1
|
Sun K, Deng T, Sun J, Gao S, Liu H, Zhu S, Zhao XE. Ratiometric fluorescence detection of artemisinin based on photoluminescent Zn-MOF combined with hemin as catalyst. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122253. [PMID: 36542922 DOI: 10.1016/j.saa.2022.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Artemisinin (ART) is a type of frontline drug to treat drug-resistant falciparum malaria. Simple, accurate and selective determination of ART is significant to monitor its clinical pharmaceutical efficacy. Herein, a new ratiometric fluorescence method has been designed for the determination of ART with Zn-MOF as fluorescence reference and hemin as catalyst, respectively. Zn-MOF possesses intrinsic fluorescence at 443 nm owing to 2-aminoterephthalic acid ligand. When o-phenylenediamine (OPD) is mixed with hemin, a weak fluorescent signal at 570 nm ascribed to oxidized product of OPD (oxOPD) is observed. In the presence of ART, hemin can catalyze ART to break its peroxide bridge and release a large number of reactive oxygen species, which effectively oxidize OPD into luminescent oxOPD. Therefore, the fluorescence at 570 nm is enhanced significantly while the fluorescence of Zn-MOF remains basically unchanged. Thus, a ratiometric fluorescence sensing platform has been constructed for the detection of ART. This method exhibits wider linear range (0.15 μM-150 μM) with detection limit of 50 nM. This novel and selective method has been used to detect ART in compound naphthoquinone phosphate tablets.
Collapse
Affiliation(s)
- Kunming Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Tinghui Deng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City 810001, Qinghai, China
| | - Shuo Gao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China.
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China.
| |
Collapse
|
2
|
Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238351. [PMID: 36500442 PMCID: PMC9740486 DOI: 10.3390/molecules27238351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Polyhydroxyalkanoate (PHA), a biodegradable polymer obtained from microorganisms and plants, have been widely used in biomedical applications and devices, such as sutures, cardiac valves, bone scaffold, and drug delivery of compounds with pharmaceutical interests, as well as in food packaging. This review focuses on the use of polyhydroxyalkanoates beyond the most common uses, aiming to inform about the potential uses of the biopolymer as a biosensor, cosmetics, drug delivery, flame retardancy, and electrospinning, among other interesting uses. The novel applications are based on the production and composition of the polymer, which can be modified by genetic engineering, a semi-synthetic approach, by changing feeding carbon sources and/or supplement addition, among others. The future of PHA is promising, and despite its production costs being higher than petroleum-based plastics, tools given by synthetic biology, bioinformatics, and machine learning, among others, have allowed for great production yields, monomer and polymer functionalization, stability, and versatility, a key feature to increase the uses of this interesting family of polymers.
Collapse
|
3
|
Damphathik C, Butmee P, Kunpatee K, Kalcher K, Ortner A, Kerr M, Jitcharoen J, Samphao A. An electrochemical sensor for the voltammetric determination of artemisinin based on carbon materials and cobalt phthalocyanine. Mikrochim Acta 2022; 189:224. [PMID: 35585361 DOI: 10.1007/s00604-022-05257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
An electrochemical sensor for the determination of artemisinin has been developed based on a glassy carbon electrode modified with hybrid nanocomposites of cobalt phthalocyanine, graphene nanoplatelets, multi-walled carbon nanotubes and ionic liquids (IL). To improve the sensitivity and selectivity of the sensor, cobalt phthalocyanine (CoPc) was used as an effective redox mediator to promote and catalyze the artemisinin reduction. Furthermore, the graphene nanoplatelets and multi-walled carbon nanotubes were used as excellent conducting supporting materials to improve the sensitivity of the electrochemical sensor. Moreover, IL with a surface charge was also employed to prevent aggregation of the graphene nanoplatelets and multi-walled carbon nanotubes. The analytical signal was generated from the reduction of Co(III)Pc generated by artemisinin. The proposed electrochemical sensor was applied to the detection of artemisinin using differential pulse voltammetry and provided a signal with wide linearity ranging from 1.5-60 μM and 60-600 μM and a detection limit of 0.70 μM (3SD/m). Furthermore, the proposed sensor displayed good repeatability and reproducibility of 2.9-3.0 and 3.1-4.4% RSD, respectively. Applications of the sensor to drug and plant samples demonstrated accuracy in a range of 105-116% recoveries. In addition, the results were in good agreement with those obtained from the HPLC method as a reference technique. Thus, the proposed electrochemical sensor provides a new alternative platform for sensitive and selective determination of artemisinin in the analysis of pharmaceuticals with good precision and accuracy.
