1
|
Li H, Jin Z, Lu N, Pan J, Xu J, Yin XB, Zhang M. Fe 3O 4 nanoparticles entrapped in the inner surfaces of N-doped carbon microtubes with enhanced biomimetic activity. Dalton Trans 2024; 53:6974-6982. [PMID: 38563069 DOI: 10.1039/d3dt04310j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 μM and 0.49 μM, respectively, which has potential application value in biological sciences and biotechnology.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ziqi Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Na Lu
- College of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Jianmin Pan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
2
|
Yu YH, Lin XY, Teng KL, Lai WF, Hu CC, Tsai CH, Liu CP, Lee HL, Su CH, Liu YH, Lu KL, Chien SY. Synthesis of Two-Dimensional (Cu-S) n Metal-Organic Framework Nanosheets Applied as Peroxidase Mimics for Detection of Glutathione. Inorg Chem 2023; 62:17126-17135. [PMID: 37819788 PMCID: PMC10598880 DOI: 10.1021/acs.inorgchem.3c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/13/2023]
Abstract
Facilely synthesized peroxidase-like nanozymes with high catalytic activity and stability may serve as effective biocatalysts. The present study synthesizes peroxidase-like nanozymes with multinuclear active sites using two-dimensional (2D) metal-organic framework (MOF) nanosheets and evaluates them for their practical applications. A simple method involving a one-pot bottom-up reflux reaction is developed for the mass synthesis of (Cu-S)n MOF 2D nanosheets, significantly increasing production quantity and reducing reaction time compared to traditional autoclave methods. The (Cu-S)n MOF 2D nanosheets with the unique coordination of Cu(I) stabilized in Cu-based MOFs demonstrate impressive activity in mimicking natural peroxidase. The active sites of the peroxidase-like activity of (Cu-S)n MOF 2D nanosheets were predominantly verified as Cu(I) rather than Cu(II) of other Cu-based MOFs. The cost-effective and long-term stability of (Cu-S)n MOF 2D nanosheets make them suitable for practical applications. Furthermore, the inhibition of the peroxidase-like activity of (Cu-S)n MOF nanosheets by glutathione (GSH) could provide a simple strategy for colorimetric detection of GSH against other amino acids. This work remarkably extends the utilization of (Cu-S)n MOF 2D nanosheets in biosensing, revealing the potential for 2D (Cu-S)n MOFs.
Collapse
Affiliation(s)
- Yuan-Hsiang Yu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Xiao-Yuan Lin
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kun-Ling Teng
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wei-Fan Lai
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chia-Chi Hu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chia-Hsuan Tsai
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Ching-Ping Liu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Hui-Ling Lee
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Cing-Huei Su
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Hsiang Liu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kuang-Lieh Lu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Su-Ying Chien
- Instrumentation
Center, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
3
|
Tian L, Zhao B, Zhang J, Luo X, Wu F. Magnetic covalent organic framework nanospheres with enhanced peroxidase-like activity for colorimetric detection of H2O2 and glucose. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Arora S, Nagpal R, Gusain M, Singh B, Pan Y, Yadav D, Ahmed I, Kumar V, Parshad B. Organic-Inorganic Porphyrinoid Frameworks for Biomolecule Sensing. ACS Sens 2023; 8:443-464. [PMID: 36683281 DOI: 10.1021/acssensors.2c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Porphyrinoids and their analogous compounds play an important role in biosensing applications on account of their unique and versatile catalytic, coordination, photophysical, and electrochemical properties. Their remarkable arrays of properties can be finely tuned by synthetically modifying the porphyrinoid ring and varying the various structural parameters such as peripheral functionalization, metal coordination, and covalent or physical conjugation with other organic or inorganic scaffolds such as nanoparticles, metal-organic frameworks, and polymers. Porphyrinoids and their organic-inorganic conjugates are not only used as responsive materials but also utilized for the immobilization and embedding of biomolecules for applications in wearable devices, fast sensing devices, and other functional materials. The present review delineates the impact of different porphyrinoid conjugates on their physicochemical properties and their specificity as biosensors in a range of applications. The newest porphyrinoid types and their synthesis, modification, and functionalization are presented along with their advantages and performance improvements.
