in various strategies, the importance of theoretical simulation, self-assembly, biomineralization and sacrificial precursor strategies in the fabrication of biomimetic bone-like and enamel-like CaP materials are proposed.
Collapse
Affiliation(s)
- Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| |
Collapse
|
18
|
Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 2013; 9:7591-621. [PMID: 23583646 DOI: 10.1016/j.actbio.2013.04.012] [Citation(s) in RCA: 538] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
Hydroxyapatite (HAp) is the major mineral constituent of vertebrate bones and teeth. It has been well documented that HAp nanoparticles can significantly increase the biocompatibility and bioactivity of man-made biomaterials. Over the past decade, HAp nanoparticles have therefore increasingly been in demand, and extensive efforts have been devoted to develop many synthetic routes, involving both scientifically and economically new features. Several investigations have also been made to determine how critical properties of HAp can be effectively controlled by varying the processing parameters. With such a wide variety of methods for the preparation of HAp nanoparticles, choosing a specific procedure to synthesize a well-defined powder can be laborious; accordingly, in the present review, we have summarized all the available information on the preparation methodologies of HAp, and highlighted the inherent advantages and disadvantages involved in each method. This article is focused on nanosized HAp, although recent articles on microsized particles, especially those assembled from nanoparticles and/or nanocrystals, have also been reviewed for comparison. We have also provided several scientific figures and discussed a number of critical issues and challenges which require further research and development.
Collapse
|