1
|
Ishikawa M, Borges R, Mourão A, Ferreira LM, Lobo AO, Martinho H. Confined Water Dynamics in the Scaffolds of Polylactic Acid. ACS OMEGA 2024; 9:19796-19804. [PMID: 38737045 PMCID: PMC11079869 DOI: 10.1021/acsomega.3c08057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/14/2024]
Abstract
Resorbable polylactic acid (PLA) ultrathin fibers have been applied as scaffolds for tissue engineering applications due to their micro- and nanoporous structure that favor cell adhesion, besides inducing cell proliferation and upregulating gene expression related to tissue regeneration. Incorporation of multiwalled carbon nanotubes into PLA fibers has been reported to increase the mechanical properties of the scaffold, making them even more suitable for tissue engineering applications. Ideally, scaffolds should be degraded simultaneously with tissue growth. Hydration and swelling are factors related to scaffold degradation. Hydration would negatively impact the mechanical properties since PLA shows hydrolytic degradation. Water absorption critically affects the catalysis and allowance of the hydrolysis reactions. Moreover, either mass transport and chemical reactions are influenced by confined water, which is an unexplored subject for PLA micro- and nanoporous fibers. Here, we probe and investigate confined water onto highly porous PLA microfibers containing few amounts of incorporated carbon nanotubes by Fourier transform infrared (FTIR) spectroscopy. A hydrostatic pressure was applied to the fibers to enhance the intermolecular interactions between water molecules and C=O groups from polyester bonds, which were evaluated over the wavenumber between 1600 and 2000 cm-1. The analysis of temperature dependence of FTIR spectra indicated the presence of confined water which is characterized by a non-Arrhenius to Arrhenius crossover at T0 = 190 K for 1716 and 1817 cm-1 carbonyl bands of PLA. These bands are sensitive to a hydrogen bond network of confined water. The relevance of our finding relies on the challenge detecting confined water in hydrophobic cavities as in the PLA one. To the best of our knowledge, we present the first report referring the presence of confined water in a hydrophobic scaffold as PLA for tissue engineering. Our findings can provide new opportunities to understand the role of confined water in tissue engineering applications. For instance, we argue that PLA degradation may be affected the most by confined water. PLA degradation involves hydrolytic and enzymatic degradation reactions, which can both be sensitive to changes in water properties.
Collapse
Affiliation(s)
- Mariana Ishikawa
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
| | - Roger Borges
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
- School
of Biomedical Engineering, Faculdade Israelita de Ciências
da Saúde Albert Einstein, Hospital
Israelita Albert Einstein, São
Paulo, São Paulo 09280-560, Brazil
| | - André Mourão
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
| | | | - Anderson O. Lobo
- Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Department of Materials
Engineering, Federal University of Piauí, Teresina, Piauí 64049-550, Brazil
| | | |
Collapse
|
2
|
Oliveira FC, Carvalho JO, Magalhães LSSM, da Silva JM, Pereira SR, Gomes Júnior AL, Soares LM, Cariman LIC, da Silva RI, Viana BC, Silva-Filho EC, Afewerki S, da Cunha HN, Vega ML, Marciano FR, Lobo AO. Biomineralization inspired engineering of nanobiomaterials promoting bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111776. [PMID: 33545906 DOI: 10.1016/j.msec.2020.111776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022]
Abstract
A biomineralization processes is disclosed for engineering nanomaterials that support bone repair. The material was fabricated through a hot press process using electrospun poly(lactic acid) (PLA) matrix covered with hybrid composites of carbon nanotubes/graphene nanoribbons (GNR) and nanohydroxyapatite (nHA). Various scaffolds were devised [nHA/PLA, PLA/GNR, and PLA/nHA/GNR (1 and 3%)] and their structure and morphology characterized through Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), and Atomic force microscope (AFM). Moreover, thorough biocompatibility and toxicity studies were performed. Here, in vivo studies on toxicity and cytotoxicity were conducted in aqueous dispersions of the biomaterials at concentrations of 30, 60, and 120 μg/mL using the Allium cepa test. Further toxicity studies were performed through hemolysis toxicity tests and genotoxicity tests evaluating the damage index and damage frequencies of DNAs through comet assays with samples of the animals' peripheral blood, marrow, and liver. Additionally, the regenerative activity of the scaffolds was analyzed by measuring the cortical tibiae of rats oophorectomized implanted with the biomaterials. Biochemical analyzes [glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), urea, calcium, phosphorus, and alkaline phosphatase (ALP)] were also performed on blood samples. The results suggested a toxicity and cytotoxicity level for the GNR biomaterials at a concentration of 60 and 120 μg/mL, but non-toxicity and cytotoxicity for the 30 μg/mL concentration. The scaffolds obtained at a concentration of 0.3 mg/cm2 were not toxic in the hemolysis test and demonstrated no cytotoxicity, genotoxicity, and mutagenicity in the blood, marrow, and liver analyzes of the animals, corroborating data from the biochemical markers of GPT, GOT, and urea. Tissue regeneration was performed in all groups and was more pronounced in the group containing the combination of nHA/GNR (3%), which is consistent with the data obtained for the calcium, serum phosphorus, and ALP concentrations. Consequently, the study indicates that the engineered nanobiomaterial is a promising candidate for bone tissue repair and regenerative applications. STATEMENT OF SIGNIFICANCE: The scientific contribution of this study is the engineering of a synthetic hybrid biomaterial, in nanoscale by a pressing and heating process. A biodegradable polymeric matrix was covered on both sides with a carbonated hybrid bioceramic/graphene nanoribbons (GNR), which has hydrophilic characteristics, with chemical elements stoichiometrically similar to bone mineral composition. The nanomaterial displayed promising bone regeneration ability, which is the first example to be used in an osteoporotic animal model. Moreover, detailed biocompatibility and toxicity studies were performed on the nanomaterials and their compositions, which is of great interest for the scientific community.