Collapse
Affiliation(s)
- Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ritika Nagpal
- Department of Chemistry, SRM University, 39, Rajiv Gandhi Education City, Delhi-NCR, Sonipat, Haryana 131029, India
| | - Meenakshi Gusain
- Centre of Micro-Nano System, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | | | - Yuanwei Pan
- Department of Diagnostic Radiology, Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Deepak Yadav
- Department of Chemistry, Gurugram University, Gurugram, Haryana 122003, India
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
5
|
Abedanzadeh S, Karimi B, Moosavi-Movahedi Z, Pourshiani O, Badiei A, Moosavi-Movahedi AA. Artificial metalloenzyme with peroxidase-like activity based on periodic mesoporous organosilica with ionic-liquid framework. MICROPOROUS AND MESOPOROUS MATERIALS 2023; 348:112384. [DOI: 10.1016/j.micromeso.2022.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
6
|
Reagen S, Wu Y, Shahni R, Sun W, Zhang J, Chu QR, Hou X, Combs C, Zhao JX. Development of Red-Emissive Porphyrin Graphene Quantum Dots (PGQDs) for Biological Cell-Labeling Applications. ACS OMEGA 2022; 7:38902-38911. [PMID: 36340159 PMCID: PMC9631800 DOI: 10.1021/acsomega.2c04623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Red and near-infrared emission is a highly desirable feature for fluorescent nanoparticles in biological applications mainly due to longer wavelengths more easily being able to deeply penetrate tissues, organs, skin, and other organic components, while less autofluorescence interference would be produced. Additionally, graphene quantum dots (GQDs) that contain unique optical and electrical features have been targeted for their use in cell labeling applications as well as environmental analysis. Their most desirable features come in the form of low toxicity and biocompatibility; however, GQDs are frequently reported to have blue or green emission light and not the more advantageous red/NIR emission light. Furthermore, porphyrins are a subgroup of heterocyclic macrocycle organic compounds that are also naturally occurring pigments in nature that already contain the desired red-emission fluorescence. Therefore, porphyrins have been used previously to synthesize nanomaterials and for nanoparticle doping in order to incorporate the red/NIR emission light property into particles that otherwise do not contain the desired emission light. Meso-tetra(4-carboxyphenyl)porphine (TCPP) is one type of porphyrin with a large conjugated π-electron system and four carboxyl groups on its exterior benzene rings. These two key characteristics of TCPP make it ideal for incorporation into GQDs, as it would design and synthesize red-emissive material as well as give rise to excellent water solubility. In this work, TCPP is used in tangent with cis-cyclobutane-1,2-dicarboxylic acid (CBDA-2), a biomass derived organic molecule, to synthesize "green" porphyrin-based graphene quantum dots (PGQDs) with red-emission. The obtained PGQDs were characterized by various analytical methods. Utilizing TEM, HRTEM, and DLS the size distribution of the particles was determined to be 7.9 ± 4.1, well within the quantum dot range of 2-10 nm. FT-IR, XPS, and XRD depicted carbon, nitrogen, and oxygen as the main elemental components with carbon being in the form of graphene and the main porphyrin ring of TCPP remaining present in the final PGQDs product. Lastly, absorption and fluorescence spectroscopy determined the excitation wavelength at 420 nm and the emission at 650 nm which was successfully utilized in the imaging of HeLa cells using confocal microscopy.
Collapse
Affiliation(s)
- Sarah Reagen
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Yingfen Wu
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Rahul Shahni
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Wen Sun
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Jin Zhang
- Institute
for Energy Studies, University of North
Dakota, Grand Forks, North Dakota58202, United States
| | - Qianli R. Chu
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Xiaodong Hou
- Institute
for Energy Studies, University of North
Dakota, Grand Forks, North Dakota58202, United States
| | - Colin Combs
- Department
of Biomedical Sciences, University of North
Dakota, Grand Forks, North Dakota58202, United States
| | - Julia Xiaojun Zhao
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| |
Collapse
|
7
|
Li Y, Pan Y, Chen C, Li Z, Du S, Luan X, Gao Y, Han X, Song Y. Multistage-Responsive Gene Editing to Sensitize Ion-Interference Enhanced Carbon Monoxide Gas Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204244. [PMID: 36055775 DOI: 10.1002/smll.202204244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
As a promising therapeutic modality targeting cancer, gas therapy still faces critical challenges, especially in enhancing therapeutic efficacy and avoiding gas poisoning risks. Here, a pH/glutathione (GSH) dual stimuli-responsive CRISPR/Cas9 gene-editing nanoplatform combined with calcium-enhanced CO gas therapy for precise anticancer therapy, is established. In the tumor microenvironment (TME), the fast biodegradation of the CaCO3 layer via pH-induced hydrolyzation allows glucose oxidase (GOx) to catalyze glucose for H2 O2 production, which further reacts with manganese carbonyl (MnCO) and achieves the precise release of CO gas. Simultaneously, in situ Ca2+ overload from CaCO3 degradation disturbs mitochondrial Ca2+ homeostasis, resulting in Ca2+ -driven reactive oxygen species (ROS) formation and subsequent mitochondrial apoptosis signaling pathway activation. Subsequently, by GSH-induced cleavage of a disulfide bond, the released Cas9/sgRNA (RNP) can achieve nuclear factor E2-related factor 2 (Nrf2) gene ablation to sensitize gas therapy by interfering with ROS signaling. This therapeutic modality endows codelivery of CRISPR, ions, and gas with smart control features, which demonstrates great potential for future clinical applications in precise nanomedicine.
Collapse
Affiliation(s)
- Yayao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Chao Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zekun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Du
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Qiu Y, Yuan B, Mi H, Lee JH, Chou SW, Peng YK. An Atomic Insight into the Confusion on the Activity of Fe 3O 4 Nanoparticles as Peroxidase Mimetics and Their Comparison with Horseradish Peroxidase. J Phys Chem Lett 2022; 13:8872-8878. [PMID: 36125422 DOI: 10.1021/acs.jpclett.2c02331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although Fe3O4 nanoparticles were early reported to outperform horseradish peroxidase (HRP), recent studies suggested that this material bears a very poor activity instead. Here, we resolve this disagreement by reviewing the definition of descriptors used and provide an atomic view into the origin of Fe3O4 nanoparticles as peroxidase mimetics. The redox between H2O2 and Fe(II) sites on the Fe3O4 surface was identified as the key step to producing OH radicals for the oxidation of colorimetric substrates. This mechanism involving free radicals is distinct from that of HRP oxidizing substrates with a radical retained on its Fe-porphyrin ring. Surprisingly, the distribution and chemical state of Fe species were found to be very different on single- and polycrystalline Fe3O4 nanoparticles with the latter bearing not only a higher Fe(II)/Fe(III) ratio but also a more reactive Fe(II) species at surface grain boundaries. This accounts for the unexpected gap in the catalytic constant (kcat) observed for this material in the literature.