Collapse
Affiliation(s)
- Chulalak Damphathik
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Preeyanut Butmee
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Kanjana Kunpatee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, University of Graz, 8010, Graz, Austria
| | - Astrid Ortner
- Institute of Pharmaceutical Sciences, University of Graz, 8010, Graz, Austria
| | - Margaret Kerr
- Department of Chemistry, Worcester State University, 486 Chandler Street, Worcester, MA, 01602, USA
| | - Juthamas Jitcharoen
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand. .,Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
4
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Prakash P, Lee WH, Loo CY, Wong HSJ, Parumasivam T. Advances in Polyhydroxyalkanoate Nanocarriers for Effective Drug Delivery: An Overview and Challenges. NANOMATERIALS 2022; 12:nano12010175. [PMID: 35010124 PMCID: PMC8746483 DOI: 10.3390/nano12010175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are natural polymers produced under specific conditions by certain organisms, primarily bacteria, as a source of energy. These up-and-coming bioplastics are an undeniable asset in enhancing the effectiveness of drug delivery systems, which demand characteristics like non-immunogenicity, a sustained and controlled drug release, targeted delivery, as well as a high drug loading capacity. Given their biocompatibility, biodegradability, modifiability, and compatibility with hydrophobic drugs, PHAs often provide a superior alternative to free drug therapy or treatments using other polymeric nanocarriers. The many formulation methods of existing PHA nanocarriers, such as emulsion solvent evaporation, nanoprecipitation, dialysis, and in situ polymerization, are explained in this review. Due to their flexibility that allows for a vessel tailormade to its intended application, PHA nanocarriers have found their place in diverse therapy options like anticancer and anti-infective treatments, which are among the applications of PHA nanocarriers discussed in this article. Despite their many positive attributes, the advancement of PHA nanocarriers to clinical trials of drug delivery applications has been stunted due to the polymers’ natural hydrophobicity, controversial production materials, and high production costs, among others. These challenges are explored in this review, alongside their existing solutions and alternatives.
Collapse
Affiliation(s)
- Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh 30450, Perak, Malaysia; (W.-H.L.); (C.-Y.L.)
| | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh 30450, Perak, Malaysia; (W.-H.L.); (C.-Y.L.)
| | - Hau Seung Jeremy Wong
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia;
- Correspondence: ; Tel.: +60-4-6577888
| |
Collapse
|
6
|
Nate Z, Gill AA, Chauhan R, Karpoormath R. A review on recent progress in electrochemical detection of antimalarial drugs. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
7
|
Rekhi P, Goswami M, Ramakrishna S, Debnath M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit Rev Biotechnol 2021; 42:668-692. [PMID: 34645360 DOI: 10.1080/07388551.2021.1960265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymers are synonymous with the modern way of living. However, polymers with a large carbon footprint, especially those derived from nonrenewable petrochemical sources, are increasingly perceived as detrimental to the environment and a sustainable future. Polyhydroxyalkanoate (PHA) is a microbial biopolymer and a plausible alternative for renewable sources. However, PHA in its monomeric forms has very limited applications due to its limited flexibility, tensile strength, and moldability. Herein, the life cycle of PHA molecules, from biosynthesis to commercial utilization for diverse applications is discussed. For clarity, the applications of this bioplastic biocomposite material are further segregated into two domains, namely, the industrial sector and the medical sector. The industry sectors reviewed here include food packaging, textiles, agriculture, automotive, and electronics. High-value addition of PHA for a sustainable future can be foreseen in the medical domain. Properties such as biodegradability and biocompatibility make PHA a suitable candidate for decarbonizing biomaterials during tissue repair, organ reconstruction, drug delivery, bone tissue engineering, and chemotherapeutics.
Collapse
Affiliation(s)
- Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
8
|
Preparation of cassava fiber-iron nanoparticles composite for electrochemical determination of tea polyphenol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Goswami M, Rekhi P, Debnath M, Ramakrishna S. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules 2021; 26:860. [PMID: 33562111 PMCID: PMC7915662 DOI: 10.3390/molecules26040860] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are proteinaceous storage granules ranging from 100 nm to 500 nm. Bacillus sp. serve as unique bioplastic sources of short-chain length and medium-chain length PHA showcasing properties such as biodegradability, thermostability, and appreciable mechanical strength. The PHA can be enhanced by adding functional groups to make it a more industrially useful biomaterial. PHA blends with hydroxyapatite to form nanocomposites with desirable features of compressibility. The reinforced matrices result in nanocomposites that possess significantly improved mechanical and thermal properties both in solid and melt states along with enhanced gas barrier properties compared to conventional filler composites. These superior qualities extend the polymeric composites' applications to aggressive environments where the neat polymers are likely to fail. This nanocomposite can be used in different industries as nanofillers, drug carriers for packaging essential hormones and microcapsules, etc. For fabricating a bone scaffold, electrospun nanofibrils made from biocomposite of hydroxyapatite and polyhydroxy butyrate, a form of PHA, can be incorporated with the targeted tissue. The other methods for making a polymer scaffold, includes gas foaming, lyophilization, sol-gel, and solvent casting method. In this review, PHA as a sustainable eco-friendly NextGen biomaterial from bacterial sources especially Bacillus cereus, and its application for fabricating bone scaffold using different strategies for bone regeneration have been discussed.