Collapse
Affiliation(s)
- Francilio Carvalho Oliveira
- Instituto Científico e Tecnológico, Universidade Brasil, 08230-030 Itaquera, São Paulo, Brazil; Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil; Faculdade Estácio Teresina, Teresina, PI 64046-700, Brazil
| | - Jancineide Oliveira Carvalho
- Instituto Científico e Tecnológico, Universidade Brasil, 08230-030 Itaquera, São Paulo, Brazil; Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Leila S S M Magalhães
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Juliana Marques da Silva
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Saronny Rose Pereira
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Antonio Luiz Gomes Júnior
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | | | - Laynna Ingrid Cruz Cariman
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Ruan Inácio da Silva
- Centro Universitário de Saúde, Ciências Humanas e Tecnológicas do Piauí (UNINOVAFAPI), Teresina, PI 64073-505, Brazil
| | - Bartolomeu C Viana
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil; Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Edson Cavalcanti Silva-Filho
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Health Science and Technology, Harvard University - Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Helder Nunes da Cunha
- Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | - Maria Leticia Vega
- Department of Physics, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil
| | | | - Anderson Oliveira Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
3
|
Beitollahi H, Akbarzadeh‐T N, Parsa A. Sonochemical synthesis and crystal structure of indium(III) complex as a modifier for electrochemical simultaneous determination of dopamine and acetylcholine. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced Technology Kerman Iran
| | | | - Asghar Parsa
- Department of ChemistryUniversity of Sistan and Baluchestan Zahedan Iran
| |
Collapse
|
4
|
Soares LES, Nahórny S, de Faria Braga V, Marciano FR, Bhattacharjee TT, Lobo AO. Raman spectroscopy-multivariate analysis related to morphological surface features on nanomaterials applied for dentin coverage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117818. [PMID: 31780307 DOI: 10.1016/j.saa.2019.117818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Raman spectroscopy and scanning electron microscopy (SEM) were used to investigate the effect of coating materials and acidulated phosphate fluoride gel (APF) treatment on dentin before and after erosion-abrasion cycles. A multi-walled carbon nanotube/graphene oxide hybrid carbon-based material (MWCNTO-GO), nanohydroxyapatite (nHAp), or a combined composite (nHAp/MWCNTO-GO) were used as a coating. Seventy root dentin fragments obtained from 40 bovine teeth were prepared and divided into groups (n = 10): negative control, artificial saliva - C, positive control - APF; nHAp; MWCNTO-GO; APF_nHAp; APF_MWCNTO-GO and APF_nHAp/MWCNTO-GO. All samples were subjected to cycles of demineralization (orange juice, pH ~3.7, room temperature, 1 min) followed by remineralization (saliva, 37 °C, 1 h). The remineralization procedures were followed by tooth brushing (150 strokes). The above cycle was repeated 3×/day for 5 days. The previous APF treatment of dentin allowed a better affinity of nHAp and MWCNTO-GO with the inorganic and organic portion of dentin, respectively. This interaction indicates the formation of a protective layer for the dentin surface and for the collagen giving possible protection against erosion. SEM micrographs illustrated the formation of a protective layer after application of the biomaterials and that it was partially or totally removed after the erosion and abrasion. Raman spectroscopy combined with multivariate analysis could distinguish samples with respect to treatment efficacy. The APF_nHAP/MWCNT-GO composite has shown to be a promising material since it has binding characteristics both to the inorganic and organic portion of the dentin and reduced solubility. Mineral-to-matrix ratio (MMR) parameter analysis confirmed the binding capability of MWCNTO-GO-based materials to dentin.
Collapse
Affiliation(s)
- Luís Eduardo Silva Soares
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil.