Collapse
Affiliation(s)
- Yuwei Qiu
- Department of Chemistry, City University of Hong Kong, 0000 Hong Kong, Hong Kong SAR, China
| | - Bo Yuan
- Department of Chemistry, City University of Hong Kong, 0000 Hong Kong, Hong Kong SAR, China
| | - Hua Mi
- Department of Chemistry, City University of Hong Kong, 0000 Hong Kong, Hong Kong SAR, China
| | - Jung-Hoon Lee
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Shang-Wei Chou
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, 0000 Hong Kong, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
9
|
Zhong J, Liu S, Zou T, Yan W, Chen P, Liu B, Sun Z, Wang Y. High-Sensitivity Optical Fiber-Based Glucose Sensor Using Helical Intermediate-Period Fiber Grating. SENSORS (BASEL, SWITZERLAND) 2022; 22:6824. [PMID: 36146172 PMCID: PMC9501600 DOI: 10.3390/s22186824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
An all-fiber glucose sensor is proposed and demonstrated based on a helical intermediate-period fiber grating (HIPFG) produced by using a hydrogen/oxygen flame heating method. The HIPFG, with a grating length of 1.7 cm and a period of 35 μm, presents four sets of double dips with low insertion losses and strong coupling strengths in the transmission spectrum. The HIPFG possesses an averaged refractive index (RI) sensitivity of 213.6 nm/RIU nm/RIU in the RI range of 1.33-1.36 and a highest RI sensitivity of 472 nm/RIU at RI of 1.395. In addition, the HIPFG is demonstrated with a low-temperature sensitivity of 3.67 pm/°C, which promises a self-temperature compensation in glucose detection. In the glucose-sensing test, the HIPFG sensor manifests a detection sensitivity of 0.026 nm/(mg/mL) and a limit of detection (LOD) of 1 mg/mL. Moreover, the HIPFG sensor exhibits good stability in 2 h, indicating its capacity for long-time detection. The properties of easy fabrication, high flexibility, insensitivity to temperature, and good stability of the proposed HIPFG endow it with a promising potential for long-term and compact biosensors.
Collapse
Affiliation(s)
- Junlan Zhong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Shen Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Tao Zou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Wenqi Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Peijing Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Bonan Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Zhongyuan Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Abstract
Cancerous diseases are rightfully considered among the most lethal, which have a consistently negative effect when considering official statistics in regular health reports around the globe. Nowadays, metallic nanoparticles can be potentially applied in medicine as active pharmaceuticals, adjustable carriers, or distinctive enhancers of physicochemical properties if combined with other drugs. Boron dipyrromethene (BODIPY) molecules have been considered for future applications in theranostics in the oncology field, thus expanding the potential of conceivable applicability. Hence, taking into account positive practical features of both metal-based nanostructures and BODIPY derivatives, the present study aims to gather recent results connected to BODIPY-conjugated metallic nanoparticles. This is with respect to their expediency in the diagnosis and treatment of tumor ailments as well as in sensing of heavy metals. To fulfill the designated objectives, multiple research documents were analyzed concerning the latest discoveries within the scope of BODIPY-based nanomaterials with particular emphasis on their utilization for diagnostical sensing as well as cancer diagnostics and therapy. In addition, collected examples of mentioned conjugates were presented in order to draw the attention of the scientific community to their practical applications, elucidate the topic in a consistent manner, and inspire fellow researchers for new findings.
Collapse
|
11
|
Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Advances in wearable epidermal sensors have revolutionized the way that physiological signals are captured and measured for health monitoring. One major challenge is to convert physiological signals to easily readable signals in a convenient way. One possibility for wearable epidermal sensors is based on visible readouts. There are a range of materials whose optical properties can be tuned by parameters such as temperature, pH, light, and electric fields. Herein, this review covers and highlights a set of materials with tunable optical properties and their integration into wearable epidermal sensors for health monitoring. Specifically, the recent progress, fabrication, and applications of these materials for wearable epidermal sensors are summarized and discussed. Finally, the challenges and perspectives for the next generation wearable devices are proposed.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
12
|
Ultrasensitive Pd nano catalyst as peroxidase mimetics for colorimetric sensing and evaluation of antioxidants and total polyphenols in beverages and fruit juices. Talanta 2022; 238:123000. [PMID: 34857333 DOI: 10.1016/j.talanta.2021.123000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Herein, we developed a new Pd NP from the aq extract of Elsholtzia blanda Benth. flower that showed efficient peroxidase mimetic activity. The catalytic mechanism was confirmed through colorimetric analysis. The optimizations of temperature, concentration, PH and time were done to find out the best procedure to implement the intrinsic catalytic activity in practical applications. Michaelis-Menten constants were evaluated for both TMB and H2O2 substrate to investigate the affinity of Pd NP towards them. Km was observed to be 42.35 mM for H2O2 and 0.0076 mM for TMB. Antioxidants were sensed using the peroxidase mimetic property up to nanomolar levels with a LOD = 0.78 nM for Gallic acid 0.85 nM for Tannic acid. The method was further implemented in comparing the radical scavenging power of different phenolic compounds. Smart-phone based analysis was done for observing the change in colour which could further be utilized as an analytical tool for study the antioxidant activity. R-Square values of 0.97 and 0.96 for detection of gallic acid and tannic acid respectively suggest good linearity of the plot. Lastly, the system was utilized in the evaluation of total antioxidant capacity (TAC) and total phenolic content (TPC) in commercially available juices and beverages.
