1
|
Antounian F, Avagyan H, Ghaltaghchyan T, Holovenko Y, Khachatryan H, Aghayan M. Designing and additive manufacturing of talus implant for post-traumatic talus avascular necrosis: a case study. J Orthop Surg Res 2024; 19:501. [PMID: 39175072 PMCID: PMC11340157 DOI: 10.1186/s13018-024-04948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
New technologies in additive manufacturing and patient-specific CT-based custom implant designs make it possible for previously unimaginable salvage and limb-sparing operations a practical reality. This study presents the design and fabrication of a lattice-structured implant for talus replacement surgery. Our primary case involved a young adult patient who had sustained severe damage to the talus, resulting in avascular necrosis and subsequent bone collapse. This condition caused persistent and debilitating pain, leading the medical team to consider amputation of the left foot at the ankle level as a last resort. Instead, we proposed a Ti6Al4V-based patient-specific implant with lattice structure specifically designed for pan-talar fusion. Finite element simulation is conducted to estimate its performance. To ensure its mechanical integrity, uniaxial compression experiments were conducted. The implant was produced using selective laser melting technology, which allowed for precise and accurate construction of the unique lattice structure. The patient underwent regular monitoring for a period of 24 months. At 2-years follow-up the patient successfully returned to activities without complication. The patient's functional status was improved, limb shortening was minimized.
Collapse
Affiliation(s)
| | | | | | | | | | - Marina Aghayan
- A.B. Nalbandyan Institute of Chemical Physics NAS RA, Yerevan, Armenia.
| |
Collapse
|
2
|
Laser Sintering Approaches for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14122336. [PMID: 35745911 PMCID: PMC9229946 DOI: 10.3390/polym14122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration. This review focuses on the PBF techniques that utilize laser sintering for creating scaffolds for bone tissue engineering (BTE) applications. Optimal scaffold requirements are explained, ranging from material biocompatibility and bioactivity, to generating specific architectures to recapitulate the porosity, interconnectivity, and mechanical properties of native human bone. The main objective of the review is to outline the most common materials processed using PBF in the context of BTE; initially outlining the most common polymers, including polyamide, polycaprolactone, polyethylene, and polyetheretherketone. Subsequent sections investigate the use of metals and ceramics in similar systems for BTE applications. The last section explores how composite materials can be used. Within each material section, the benefits and shortcomings are outlined, including their mechanical and biological performance, as well as associated printing parameters. The framework provided can be applied to the development of new, novel materials or laser-based approaches to ultimately generate bone tissue analogues or for guiding bone regeneration.
Collapse
|
3
|
Zhong J, Li X, Yao Y, Zhou J, Cao S, Zhang X, Jian Y, Zhao K. Effect of acid-alkali treatment on serum protein adsorption and bacterial adhesion to porous titanium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:20. [PMID: 35107647 PMCID: PMC8810456 DOI: 10.1007/s10856-022-06646-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Modification of the titanium (Ti) surface is widely known to influence biological reactions such as protein adsorption and bacterial adhesion in vivo, ultimately controlling osseointegration. In this study, we sought to investigate the correlation of protein adsorption and bacterial adhesion with the nanoporous structure of acid-alkali-treated Ti implants, shedding light on the modification of Ti implants to promote osseointegration. We fabricated nontreated porous Ti (NTPT) by powder metallurgy and immersed it in mixed acids and NaOH to obtain acid-alkali-treated porous Ti (AAPT). Nontreated dense sample (NTDT) served as control. Our results showed that nanopores were formed after acid-alkali treatment. AAPT showed a higher specific surface area and became much more hydrophilic than NTPT and NTDT (p < 0.001). Compared to dense samples, porous samples exhibited a lower zeta potential and higher adsorbed protein level at each time point within 120 min (p < 0.001). AAPT formed a thicker protein layer by serum precoating than NTPT and NTDT (p < 0.001). The main adsorbed proteins on AAPT and NTPT were albumin, α1 antitrypsin, transferrin, apolipoprotein A1, complement C3 and haptoglobin α1 chain. The amounts of bacteria adhering to the serum-precoated samples were lower than those adhering to the nonprecoated samples (p < 0.05). Lower-molecular-weight proteins showed higher affinity to porous Ti. In conclusion, acid-alkali treatment facilitated protein adsorption by porous Ti, and the protein coating tended to prevent bacteria from adhering. These findings may be utilized for Ti implant modification aimed at reducing bacterial adhesion and enhancing osseointegration. Graphical abstract.
Collapse
Affiliation(s)
- Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuelian Li
- Guangzhou Yuexiu Stomatological Hospital, Guangzhou, China
| | - Yitong Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jing Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shanshan Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinping Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Yutao Jian
- Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
4
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
5
|
Fouzi M, Thimma M, BinSabt M, Husain AA, Aouabdi S. Stem cell growth and proliferation on RGD bio-conjugated cotton fibers. Biomed Mater Eng 2021; 32:39-52. [PMID: 33164919 DOI: 10.3233/bme-201115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Merging stem cells with biomimetic materials represent an attractive approach to tissue engineering. The development of an alternative scaffold with the ability to mimic the extracellular matrix, and the 3D gradient preventing any alteration in cell metabolism or in their gene expression patterns, would have many medical applications. OBJECTIVE In this study, we introduced the use of RGD (Arg-Gly-Asp) bio-conjugated cotton to promote the growth and proliferation of mesenchymal stem cells (MSCs). METHODS We measured the expression of stem cell markers and adhesion markers with Q-PCR and analyzed the transcriptomic. The results obtained showed that the MSCs, when cultured with bio-conjugated cotton fibers, form aggregates around the fibers while proliferating. The seeded MSCs with cotton fibers proliferated in a similar fashion to the cells seeded on the monolayer (population doubling level 1.88 and 2.19 respectively). RESULTS The whole genome sequencing of cells adhering to these cotton fibers and cells adhering to the cell culture dish showed differently expressed genes and pathways in both populations. However, the expression of the stem cell markers (Oct4, cKit, CD105) and cell adhesion markers (CD29, HSPG2 and CD138), when examined with quantitative RT-PCR, was maintained in both cell populations. CONCLUSION These results clearly show the ability of the cotton fibers to promote MSCs growth and proliferation in a 3D structure mimicking the in vivo environment without losing their stem cell phenotype.