| | - Sídnei Nahórny
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Vivian de Faria Braga
- Laboratory of Dentistry and Applied Materials (LDAM), Research and Development Institute (IP&D), Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | | | | | - Anderson Oliveira Lobo
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, Department of Materials Engineering, UFPI - Federal University of Piauí, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
5
|
de Vasconcellos LMR, do Prado RF, Sartori EM, Mendonça DBS, Mendonça G, Marciano FR, Lobo AO. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:81. [PMID: 31254104 DOI: 10.1007/s10856-019-6271-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Carbon nanotubes combine high bend and mechanical strength, which is advantageous for many structural and biomedical purposes. Recently, some biomaterials, based on carbon nanostructures and nanohydroxyapatite (nHAp), have been investigated as bone substitutes in order to improve regeneration. The aim of this study was to access the expression of some RNA transcripts (involved in the process of osteoblast differentiation) by mesenchymal stem cells cultured over different nanocomposite surfaces. A multi-walled carbon nanotube (MWCNT) was firstly grown using chemical vapor deposition and then exfoliated using chemical and oxygen plasma treatments to obtain graphene nanoribbons (GNR). The hybrid composites nHAp/GNR were prepared using the wet method assisted by ultrasound irradiation with different amounts of GNR (1.0, 2.0 and 3.0 wt %). Five groups were tested in cell cultures. Group 1: synthesized nHAp; Group 2: synthesized GNR; Group 3: nHAp and 1.0% of GNR; Group 4: nHAp and 2.0% of GNR and group 5: nHAp and 3.0% of GNR. Real time reverse transcription polymerase chain reactions were performed, and all data was submitted to Kruskal Wallis and Dunn tests, at a significance level of 5%. As a result, three nanocomposites with different proportions of GNR were successfully produced. After cell culture, the expression of osteogenic genes demonstrated no significant differences among the groups and periods. However, bone morphogenetic protein II (BMP II), integrin binding sialoprotein (IBSP), and Osterix highest expressions were observed in the group containing 3.0% of GNR. In conclusion, our hybrid composites may be useful in bone interventions requiring mesenchymal stem cell differentiation into osteoblasts for healing.
Collapse
Affiliation(s)
- Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil.
| | - Renata Falchete do Prado
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Av. Engenheiro Francisco José Longo, 777, São José dos Campos, SP, 12245-000, Brazil
| | - Elisa Mattias Sartori
- Department of Surgery and Integrated Clinics, School of Dentistry of Araçatuba, Sao Paulo State University, Araçatuba, Brazil
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Gustavo Mendonça
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Fernanda Roberta Marciano
- Scientific and Technological Institute, Universidade Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil
| | - Anderson Oliveira Lobo
- Scientific and Technological Institute, Universidade Brasil, Rua Carolina Fonseca, 584 - Itaquera, São Paulo, SP, 08230-030, Brazil.
- Interdisciplinary Laboratory for Advanced Materials, Post-graduation Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil.
| |
Collapse
|
6
|
Production and Characterization of Porous Polymeric Membranes of PLA/PCL Blends with the Addition of Hydroxyapatite. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymer membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). The literature recognizes that poly (lactic acid) (PLA)/poly (ε-caprolactone) (PCL) blends have better physicochemical properties and that a porous polymer surface facilitates cell adhesion and proliferation. In addition, hydroxyapatite (HAp) incorporated into the polymer matrix promotes osteoinduction properties and osteoconduction to the polymer-ceramic biocomposite. Therefore, polymer membranes of PLA/PCL blend with the addition of HAp could be an alternative to be used in GBR. HAp was obtained by precipitation using the mixture of solutions of tetrahydrate calcium nitrate and monobasic ammonium phosphate salts. The porous membranes of the PLA/PCL (80/20) blend with the addition of HAp were obtained by solvent casting with a controlled humidity method, with the dispersion of HAp in chloroform and subsequent solubilization with the components of the blend. The solution was poured into molds for solvent evaporation under a controlled humidity atmosphere. The membranes showed the formation of pores on their surface, together with dispersed HAp particles. The results showed an increase in the surface porosity and improved bioactivity properties with the addition of HAp. Moreover, in biological studies with cell culture, it was possible to observe that the membranes with HAp have no cytotoxic effect on MC3T3 cells. These results indicate a promising use of the new biomaterial for GBR.
Collapse
|
7
|
Parisi JR, Fernandes KR, Avanzi IR, Dorileo BP, Santana AF, Andrade AL, Gabbai-Armelin PR, Fortulan CA, Trichês ES, Granito RN, Renno ACM. Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:30-37. [PMID: 30218326 DOI: 10.1007/s10126-018-9855-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Biomaterial-based bone grafts have an important role in the field of bone tissue engineering. One of the most promising classes of biomaterials is collagen, including the ones from marine biodiversity (in general, called spongin (SPG)). Also, hydroxyapatite (HA) has an important role in stimulating bone metabolism. Therefore, this work investigated the association of HA and SPG composites in order to evaluate their physico-chemical and morphological characteristics and their in vitro biological performance. For this, pre-set composite disks were evaluated by means of mass loss after incubation, pH, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and "in vitro" cell viability. pH measurements showed no statistical difference between groups. Moreover, a higher mass loss was observed for HA/SPG70/30 compared to the other groups for all experimental periods. Moreover, SEM representative micrographs showed the degradation of the samples with and without immersion. FTIR analysis demonstrated the absorption peaks for poly(methyl methacrylate) (PMMA), HA, and SPG. A higher L292 cell viability for control and PMMA was observed compared to HA and HA/SPG 90/10. Also, HA/SPG 70/30 showed higher cell viability compared to HA and HA/SPG 90/10 on days 3 and 7 days of culture. Furthermore, HA showed a significant lower MC3T3 cell viability compared to control and HA/SPG 70/30 on day 3 and no significant difference was observed between the composites in the last experimental period. Based on our investigations, it can be concluded that the mentioned composites were successfully obtained, presenting improved biological properties, especially the one mimicking the composition of bone (with 70% of HA and 30% of SPG). Consequently, these data highlight the potential of the introduction of SPG into HA to improve the performance of the graft for bone regeneration applications. Further long-term studies should be carried out to provide additional information concerning the late stages of material degradation and bone healing in the presence of HA/SPG.