Collapse
|
13
|
Singh J, Singh R, Singh S, Mitra K, Mondal S, Vishwakarma S, Ray B. Colorimetric detection of hydrogen peroxide and cholesterol using Fe3O4-brominated graphene nanocomposite. Anal Bioanal Chem 2022; 414:2131-2145. [DOI: 10.1007/s00216-021-03848-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
|
14
|
Wang J, Zhao C, Hong C, Lin Z, Huang Z. Rapid detection of malachite green in fish and water based on the peroxidase-like activity of Fe3O4NPs enhanced with aptamer. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Yuan B, Chou HL, Peng YK. Disclosing the Origin of Transition Metal Oxides as Peroxidase (and Catalase) Mimetics. ACS APPLIED MATERIALS & INTERFACES 2021; 14:22728-22736. [PMID: 34634906 DOI: 10.1021/acsami.1c13429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since Fe3O4 was reported to mimic horseradish peroxidase (HRP) with comparable activity (2007), countless peroxidase nanozymes have been developed for a wide range of applications from biological detection assays to disease diagnosis and biomedicine development. However, researchers have recently argued that Fe3O4 has no peroxidase activity because surface Fe(III) cannot oxidize tetramethylbenzidine (TMB) in the absence of H2O2 (cf. HRP). This motivated us to investigate the origin of transition metal oxides as peroxidase mimetics. The redox between their surface Mn+ (oxidation) and H2O2 (reduction) was found to be the key step generating OH radicals, which oxidize not only TMB for color change but other H2O2 to produce HO2 radicals for Mn+ regeneration. This mechanism involving free OH and HO2 radicals is distinct from that of HRP with a radical retained on the Fe-porphyrin ring. Most importantly, it also explains the origin of their catalase-like activity (i.e., the decomposition of H2O2 into H2O and O2). Because the production of OH radicals is the rate-limiting step, the poor activity of Fe3O4 can be attributed to the slow redox of Fe(II) with H2O2, which is two orders of magnitude slower than the most active Cu(I) among common transition metal oxides. We further tested glutathione (GSH) detection on the basis of its peroxidase-like activity to highlight the importance of understanding the mechanism when selecting materials with high performance.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Chemistry, City University of Hong Kong, Hong Kong 0000, Hong Kong SAR
| | - Hung-Lung Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong 0000, Hong Kong SAR
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
16
|
Zheng W, Han B, E S, Sun Y, Li X, Cai Y, Zhang YN. Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Mousavizadegan M, Azimzadeh Asiabi P, Hosseini M, Khoobi M. Synthesis of Magnetic Silk Nanostructures with Peroxidase‐Like Activity as an Approach for the Detection of Glucose. ChemistrySelect 2020. [DOI: 10.1002/slct.202002136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maryam Mousavizadegan
- Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran Iran
| | | | - Morteza Hosseini
- Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran Iran
| | - Mehdi Khoobi
- Biomaterials Group Pharmaceutical Research Center The Institute of Pharmaceutical Sciences (TIPS) Tehran University of Medical Sciences (TUMS) Tehran Iran
| |
Collapse
|
18
|
Norvaiša K, Kielmann M, Senge MO. Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. Chembiochem 2020; 21:1793-1807. [PMID: 32187831 PMCID: PMC7383976 DOI: 10.1002/cbic.202000067] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Advances in porphyrin chemistry have provided novel materials and exciting technologies for bioanalysis such as colorimetric sensor array (CSA), photo-electrochemical (PEC) biosensing, and nanocomposites as peroxidase mimetics for glucose detection. This review highlights selected recent advances in the construction of supramolecular assemblies based on the porphyrin macrocycle that provide recognition of various biologically important entities through the unique porphyrin properties associated with colorimetry, spectrophotometry, and photo-electrochemistry.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Marc Kielmann
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Mathias O. Senge
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
- Institute for Advanced Study (TUM-IAS)Lichtenberg-Strasse 2a85748GarchingGermany
| |
Collapse
|
19
|
Detection mechanism and classification of design principles of peroxidase mimic based colorimetric sensors: A brief overview. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Rosette-shaped graphitic carbon nitride acts as a peroxidase mimic in a wide pH range for fluorescence-based determination of glucose with glucose oxidase. Mikrochim Acta 2020; 187:286. [PMID: 32328802 DOI: 10.1007/s00604-020-04249-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Rosette-shaped graphitic carbon nitride (rosette-GCN) is described as a promising alternative to natural peroxidase for its application to fluorescence-based glucose assays. Rosette-GCN was synthesized via a rapid reaction between melamine and cyanuric acid for 10 min at 35 °C, followed by thermal calcination for 4 h. Importantly, rosette-GCN possesses a peroxidase-like activity, producing intense fluorescence from the oxidation of Amplex UltraRed in the presence of H2O2 over a broad pH-range of, including neutral pH; the peroxidase activity of rosette-GCN was ~ 10-fold higher than that of conventional bulk-GCN. This enhancement of peroxidase activity is presumed to occur because rosette-GCN has a significantly larger surface area and higher porosity while preserving its unique graphitic structure. Based on the high peroxidase activity of rosette-GCN along with the catalytic action of glucose oxidase (GOx), glucose was reliably determined down to 1.2 μM with a dynamic linear concentration range of 5.0 to 275.0 μM under neutral pH conditions. Practical utility of this strategy was also successfully demonstrated by determining the glucose levels in serum samples. This work highlights the advantages of GCNs synthesized via rapid methods but with unique structures for the preparation of enzyme-mimicking catalysts, thus extending their applications to the diagnostics field and other biotechnological fields. Graphical abstract.