Collapse
Affiliation(s)
- Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| |
Collapse
|
10
|
Comprehensive characterization of elastomeric polyhydroxyalkanoate and its sensor applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111091. [DOI: 10.1016/j.msec.2020.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
|
11
|
Pirzada M, Altintas Z. Nanomaterials for Healthcare Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5311. [PMID: 31810313 PMCID: PMC6928990 DOI: 10.3390/s19235311] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
12
|
Abstract
Background:
The determination of drugs in pharmaceutical formulations and human biologic fluids is
important for pharmaceutical and medical sciences. Successful analysis requires low sensitivity, high selectivity
and minimum interference effects. Current analytical methods can detect drugs at very low levels but these methods
require long sample preparation steps, extraction prior to analysis, highly trained technical staff and high-cost
instruments. Biosensors offer several advantages such as short analysis time, high sensitivity, real-time analysis,
low-cost instruments, and short pretreatment steps over traditional techniques. Biosensors allow quantification not
only of the active component in pharmaceutical formulations, but also the degradation products and metabolites in
biological fluids. The present review gives comprehensive information on the application of biosensors for drug
discovery and analysis. Moreover, this review focuses on the fabrication of these biosensors.
Methods:
Biosensors can be classified as the utilized bioreceptor and the signal transduction mechanism. The classification
based on signal transductions includes electrochemical optical, thermal or acoustic. Electrochemical and
optic transducers are mostly utilized transducers used for drug analysis. There are many biological recognition elements,
such as enzymes, antibodies, cells that have been used in fabricating of biosensors. Aptamers and antibodies
are the most widely used recognition elements for the screening of the drugs. Electrochemical sensors and biosensors
have several advantages such as low detection limits, a wide linear response range, good stability and reproducibility.
Optical biosensors have several advantages such as direct, real-time and label-free detection of many
biological and chemical substances, high specificity, sensitivity, small size and low cost. Modified electrodes enhance
sensitivity of the electrodes to develop a new biosensor with desired features. Chemically modified electrodes
have gained attention in drug analysis owing to low background current, wide potential window range, simple
surface renewal, low detection limit and low cost. Modified electrodes produced by modifying of a solid surface
electrode via different materials (carbonaceous materials, metal nanoparticles, polymer, biomolecules) immobilization.
Recent advances in nanotechnology offer opportunities to design and construct biosensors. Unique features
of nanomaterials provide many advantages in the fabrication of biosensors. Nanomaterials have controllable
chemical structures, large surface to volume ratios, functional groups on their surface. To develop proteininorganic
hybrid nanomaterials, four preparation methods have been used. These methods are immobilization, conjugation,
crosslinking and self-assembly. In the present manuscript, applications of different biosensors, fabricated
by using several materials, for drug analysis are reviewed. The biosensing strategies are investigated and discussed
in detail.
Results:
Several analytical techniques such as chromatography, spectroscopy, radiometry, immunoassays and electrochemistry
have been used for drug analysis and quantification. Methods based on chromatography require timeconsuming
procedure, long sample-preparation steps, expensive instruments and trained staff. Compared to chromatographic
methods, immunoassays have simple protocols and lower cost. Electrochemical measurements have
many advantages over traditional chemical analyses and give information about drug quantity, metabolic fate of
drugs, and pharmacological activity. Moreover, the electroanalytical methods are useful to determine drugs sensitively
and selectivity. Additionally, these methods decrease analysis cost and require low-cost instruments and
simple sample pretreatment steps.