Collapse
Affiliation(s)
- J R Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, São Carlos, SP, Brazil.
| | - K R Fernandes
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, São Carlos, SP, Brazil
| | - I R Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - B P Dorileo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A F Santana
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A L Andrade
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), Washington Luís, km 235, São Carlos, SP, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering São Carlos, São Carlos, SP, Brazil
| | - E S Trichês
- Department of Mechanical Engineering, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - R N Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A C M Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|
8
|
Padmanabhan VP, T. S. N. SN, Sagadevan S, Hoque ME, Kulandaivelu R. Advanced lithium substituted hydroxyapatite nanoparticles for antimicrobial and hemolytic studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj03735g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, pure hydroxyapatite (HAP) and lithium substituted hydroxyapatite (Li-HAP) nanoparticles were synthesized by a sonochemical synthesis process and investigated for their antimicrobial and hemolytic activities.
Collapse
Affiliation(s)
| | | | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre
- University of Malaya
- Malaysia
| | - Md Enamul Hoque
- Department of Biomedical Engineering
- Military Institute of Science and Technology (MIST)
- Dhaka
- Bangladesh
| | | |
Collapse
|
9
|
Sukhodub L, Sukhodub L, Prylutskyy Y, Strutynska N, Vovchenko L, Soroca V, Slobodyanik N, Tsierkezos N, Ritter U. Composite material based on hydroxyapatite and multi-walled carbon nanotubes filled by iron: Preparation, properties and drug release ability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:606-614. [DOI: 10.1016/j.msec.2018.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023]
|
10
|
Tozar A, Karahan IH. Effects of ultrasonic agitation time on wet chemical synthesis of nanohydroxyapatite. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2018. [DOI: 10.1680/jbibn.18.00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the synthesis of the nanohydroxyapatite (nHAp) powders by way of wet chemical method is reported. Calcium nitrate tetrahydrate (Ca(NO3)2·H2O) and dibasic ammonium phosphate ((NH4)2HPO4) were used as calcium and phosphorus sources, respectively. The effect of ultrasonic agitation time has been systematically studied between 30 and 150 min at the temperature of 70°C. Structural, morphological, spectroscopic and thermal analysis have been carried out by way of X-ray powder diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy and thermogravimetry–differential scanning calorimetry analysis. It is shown that the ultrasonic agitation conditions significantly affect the crystallite size, dislocation density and microstrain of the powders calculated by way of the Debye–Scherrer formula. Thermal analyses reveal that the ultrasonic agitation treatment has a very beneficial effect on the fabrication of the powders by the wet chemical method due to the inhibition of physisorbed and chemisorbed water and the calcium deficiency. Magnetic stirring treatment is found to lead to larger nHAp nanoparticle agglomerations due to more water absorption. The results offer a promising route towards the scalable synthesis of the pure-phase nHAp powders with controllable structural and morphological properties, which could be useful in various types of basic and applied research on HAp-based materials.
Collapse
Affiliation(s)
- Ali Tozar
- Physics Department, Faculty of Art and Science, Mustafa Kemal University, Antakya, Turkey
| | - Ismail Hakkı Karahan
- Physics Department, Faculty of Art and Science, Mustafa Kemal University, Antakya, Turkey
| |
Collapse
|
11
|
Martinelli NM, Ribeiro MJG, Ricci R, Marques MA, Lobo AO, Marciano FR. In Vitro Osteogenesis Stimulation via Nano-Hydroxyapatite/Carbon Nanotube Thin Films on Biomedical Stainless Steel. MATERIALS (BASEL, SWITZERLAND) 2018; 11:ma11091555. [PMID: 30158449 PMCID: PMC6164324 DOI: 10.3390/ma11091555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
We evaluated the electrophoretic deposition of nanohydroxyapatite/superhydrop hilic multiwalled carbon nanotube composites (nHAp/MWCNT) onto stainless steel biomedical alloys for applications in bone tissue engineering. First, nHAp/MWCNT composites were dispersed into 0.042 mol·L−1 of Ca(NO3)2·4H2O + 0.025 mol·L−1 NH4H2PO4 electrolytes (pH = 4.8) at two different concentrations. Next, a voltage of −2 V was applied using 316L stainless steel as a working electrode (0.27 cm2), a high-purity platinum coil wire was used as the auxiliary electrode, and an Ag/AgCl (3 M) electrode was used as the reference electrode. The nHAp/MWCNT composites were characterized by transmission electron microscopy. The deposited nHAp and nHAp/MWCNT films were characterized by profilometry, scanning electron microscopy, X-ray diffractometry and Raman spectroscopy. Human osteoblast cells were cultivated with the different materials and in vitro cytotoxicity was evaluated using lactate dehydrogenase (LDH) assay. The osteogenesis process was evaluated by mRNA levels of the three genes that are directly related to bone repair: Alkaline Phosphatase, Osteopontin and Osteocalcin. We showed that rough, crystalline apatite thin films containing phases of nHAp were successfully deposited onto 316L stainless steel alloys. Also, we noticed that nHAp/MWCNT thin films deposited onto 316L stainless steel alloys upregulated the expression of important genes related to bone mineralization and maturation. Our results strongly support the possibility of this new alternative to modify the surface of metallic biomedical alloys to promote bone tissue regeneration.