Collapse
|
21
|
Yang W, Li J, Wang M, Sun X, Liu Y, Yang J, Ng DH. A colorimetric strategy for ascorbic acid sensing based on the peroxidase-like activity of core-shell Fe3O4/CoFe-LDH hybrid. Colloids Surf B Biointerfaces 2020; 188:110742. [DOI: 10.1016/j.colsurfb.2019.110742] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/23/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
|
22
|
|
23
|
Vieira Ferreira L, Ferreira Machado I, Gama A, Lochte F, Socoteanu R, Boscencu R. Surface photochemical studies of nano-hybrids of A3B porphyrins and Fe3O4 silica-coated nanoparticles. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Wang J, Huang F, Wang X, Wan Y, Xue Y, Cai N, Chen W, Yu F. Hierarchically structured Fe3O4-doped MnO2 microspheres as an enhanced peroxidase-like catalyst for low limit of detection. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Bian B, Liu Q, Yu S. Peroxidase mimetic activity of porphyrin modified ZnFe 2O 4/reduced graphene oxide and its application for colorimetric detection of H 2O 2 and glutathione. Colloids Surf B Biointerfaces 2019; 181:567-575. [PMID: 31195312 DOI: 10.1016/j.colsurfb.2019.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/22/2023]
Abstract
Artificial nanoenzymes which can overcome some drawbacks of natural enzymes is a challenging topic in the biosensor field. Herein, we demonstrated 5, 10, 15, 20-tetrakis (4-carboxylpheyl)-porphyrin modified magnetic ZnFe2O4 nanoparticles loaded on the surface of reduced graphene oxide (Por-ZnFe2O4/rGO), which exhibited intrinsic peroxidase-like activity and rapidly oxidized the peroxidase substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) into a blue product (OxTMB) distinguished by naked eyes. Interestingly, by comparative study of different nanomaterials ZnFe2O4 nanoparticles, ZnFe2O4/rGO and Por-ZnFe2O4, Por-ZnFe2O4/rGO was proved to possess the highest peroxidase-like activity. Electron spin resonance (ESR) verified the catalytic activity of Por-ZnFe2O4/rGO for H2O2 was due to hydroxyl radical from decomposition of H2O2. Temperature and pH strongly affected the peroxidase-like activity of Por-ZnFe2O4/rGO nanocomposites. Under optimal conditions (pH = 4, 40 °C), the constructed sensor based on the catalytic activity of the Por-ZnFe2O4/rGO could be conveniently used for colorimetric detection of H2O2 in the range of 0.7-30 μM with the detection limit of 0.54 μM. Moreover, the colorimetric sensor based on Por-ZnFe2O4/rGO exhibited a good linear response to glutathione (GHS) in the range of 2-40 μM with a low detection limit of 0.76 μM. The detection of GHS can be easily realized through the obvious color change by naked eyes without any complicated instrumentation.
Collapse
Affiliation(s)
- Bing Bian
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical and Environmental Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
26
|
Xu Z, Lyu X, Yang B, Cao W, Li R, Zhang X, Zhang X, Fan G, Kong X, Liu Q. Meso-tetrakis(4-chlorophenyl)porphyrin functionalized CuFe2O4/SiO2 nanocomposites with enhanced peroxidase-like activity conveniently using for visual biosensing at room temperature. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Gao Y, Jin C, Li X, Wu K, Gao L, Lyu X, Zhang X, Zhang X, Luo X, Liu Q. Two-dimensional porphyrin-Co9S8 nanocomposites with synergistic peroxidase-like catalysis: Synthesis and application toward colorimetric biosensing of H2O2 and glutathione. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Cheon HJ, Adhikari MD, Chung M, Tran TD, Kim J, Kim MI. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing. Adv Healthc Mater 2019; 8:e1801507. [PMID: 30848070 DOI: 10.1002/adhm.201801507] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/05/2019] [Indexed: 01/05/2023]
Abstract
It is reported that glucose oxidase (GOx)-copper hybrid nanoflowers embedded with Fe3 O4 magnetic nanoparticles (MNPs) exhibit superior peroxidase-mimicking activity as well as substrate channeling for glucose detection. This is due to the synergistic integration of GOx, crystalline copper phosphates and MNPs being in close proximity within the nanoflowers. The preparation of MNP-embedded GOx-copper hybrid nanoflowers (MNPs-GOx NFs) begins with the facile conjugation of amine-functionalized MNPs with GOx molecules via electrostatic attraction, followed by the addition of copper sulfate that leads to full blooming of the hybrid nanoflowers. In the presence of glucose, the catalytic action of GOx entrapped in the nanoflowers generates H2 O2 , which is subsequently used by peroxidase-mimicking MNPs and copper phosphate crystals, located close to GOx molecules, to convert Amplex UltraRed substrate into a highly fluorescent product. Using this strategy, the target glucose is successfully determined with excellent selectivity, stability, and magnetic reusability. This biosensor based on hybrid nanoflowers also exhibits a high degree of precision and reproducibility when applied to real human blood samples. Such novel MNP-embedded enzyme-inorganic hybrid nanoflowers have a great potential to be expanded to any oxidases, which will be highly beneficial for the detection of various other clinically important target molecules.