Conclusion:
In recent years, drug analyses are performed using traditional techniques. These techniques have a
good detection limit, but they have some limitations such as long analysis time, expensive device and experienced
personnel requirement. Increased demand for practical and low-cost analytical techniques biosensor has gained interest
for drug determinations in medical sciences. Biosensors are unique and successful devices when compared to
traditional techniques. For drug determination, different electrode modification materials and different biorecognition
elements are used for biosensor construction. Several biosensor construction strategies have been developed to
enhance the biosensor performance. With the considerable progress in electrode surface modification, promotes the
selectivity of the biosensor, decreases the production cost and provides miniaturization. In the next years, advances
in technology will provide low cost, sensitive, selective biosensors for drug analysis in drug formulations and biological
samples.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Muhammet Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Mustafa Kemal Sezginturk
- Canakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Canakkale, Turkey
| |
Collapse
|
13
|
Eco-Friendly Electrochemical Biosensor based on Sodium Carboxymethyl Cellulose/Reduced Graphene Oxide Composite. Macromol Res 2019. [DOI: 10.1007/s13233-019-7054-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Wu CS, Liao HT. Fabrication, characterization, and application of polyester/wood flour composites. JOURNAL OF POLYMER ENGINEERING 2017. [DOI: 10.1515/polyeng-2016-0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The mechanical properties, thermal properties, antibacterial activity, and fabrication of three-dimensional (3D) printing strips of composite materials containing polyhydroxyalkanoate (PHA) and wood flour (WF) were evaluated. Maleic anhydride (MA)-grafted PHA (PHA-g-MA) and WF were used to enhance the desired characteristics of these composites. The PHA-g-MA/WF composites had better mechanical properties than the PHA/WF composites did. This effect was attributed to a greater compatibility between the grafted polyester and WF. Additionally, the PHA-g-MA/WF composites provided higher quality 3D printing strips and were more easily processed because of ester formation. The water resistance of the PHA-g-MA/WF composite was greater than that of PHA/WF. Moreover, WF enhanced the antibacterial activity of the composites. Composites of PHA-g-MA or PHA containing WF had better antibacterial activity.
Collapse
|
15
|
Thapliyal N, Chiwunze TE, Karpoormath R, Goyal RN, Patel H, Cherukupalli S. Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples. RSC Adv 2016. [DOI: 10.1039/c6ra05025e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The review focusses on the role of electroanalytical methods for determination of antimalarial drugs in biological matrices and pharmaceutical formulations with a critical analysis of published voltammetric and potentiometric methods.
Collapse
Affiliation(s)
- Neeta Thapliyal
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Tirivashe E. Chiwunze
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Rajendra N. Goyal
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Harun Patel
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| |
Collapse
|
16
|
Muhamad II, Selvakumaran S, Salehudin MH, Razak SIA. Eco‐Friendly Polymer‐Based Nanocomposites for Pharmaceutical Applications. HANDBOOK OF POLYMERS FOR PHARMACEUTICAL TECHNOLOGIES 2015:341-371. [DOI: 10.1002/9781119041559.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosens Bioelectron 2014; 64:352-8. [PMID: 25259878 DOI: 10.1016/j.bios.2014.09.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 01/14/2023]
Abstract
To develop a rapid and simple method for sensitive determination of artemisinin (ART) in complicated matrices, a novel electrochemical sensor was constructed by in-situ polymerization of ART-imprinted membranes (ART-MIMs) on the surface of graphene (G) modified glassy carbon electrode (GCE) using acrylamide (AM) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linking agent after the experimental parameters for the preparation of ART-MIMs such as functional monomer, molar ratio of template, monomer and cross-linking agent together with extraction condition were optimized. Under the optimal conditions, the sensor named as ART-MIM/G/GCE exhibited a good selectivity, high sensitivity and considerably better resistance against some analogs of artemisinin such as dihydroartemisinin (DHA), artemether (ARM) and artesunate (ARTS). The calibration graph for the determination of artemisinin by the sensor was linear in the range of 1.0 × 10(-8)mol L(-1) to 4.0 × 10(-5)mol L(-1) with the detection limit of 2.0 × 10(-9)mol L(-1). Meanwhile, this sensor possessed of good regeneration, stability and practicability. It could retain more than 94% of its original response after used at least 80 times or stored in water at room temperature for 60 days. The obtained sensor was successfully applied to determine the contents of artemisinin in the extract of Artemisia annua L. with the relative standard deviation (RSD) of less than 3.5% (n=5).
Collapse
|
18
|
Huang WR, Chen YL, Lee CY, Chiu HT. Fabrication of gold/polypyrrole core/shell nanowires on a flexible substrate for molecular imprinted electrochemical sensors. RSC Adv 2014. [DOI: 10.1039/c4ra11774c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gold/polypyrrole core/shell nanowires electrochemically grown on flexible substrates are used as molecular imprinted polymer biosensors for dopamine detection.
Collapse
Affiliation(s)
- Wei-Ren Huang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Yu-Liang Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| | - Chi-Young Lee
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu, Republic of China
| | - Hsin-Tien Chiu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu, Republic of China
| |
Collapse
|