Collapse
Affiliation(s)
- Natalia M Martinelli
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, Bairro Urbanova, São José dos Campos, São Paulo 12244-000, Brazil.
| | - Maria Julia G Ribeiro
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, Bairro Urbanova, São José dos Campos, São Paulo 12244-000, Brazil.
| | - Ritchelli Ricci
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, Bairro Urbanova, São José dos Campos, São Paulo 12244-000, Brazil.
| | - Miller A Marques
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, Bairro Urbanova, São José dos Campos, São Paulo 12244-000, Brazil.
| | - Anderson Oliveira Lobo
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca 584, Bairro Itaquera, São Paulo 08230-030, Brazil.
| | - Fernanda Roberta Marciano
- Instituto de Ciência e Tecnologia, Universidade Brasil, Rua Carolina da Fonseca 584, Bairro Itaquera, São Paulo 08230-030, Brazil.
| |
Collapse
|
12
|
Umemura K, Sato S. Scanning Techniques for Nanobioconjugates of Carbon Nanotubes. SCANNING 2018; 2018:6254692. [PMID: 30008981 PMCID: PMC6020491 DOI: 10.1155/2018/6254692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 05/17/2023]
Abstract
Nanobioconjugates using carbon nanotubes (CNTs) are attractive and promising hybrid materials. Various biological applications using the CNT nanobioconjugates, for example, drug delivery systems and nanobiosensors, have been proposed by many authors. Scanning techniques such as scanning electron microscopy (SEM) and scanning probe microscopy (SPM) have advantages to characterize the CNT nanobioconjugates under various conditions, for example, isolated conjugates, conjugates in thin films, and conjugates in living cells. In this review article, almost 300 papers are categorized based on types of CNT applications, and various scanning data are introduced to illuminate merits of scanning techniques.
Collapse
Affiliation(s)
- Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| | - Shizuma Sato
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| |
Collapse
|
13
|
Nikolaev AL, Gopin AV, Severin AV, Rudin VN, Mironov MA, Dezhkunov NV. Ultrasonic synthesis of hydroxyapatite in non-cavitation and cavitation modes. ULTRASONICS SONOCHEMISTRY 2018; 44:390-397. [PMID: 29680625 DOI: 10.1016/j.ultsonch.2018.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
The size control of materials is of great importance in research and technology because materials of different size and shape have different properties and applications. This paper focuses on the synthesis of hydroxyapatite in ultrasound fields of different frequencies and intensities with the aim to find the conditions which allow control of the particles size. The results are evaluated by X-ray diffraction, Transmission Electron Microscopy, morphological and sedimentation analyses. It is shown that the hydroxyapatite particles synthesized at low intensity non-cavitation regime of ultrasound have smaller size than those prepared at high intensity cavitation regime. The explanation of observed results is based on the idea of formation of vortices at the interface between phosphoric acid and calcium hydroxide solution where the nucleation of hydroxyapatite particles is taken place. Smaller vortices formed at high frequency non-cavitation ultrasound regime provide smaller nucleation sites and smaller resulting particles, compared to vortices and particles obtained without ultrasound. Discovered method has a potential of industrial application of ultrasound for the controlled synthesis of nanoparticles.
Collapse
Affiliation(s)
- A L Nikolaev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - A V Gopin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A V Severin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V N Rudin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - M A Mironov
- N.N. Andreev Acoustic Institute, Shvernika Street, 4, Moscow, 117036, Russia
| | - N V Dezhkunov
- Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki Street, Minsk, 220013, Belarus
| |
Collapse
|
14
|
Stanislavov AS, Sukhodub LF, Sukhodub LB, Kuznetsov VN, Bychkov KL, Kravchenko MI. Structural features of hydroxyapatite and carbonated apatite formed under the influence of ultrasound and microwave radiation and their effect on the bioactivity of the nanomaterials. ULTRASONICS SONOCHEMISTRY 2018; 42:84-96. [PMID: 29429738 DOI: 10.1016/j.ultsonch.2017.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 06/08/2023]
Abstract
The samples of hydroxyapatite and carbonate substituted hydroxyapatite (CHA) were obtained under the influence of physical factors, namely ultrasound (US) and microwave (MW) radiations. The results of Fourier transform infrared spectroscopy and X-ray diffraction analysis have proved the formation of the calcium deficient hydroxyapatite and B-type CHA with the Ca/P ratio in the ranges 1.62-1.87. In vitro studies have showed the increased bioactivity of the samples, synthesized under the influence of physical factors as compared to the standard ones. The samples of both groups, synthesized under the influence of 600 W MW, have shown the greatest stability in biological environment. In vivo tests confirm that obtained under US and MW radiations hydroxyapatite-based biomaterials are biocompatible, non-toxic and exhibit osteoconductive properties. The usage of US and MW radiations can significantly shorten the time (up to 5-20 min) of obtaining of calcium deficient hydroxyapatite and B-type CHA in nanopowder form, close in structure and composition to the biological hydroxyapatite.