Collapse
Affiliation(s)
- Hong Jae Cheon
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Manab Deb Adhikari
- Department of Chemical and Biological EngineeringKorea University Seoul 02841 South Korea
| | - Minsoo Chung
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Tai Duc Tran
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| | - Jungbae Kim
- Department of Chemical and Biological EngineeringKorea University Seoul 02841 South Korea
| | - Moon Il Kim
- Department of BioNano TechnologyGachon University Gyeonggi 13120 South Korea
| |
Collapse
|
29
|
Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H, Zhang M. Peroxidase-Like Activity of Smart Nanomaterials and Their Advanced Application in Colorimetric Glucose Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900133. [PMID: 30908899 DOI: 10.1002/smll.201900133] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Indexed: 05/27/2023]
Abstract
Diabetes is a dominating health issue with 425 million people suffering from the disease worldwide and 4 million deaths each year. To avoid further complications, the diabetic patient blood glucose level should be strictly monitored despite there being no cure for diabetes. Colorimetric biosensing has attracted significant attention because of its low cost, simplicity, and practicality. Recently, some nanomaterials have been found that possess unexpected peroxidase-like activity, and great advances have been made in fabricating colorimetric glucose biosensors based on the peroxidase-like activity of these nanomaterials using glucose oxidase. Compared with natural horseradish peroxidase, the nanomaterials exhibit flexibility in structure design and composition, and have easy separation and storage, high stability, simple preparation, and tunable catalytic activity. To highlight the significant progress in the field of nanomaterial-based peroxidase-like activity, this work discusses the various smart nanomaterials that mimic horseradish peroxidase and its mechanism and development history, and the applications in colorimetric glucose biosensors. Different approaches for tunable peroxidase-like activity of nanomaterials are summarized, such as size, morphology, and shape; surface modification and coating; and metal doping and alloy. Finally, the conclusion and challenges facing peroxidase-like activity of nanomaterials and future directions are discussed.
Collapse
Affiliation(s)
- Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
30
|
Attar F, Shahpar MG, Rasti B, Sharifi M, Saboury AA, Rezayat SM, Falahati M. Nanozymes with intrinsic peroxidase-like activities. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Zhang Q, Li M, Guo C, Jia Z, Wan G, Wang S, Min D. Fe₃O₄Nanoparticles Loaded on Lignin Nanoparticles Applied as a Peroxidase Mimic for the Sensitively Colorimetric Detection of H₂O₂. NANOMATERIALS 2019; 9:nano9020210. [PMID: 30736286 PMCID: PMC6410108 DOI: 10.3390/nano9020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022]
Abstract
Lignin is the second largest naturally renewable resource and is primarily a by-product of the pulp and paper industry; however, its inefficient use presents a challenge. In this work, Fe₃O₄ nanoparticles loaded on lignin nanoparticles (Fe₃O₄@LNPs) were prepared by the self-assembly method and it possessed an enhanced peroxidase-like activity. Fe₃O₄@LNPs catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H₂O₂ to generate a blue color, was observable by the naked eye. Under the optimal conditions, Fe₃O₄@LNPs showed the ability of sensitive colorimetric detection of H₂O₂within a range of 5⁻100 μM and the limit of detection was 2 μM. The high catalytic activity of Fe₃O₄@LNPs allows its prospective use in a wide variety of applications, including clinical diagnosis, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Qingtong Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Mingfu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Chenyan Guo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Zhuan Jia
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Guangcong Wan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
- Guangxi Key Lab of Clean Pulp & Papermaking and pollution Control, Nanning 530004, China.
| |
Collapse
|
32
|
Zhao X, Wu K, Lyu H, Zhang X, Liu Z, Fan G, Zhang X, Zhu X, Liu Q. Porphyrin functionalized Co(OH)2/GO nanocomposites as an excellent peroxidase mimic for colorimetric biosensing. Analyst 2019; 144:5284-5291. [DOI: 10.1039/c9an00945k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A colorimetric sensor based on the enhanced peroxidase-like activity of Por/Co(OH)2/GO for the sensitive detection of H2O2 and GSH.
Collapse
Affiliation(s)
- Xin Zhao
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Kaili Wu
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Haoyuan Lyu
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Zhenxue Liu
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Gaochao Fan
- College of Chemistry and Molecular Engineering
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Qingdao University of Science & Technology
| | - Xiao Zhang
- College of Chemistry and Molecular Engineering
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Qingdao University of Science & Technology
| | - Xixi Zhu
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- China
| |
Collapse
|
33
|
Gao L, Yan X. Nanozymes: Biomedical Applications of Enzymatic Fe3O4 Nanoparticles from In Vitro to In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:291-312. [DOI: 10.1007/978-981-13-9791-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
35
|
Maruthupandy M, Rajivgandhi G, Muneeswaran T, Vennila T, Quero F, Song JM. Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. Int J Biol Macromol 2019; 121:822-828. [DOI: 10.1016/j.ijbiomac.2018.10.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 01/06/2023]
|
36
|
Lian S, Gao L, Chen M, Liu Z, Qiu J, Zhang X, Luo X, Zeng R, Liu Q. Enhanced peroxidase-like activity of MMT-supported cuprous oxide nanocomposites toward rapid colorimetric estimation of H2
O2. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siming Lian
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Linna Gao
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Miaomiao Chen
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Zhenxue Liu
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Jun Qiu
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Xiao Zhang
- College of Chemistry and Molecular Engineering; Qingdao University of Science & Technology; Qingdao 266042 China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering; Qingdao University of Science & Technology; Qingdao 266042 China
| | - Rongchang Zeng
- College of Materials Science and Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering; Shandong University of Science and Technology; Qingdao 266590 China
| |
Collapse
|
37
|
Gao Y, Jin C, Chen M, Zhu X, Fu M, Liu Z, Gao L, Liu Q. Preparation of porphyrin modified CO9S8 nanocomposites and application for colorimetric biosensing of H2O2. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydrogen peroxide detection has been widely applied in the fields of biology, medicine, and chemistry. Colorimetric detection of hydrogen peroxide has proven to be a fast and convenient method. In this work, 5,10,15,20-tetrakis(4-chlorophenyl) porphyrin modified Co[Formula: see text]S[Formula: see text] nanocomposites (H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] were prepared via a facile one-step hydrothermal method. H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] nanocomposites were demonstrated to possess an enhanced mimetic peroxidase activity toward the substrate, 3,3[Formula: see text],5,5[Formula: see text]-tetramethylbenzidine (TMB), which can be oxidized to oxTMB (oxidized TMB) in a buffer solution of hydrogen peroxide with a color change from colorless to blue. The catalytic activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] was further analyzed by steady-state kinetics, and H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] had high affinity towards both TMB and H[Formula: see text]O[Formula: see text]. Furthermore, fluorescence and ESR data revealed that the catalytic mechanism of the peroxidase activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] is due to hydroxyl radicals generated from decomposition of H[Formula: see text]O[Formula: see text]. Based on the catalytic activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text], a sensitive colorimetric sensor of H[Formula: see text]O[Formula: see text] with a detection limit of 6.803 [Formula: see text]M as well as a range of 7–100 [Formula: see text]M was designed.