Collapse
Affiliation(s)
- A S Stanislavov
- Sumy State University, Ministry of Education and Science of Ukraine, Sumy 40007, Ukraine; Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy 40000, Ukraine
| | - L F Sukhodub
- Sumy State University, Ministry of Education and Science of Ukraine, Sumy 40007, Ukraine.
| | - L B Sukhodub
- Sumy State University, Ministry of Education and Science of Ukraine, Sumy 40007, Ukraine
| | - V N Kuznetsov
- Sumy State University, Ministry of Education and Science of Ukraine, Sumy 40007, Ukraine; Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy 40000, Ukraine
| | - K L Bychkov
- Kyiv National Taras Shevchenko University, Ministry of Education and Science of Ukraine, Kyiv 01601, Ukraine
| | | |
Collapse
|
15
|
Silva ADR, Rigoli WR, Osiro D, Mello DCR, Vasconcellos LMR, Lobo AO, Pallone EMJA. Surface modification using the biomimetic method in alumina-zirconia porous ceramics obtained by the replica method. J Biomed Mater Res B Appl Biomater 2018; 106:2615-2624. [PMID: 29328519 DOI: 10.1002/jbm.b.34078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/21/2017] [Accepted: 12/31/2017] [Indexed: 11/06/2022]
Abstract
The modification of biomaterials approved by the Food and Drug Administration could be an alternative to reduce the period of use in humans. Porous bioceramics are widely used as support structures for bone formation and repair. This composite has essential characteristics for an implant, including good mechanical properties, high chemical stability, biocompatibility and adequate aesthetic appearance. Here, three-dimensional porous scaffolds of Al2 O3 containing 5% by volume of ZrO2 were produced by the replica method. These scaffolds had their surfaces chemically treated with phosphoric acid and were coated with calcium phosphate using the biomimetic method simulated body fluid (SBF, 5×) for 14 days. The scaffolds, before and after biomimetic coating, were characterized mechanically, morphologically and structurally by axial compression tests, scanning electron microscopy, microtomography, apparent porosity, X-ray diffractometry, near-infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, energy dispersive X-ray spectroscopy and reactivity. The in vitro cell viability and formation of mineralization nodules were used to identify the potential for bone regeneration. The produced scaffols after immersion in SBF were able to induce the nodules formation. These characteristics are advantaged by the formation of different phases of calcium phosphates on the material surface in a reduced incubation period. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2615-2624, 2018.
Collapse
Affiliation(s)
- André D R Silva
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, 13635-900, São Paulo, Brasil
| | - Willian R Rigoli
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, 13635-900, São Paulo, Brasil
| | - Denise Osiro
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, 13635-900, São Paulo, Brasil
| | - Daphne C R Mello
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Odontologia de São José dos Campos, 12245-000, São Paulo, Brasil
| | - Luana M R Vasconcellos
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Odontologia de São José dos Campos, 12245-000, São Paulo, Brasil
| | - Anderson O Lobo
- Laboratório de Nanotecnologia Biomédica (NANOBIO), Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, Itaquera, SP, Brazil.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, Massachusetts, USA.,Laboratório Interdisciplinar de Materiais Avançados, Programa de Pós-Graduação em Ciência dos Materiais, Centro de Tecnologia, Universidade Federal do Piauí, 64049-550, Teresina, PI, Brazil
| | - Eliria M J A Pallone
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, 13635-900, São Paulo, Brasil
| |
Collapse
|
16
|
Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: A novel coating to prevent dentin erosion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Graphene oxide nanoribbons as nanomaterial for bone regeneration: Effects on cytotoxicity, gene expression and bactericidal effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:341-348. [DOI: 10.1016/j.msec.2017.03.278] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/28/2017] [Accepted: 03/28/2017] [Indexed: 11/18/2022]
|
18
|
Silva E, Vasconcellos LMRD, Rodrigues BVM, Dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:31-39. [PMID: 28183613 DOI: 10.1016/j.msec.2016.11.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/24/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied.
Collapse
Affiliation(s)
- Edmundo Silva
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, State University of Sao Paulo (UNESP), Av. Engenheiro Francisco Jose Longo, 777, Sao Jose dos Campos 12245-000, SP, Brazil
| | - Bruno V M Rodrigues
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil
| | - Danilo Martins Dos Santos
- Chemistry Institute of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil
| | - Sergio P Campana-Filho
- Chemistry Institute of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil
| | - Fernanda Roberta Marciano
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil; Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Anderson Oliveira Lobo
- Laboratory of Biomedical Nanotechnology, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, São Paulo, Brazil; Laboratory of Biomedical Nanotechnology, Biomedical Engineering Innovation Center, Universidade Brasil, Rua Carolina Fonseca 235, 08230-030, São Paulo, Brazil; Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Rodrigues BVM, Leite NCS, Cavalcanti BDN, da Silva NS, Marciano FR, Corat EJ, Webster TJ, Lobo AO. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation. Int J Nanomedicine 2016; 11:2569-85. [PMID: 27358560 PMCID: PMC4912317 DOI: 10.2147/ijn.s106339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nanohydroxyapatite (nHAp) is an emergent bioceramic that shows similar chemical and crystallographic properties as the mineral phase present in bone. However, nHAp presents low fracture toughness and tensile strength, limiting its application in bone tissue engineering. Conversely, multi-walled carbon nanotubes (MWCNTs) have been widely used for composite applications due to their excellent mechanical and physicochemical properties, although their hydrophobicity usually impairs some applications. To improve MWCNT wettability, oxygen plasma etching has been applied to promote MWCNT exfoliation and oxidation and to produce graphene oxide (GO) at the end of the tips. Here, we prepared a series of nHAp/MWCNT-GO nanocomposites aimed at producing materials that combine similar bone characteristics (nHAp) with high mechanical strength (MWCNT-GO). After MWCNT production and functionalization to produce MWCNT-GO, ultrasonic irradiation was employed to precipitate nHAp onto the MWCNT-GO scaffolds (at 1-3 wt%). We employed various techniques to characterize the nanocomposites, including transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetry, and gas adsorption (the Brunauer-Emmett-Teller method). We used simulated body fluid to evaluate their bioactivity and human osteoblasts (bone-forming cells) to evaluate cytocompatibility. We also investigated their bactericidal effect against Staphylococcus aureus and Escherichia coli. TEM analysis revealed homogeneous distributions of nHAp crystal grains along the MWCNT-GO surfaces. All nanocomposites were proved to be bioactive, since carbonated nHAp was found after 21 days in simulated body fluid. All nanocomposites showed potential for biomedical applications with no cytotoxicity toward osteoblasts and impressively demonstrated a bactericidal effect without the use of antibiotics. All of the aforementioned properties make these materials very attractive for bone tissue engineering applications, either as a matrix or as a reinforcement material for numerous polymeric nanocomposites.
Collapse
Affiliation(s)
- Bruno VM Rodrigues
- Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D), University of Vale do Paraiba (UNIVAP), Sao Jose dos Campos, Brazil
| | - Nelly CS Leite
- Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D), University of Vale do Paraiba (UNIVAP), Sao Jose dos Campos, Brazil
| | - Bruno das Neves Cavalcanti
- Department of Cardiology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Newton S da Silva
- Laboratory of Cell Biology and Tissue, Institute of Research and Development (IP&D), University of Vale Do Paraiba (UNIVAP)
| | - Fernanda R Marciano
- Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D), University of Vale do Paraiba (UNIVAP), Sao Jose dos Campos, Brazil
| | - Evaldo J Corat
- Associated Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, Brazil
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anderson O Lobo
- Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D), University of Vale do Paraiba (UNIVAP), Sao Jose dos Campos, Brazil
| |
Collapse
|
20
|
Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:782-791. [PMID: 26652433 DOI: 10.1016/j.msec.2015.10.075] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 10/23/2015] [Indexed: 11/23/2022]
Abstract
The use of poly (butylene adipate-co-terephthalate) (PBAT) in tissue engineering, more specifically in bone regeneration, has been underexplored to date due to its poor mechanical resistance. In order to overcome this drawback, this investigation presents an approach into the preparation of electrospun nanocomposite fibers from PBAT and low contents of superhydrophilic multi-walled carbon nanotubes (sMWCNT) (0.1-0.5wt.%) as reinforcing agent. We employed a wide range of characterization techniques to evaluate the properties of the resulting electrospun nanocomposites, including Field Emission Scanning Electronic Microscopy (FE-SEM), Transmission Electronic Microscopy (TEM), tensile tests, contact angle measurements (CA) and biological assays. FE-SEM micrographs showed that while the addition of sMWCNT increased the presence of beads on the electrospun fibers' surfaces, the increase of the neat charge density due to their presence reduced the fibers' average diameter. The tensile test results pointed that sMWCNT acted as reinforcement in the PBAT electrospun matrix, enhancing its tensile strength (from 1.3 to 3.6MPa with addition of 0.5wt.% of sMWCNT) and leading to stiffer materials (lower elongation at break). An evaluation using MG63 cells revealed cell attachment into the biomaterials and that all samples were viable for biomedical applications, once no cytotoxic effect was observed. MG-63 cells osteogenic differentiation, measured by ALP activity, showed that mineralized nodules formation was increased in PBAT/0.5%CNTs when compared to control group (cells). This investigation demonstrated a feasible novel approach for producing electrospun nanocomposites from PBAT and sMWCNT with enhanced mechanical properties and adequate cell viability levels, which allows for a wide range of biomedical applications for these materials.