Collapse
Affiliation(s)
- Yan Gao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Chunqiao Jin
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Miaomiao Chen
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Xixi Zhu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Min Fu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Zhenxue Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Linna Gao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| |
Collapse
|
38
|
Wu J, Li S, Wei H. Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. NANOSCALE HORIZONS 2018; 3:367-382. [PMID: 32254124 DOI: 10.1039/c8nh00070k] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over decades, as alternatives to natural enzymes, highly-stable and low-cost artificial enzymes have been widely explored for various applications. In the field of artificial enzymes, functional nanomaterials with enzyme-like characteristics, termed as nanozymes, are currently attracting immense attention. Significant progress has been made in nanozyme research due to the exquisite control and impressive development of nanomaterials. Since nanozymes are endowed with unique properties from nanomaterials, an interesting investigation is multifunctionality, which opens up new potential applications for biomedical sensing and sustainable chemistry due to the combination of two or more distinct functions of high-performance nanozymes. To highlight the progress, in this review, we discuss two representative types of multifunctional nanozymes, including iron oxide nanomaterials with magnetic properties and metal nanomaterials with surface plasmon resonance. The applications are also covered to show the great promise of such multifunctional nanozymes. Future challenges and prospects are discussed at the end of this review.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | |
Collapse
|
39
|
Ren H, Ma T, Zhao J, Zhou R. Vc-Functionalized Fe3O4 Nanocomposites as Peroxidase-like Mimetics for H2O2 and Glucose Sensing. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7289-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Huang XL. Hydrolysis of Phosphate Esters Catalyzed by Inorganic Iron Oxide Nanoparticles Acting as Biocatalysts. ASTROBIOLOGY 2018; 18:294-310. [PMID: 29489387 DOI: 10.1089/ast.2016.1628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus ester hydrolysis is one of the key chemical processes in biological systems, including signaling, free-energy transaction, protein synthesis, and maintaining the integrity of genetic material. Hydrolysis of this otherwise kinetically stable phosphoester and/or phosphoanhydride bond is induced by enzymes such as purple acid phosphatase. Here, I report that, as in previously reported aged inorganic iron ion solutions, the iron oxide nanoparticles in the solution, which are trapped in a dialysis membrane tube filled with the various iron oxides, significantly promote the hydrolysis of the various phosphate esters, including the inorganic polyphosphates, with enzyme-like kinetics. This observation, along with those of recent studies of iron oxide, vanadium pentoxide, and molybdenum trioxide nanoparticles that behave as mimics of peroxidase, bromoperoxidase, and sulfite oxidase, respectively, indicates that the oxo-metal bond in the oxide nanoparticles is critical for the function of these corresponding natural metalloproteins. These inorganic biocatalysts challenge the traditional concept of replicator-first scenarios and support the metabolism-first hypothesis. As biocatalysts, these inorganic nanoparticles with enzyme-like activity may work in natural terrestrial environments and likely were at work in early Earth environments as well. They may have played an important role in the C, H, O, S, and P metabolic pathway with regard to the emergence and early evolution of life. Key Words: Enzyme-Hydrolysis-Iron oxide-Nanoparticles-Origin of life-Phosphate ester. Astrobiology 18, 294-310.
Collapse
|
41
|
Lopez-Tejedor D, Benavente R, Palomo JM. Iron nanostructured catalysts: design and applications. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02259j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review is focused on the recent advances in the design of iron nanostructures and their catalytic applications.
Collapse
Affiliation(s)
| | - Rocio Benavente
- Department of Biocatalysis
- Institute of Catalysis (CSIC)
- 28049 Madrid
- Spain
| | - Jose M. Palomo
- Department of Biocatalysis
- Institute of Catalysis (CSIC)
- 28049 Madrid
- Spain
| |
Collapse
|
42
|
Gao L, Zhang L, Lyu X, Lu G, Liu Q. Corrole functionalized iron oxide nanocomposites as enhanced peroxidase mimic and their application in H2O2 and glucose colorimetric sensing. ACTA ACUST UNITED AC 2018. [DOI: 10.30919/espub.es.180314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Bian B, Liu Q, Yu S. Enhanced peroxidase-like activity of porphyrin functionalized ZnFe2O4 hollow nanospheres for rapid detection of H2O2 and glucose. NEW J CHEM 2018. [DOI: 10.1039/c8nj00720a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a simple one-pot solvothermal method, binary metal oxide, magnetic and hollow ZnFe2O4 nanospheres functionalized with 5,10,15,20-tetrakis(4-carboxylpheyl)-porphyrin (Por–ZnFe2O4 HSs) were prepared and subsequently applied as a substitute for natural peroxidase.