Collapse
|
21
|
Liu Z, Tang Y, Kang T, Rao M, Li K, Wang Q, Quan C, Zhang C, Jiang Q, Shen H. Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement. Colloids Surf B Biointerfaces 2015; 131:39-46. [DOI: 10.1016/j.colsurfb.2015.04.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/25/2015] [Accepted: 04/13/2015] [Indexed: 12/28/2022]
|
22
|
Zanin H, Rosa CMR, Eliaz N, May PW, Marciano FR, Lobo AO. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds. NANOSCALE 2015; 7:10218-10232. [PMID: 25990927 DOI: 10.1039/c4nr07317g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electrodeposited nano-hydroxyapatite (nHAp) is more similar to biological apatite in terms of microstructure and dimension than apatites prepared by other processes. Reinforcement with carbon nanotubes (CNTs) enhances its mechanical properties and increases adhesion of osteoblasts. Here, we carefully studied nHAp deposited onto vertically aligned multi-walled CNT (VAMWCNT) scaffolds by electrodeposition and soaking in a simulated body fluid (SBF). VAMWCNTs are porous biocompatible scaffolds with nanometric porosity and exceptional mechanical and chemical properties. The VAMWCNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method, and then oxidized and exfoliated by oxygen plasma etching (OPE) to produce graphene oxide (GO) at the VAMWCNT tips. The attachment of oxygen functional groups was found to be crucial for nHAp nucleation during electrodeposition. A thin layer of plate-like and needle-like nHAp with high crystallinity was formed without any need for thermal treatment. This composite (henceforth referred to as nHAp-VAMWCNT-GO) served as the scaffold for in vitro biomineralization when soaked in the SBF, resulting in the formation of both carbonate-rich and carbonate-poor globular-like nHAp. Different steps in the deposition of biological apatite onto VAMWCNT-GO and during the short-term biomineralization process were analysed. Due to their unique structure and properties, such nano-bio-composites may become useful in accelerating in vivo bone regeneration processes.
Collapse
Affiliation(s)
- H Zanin
- Laboratory of Biomedical Nanotechnology/Institute of Research and Development (IP&D) at the University of Vale do Paraiba (UniVap), Av. Shishima Hifumi, 2911, Sao Jose dos Campos, 12244-000, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
23
|
Siqueira IAWB, Oliveira CAGS, Zanin H, Grinet MAVM, Granato AEC, Porcionatto MA, Marciano FR, Lobo AO. Bioactivity behaviour of nano-hydroxyapatite/freestanding aligned carbon nanotube oxide composite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:113. [PMID: 25665850 DOI: 10.1007/s10856-015-5450-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
Bioactive and low cytotoxic three dimensional nano-hydroxyapatite (nHAp) and aligned carbon nanotube oxide (a-CNTO) composite has been investigated. First, freestanding aligned carbon nanotubes porous scaffold was prepared by large-scale thermal chemical vapour deposition and functionalized by oxygen plasma treatment, forming a-CNTO. The a-CNTO was covered with plate-like nHAp crystals prepared by in situ electrodeposition techniques, forming nHAp/a-CNTO composite. After that nHAp/a-CNTO composite was immersed in simulated body fluid for composite consolidation. This novel nanobiomaterial promotes mesenchymal stem cell adhesion with the active formation of membrane projections, cell monolayer formation and high cell viability.
Collapse
Affiliation(s)
- Idalia A W B Siqueira
- Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D), University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, São Paulo, CEP/12224-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zanin H, Margraf-Ferreira A, da Silva N, Marciano F, Corat E, Lobo A. Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:65-9. [DOI: 10.1016/j.msec.2014.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/23/2014] [Accepted: 04/07/2014] [Indexed: 01/13/2023]
|
25
|
Hollanda L, Lobo A, Lancellotti M, Berni E, Corat E, Zanin H. Graphene and carbon nanotube nanocomposite for gene transfection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 39:288-98. [DOI: 10.1016/j.msec.2014.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 01/26/2014] [Accepted: 03/01/2014] [Indexed: 01/08/2023]
|
26
|
Kim DY, Han YH, Lee JH, Kang IK, Jang BK, Kim S. Characterization of multiwalled carbon nanotube-reinforced hydroxyapatite composites consolidated by spark plasma sintering. BIOMED RESEARCH INTERNATIONAL 2014; 2014:768254. [PMID: 24724100 PMCID: PMC3960548 DOI: 10.1155/2014/768254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/18/2014] [Indexed: 12/03/2022]
Abstract
Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day.
Collapse
Affiliation(s)
- Duk-Yeon Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongbuk 712-749, Republic of Korea
| | - Young-Hwan Han
- School of Materials Science and Engineering, Yeungnam University, Gyeongbuk 712-749, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Engineering, Dong-A University, Busan 604-714, Republic of Korea
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Byung-Koog Jang
- Advanced Ceramics Group, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Sukyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongbuk 712-749, Republic of Korea
| |
Collapse
|
27
|
Silva TA, Zanin H, Saito E, Medeiros RA, Vicentini FC, Corat EJ, Fatibello-Filho O. Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Silva TA, Zanin H, Vicentini FC, Corat EJ, Fatibello-Filho O. Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of atorvastatin calcium in pharmaceutical and biological samples using a vertically aligned carbon nanotube/graphene oxide electrode. Analyst 2014; 139:2832-41. [DOI: 10.1039/c4an00111g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Grinet MAVM, Zanin H, Campos Granato AE, Porcionatto M, Marciano FR, Lobo AO. Fast preparation of free-standing nanohydroxyapatite–vertically aligned carbon nanotube scaffolds. J Mater Chem B 2014; 2:1196-1204. [DOI: 10.1039/c3tb21525c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|