Collapse
Affiliation(s)
- Bing Bian
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
- College of Chemical and Environmental Engineering
| | - Qingyun Liu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- China
| | - Shitao Yu
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|
44
|
Yang Q, Lu S, Shen B, Bao S, Liu Y. An iron hydroxyl phosphate microoctahedron catalyst as an efficient peroxidase mimic for sensitive and colorimetric quantification of H2O2 and glucose. NEW J CHEM 2018. [DOI: 10.1039/c8nj00324f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron hydroxyl phosphate that possesses high peroxidase activity is synthesized via a one-step hydrothermal method and used for colorimetric glucose detection in human serum.
Collapse
Affiliation(s)
- Qimeng Yang
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Shiyu Lu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Bolei Shen
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Shujuan Bao
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| | - Yingshuai Liu
- Institute for Clean Energy & Advanced Materials
- Faculty of Materials & Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
45
|
Wu K, Zhao X, Chen M, Zhang H, Liu Z, Zhang X, Zhu X, Liu Q. Synthesis of well-dispersed Fe3O4 nanoparticles loaded on montmorillonite and sensitive colorimetric detection of H2O2 based on its peroxidase-like activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj01190g] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, a simple strategy for the preparation of Fe3O4 nanoparticles (NPs) loaded on montmorillonite as a support is reported.
Collapse
Affiliation(s)
- Kaili Wu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Xin Zhao
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Miaomiao Chen
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Huawei Zhang
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Zhenxue Liu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Xiao Zhang
- College of Chemistry and Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- P. R. China
| | - Xixi Zhu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| |
Collapse
|
46
|
Wu K, Yang B, Zhu X, Chen W, Luo X, Liu Z, Zhang X, Liu Q. Cobalt and nickel bimetallic sulfide nanoparticles immobilized on montmorillonite demonstrating peroxidase-like activity for H2O2 detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj04647f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, ternary transition metal sulfide (cobalt and nickel sulfides) nanoparticles were anchored on the surface of montmorillonite (MMT) by a facile one-pot hydrothermal method.
Collapse
Affiliation(s)
- Kaili Wu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Baochan Yang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Xixi Zhu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Wei Chen
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology
- Qingdao 266042
- P. R. China
| | - Zhenxue Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
| | - Xiao Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology
- Qingdao 266042
- P. R. China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology
- Qingdao 266510
- P. R. China
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology
- Qingdao 266590
| |
Collapse
|
47
|
Gao L, Fan K, Yan X. Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics 2017; 7:3207-3227. [PMID: 28900505 PMCID: PMC5595127 DOI: 10.7150/thno.19738] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Iron oxide nanoparticles have been widely used in many important fields due to their excellent nanoscale physical properties, such as magnetism/superparamagnetism. They are usually assumed to be biologically inert in biomedical applications. However, iron oxide nanoparticles were recently found to also possess intrinsic enzyme-like activities, and are now regarded as novel enzyme mimetics. A special term, "Nanozyme", has thus been coined to highlight the intrinsic enzymatic properties of such nanomaterials. Since then, iron oxide nanoparticles have been used as nanozymes to facilitate biomedical applications. In this review, we will introduce the enzymatic features of iron oxide nanozyme (IONzyme), and summarize its novel applications in biomedicine.
Collapse
Affiliation(s)
- Lizeng Gao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
48
|
Lu J, Wei L, Yao D, Yin X, Lai H, Huang X. β-AgVO3
Nanorods as Peroxidase Mimetic for Colorimetric Determination of Glucose. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Junyu Lu
- College of Chemistry and Biology Engineering; Hechi University; Yizhou 546300 China
| | - Lianqiang Wei
- College of Chemistry and Biology Engineering; Hechi University; Yizhou 546300 China
| | - Dongmei Yao
- College of Chemistry and Biology Engineering; Hechi University; Yizhou 546300 China
| | - Xiuju Yin
- College of Chemistry and Biology Engineering; Hechi University; Yizhou 546300 China
| | - Hongfang Lai
- College of Chemistry and Biology Engineering; Hechi University; Yizhou 546300 China
| | - Xiuxiang Huang
- College of Chemistry and Biology Engineering; Hechi University; Yizhou 546300 China
| |
Collapse
|
49
|
Visual determination of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of magnetic nanoparticles functionalized with a poly(ethylene glycol) derivative. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2198-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Song Y, Cho D, Venkateswarlu S, Yoon M. Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Adv 2017. [DOI: 10.1039/c7ra00115k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new Cu nanoparticles embedded porous carbon composite was prepared by simple pyrolysis of HKUST-1, which shows high efficient (detection limit: 3.2 × 10−9 M) glucose sensing ability with high selectivity.
Collapse
Affiliation(s)
- Yoodae Song
- Department of Nanochemistry
- College of Bionano
- Gachon University
- Sungnam
- Republic of Korea
| | - Damsol Cho
- Department of Nanochemistry
- College of Bionano
- Gachon University
- Sungnam
- Republic of Korea
| | - Sada Venkateswarlu
- Department of Nanochemistry
- College of Bionano
- Gachon University
- Sungnam
- Republic of Korea
| | - Minyoung Yoon
- Department of Nanochemistry
- College of Bionano
- Gachon University
- Sungnam
- Republic of Korea
| |
Collapse
|