Collapse
Affiliation(s)
| | - Manjula Thimma
- Environmental Epigenetics Lab, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | | | - Ali A Husain
- Department of Chemistry, Kuwait University, Kuwait
| | - Sihem Aouabdi
- King Saud Bin Abdualziz Univeristy, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Fracture Healing Research-Shift towards In Vitro Modeling? Biomedicines 2021; 9:biomedicines9070748. [PMID: 34203470 PMCID: PMC8301383 DOI: 10.3390/biomedicines9070748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Fractures are one of the most frequently occurring traumatic events worldwide. Approximately 10% of fractures lead to bone healing disorders, resulting in strain for affected patients and enormous costs for society. In order to shed light into underlying mechanisms of bone regeneration (habitual or disturbed), and to develop new therapeutic strategies, various in vivo, ex vivo and in vitro models can be applied. Undeniably, in vivo models include the systemic and biological situation. However, transferability towards the human patient along with ethical concerns regarding in vivo models have to be considered. Fostered by enormous technical improvements, such as bioreactors, on-a-chip-technologies and bone tissue engineering, sophisticated in vitro models are of rising interest. These models offer the possibility to use human cells from individual donors, complex cell systems and 3D models, therefore bridging the transferability gap, providing a platform for the introduction of personalized precision medicine and finally sparing animals. Facing diverse processes during fracture healing and thus various scientific opportunities, the reliability of results oftentimes depends on the choice of an appropriate model. Hence, we here focus on categorizing available models with respect to the requirements of the scientific approach.
Collapse
|
7
|
Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, Del Fattore A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int J Mol Sci 2021; 22:ijms22031128. [PMID: 33498786 PMCID: PMC7865467 DOI: 10.3390/ijms22031128] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a regenerative organ characterized by self-renewal ability. Indeed, it is a very dynamic tissue subjected to continuous remodeling in order to preserve its structure and function. However, in clinical practice, impaired bone healing can be observed in patients and medical intervention is needed to regenerate the tissue via the use of natural bone grafts or synthetic bone grafts. The main elements required for tissue engineering include cells, growth factors and a scaffold material to support them. Three different materials (metals, ceramics, and polymers) can be used to create a scaffold suitable for bone regeneration. Several cell types have been investigated in combination with biomaterials. In this review, we describe the options available for bone regeneration, focusing on tissue engineering strategies based on the use of different biomaterials combined with cells and growth factors.
Collapse
Affiliation(s)
- Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
| | - Viviana De Martino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Luca Borro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.B.); (A.S.)
| | - Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.B.); (A.S.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.B.); (M.R.)
- Correspondence: ; Tel.: +39-066-859-3740
| |
Collapse
|
8
|
Naujokat H, Loger K, Schulz J, Açil Y, Wiltfang J. Bone tissue engineering in the greater omentum with computer-aided design/computer-aided manufacturing scaffolds is enhanced by a periosteum transplant. Regen Med 2020; 15:2297-2309. [PMID: 33355523 DOI: 10.2217/rme-2020-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: This study aimed to evaluate two different vascularized bone flap scaffolds and the impact of two barrier membranes for the reconstruction of critical-size bone defects. Materials & methods: 3D-printed scaffolds of biodegradable calcium phosphate and bioinert titanium were loaded with rhBMP-2 bone marrow aspirate, wrapped by a collagen membrane or a periosteum transplant and implanted into the greater omentum of miniature pigs. Results: Histological evaluation demonstrated significant bone formation within the first 8 weeks in both scaffolds. The periosteum transplant led to enhanced bone formation and a homogenous distribution in the scaffolds. The omentum tissue grew out a robust vascular supply. Conclusion: Endocultivation using 3D-printed scaffolds in the greater omentum is a very promising approach in defect-specific bone tissue regeneration.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Klaas Loger
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Juliane Schulz
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Yahya Açil
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral & Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| |
Collapse
|
9
|
Cheng Q, Yuan B, Chen X, Yang X, Lin H, Zhu X, Zhang K, Zhang X. Regulation of surface micro/nano structure and composition of polyetheretherketone and their influence on the behavior of MC3T3-E1 pre-osteoblasts. J Mater Chem B 2020; 7:5713-5724. [PMID: 31482931 DOI: 10.1039/c9tb00943d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The bio-inertness and inferior osseointegration of polyetheretherketone (PEEK) affect its long-term lifetime in clinical applications, and appropriate surface modification is an effective way to enhance osseointegration of PEEK implants. In the present study, a strategy of combining sulfonation with alkali treatment was proposed to endow PEEK with rapid apatite deposition and thus enhanced bioactivity. After 3 min of sulfonation with 98% H2SO4, the sample (PEEK-S-3) showed an optimized surface microporous network and obviously improved hydrophilicity. Its contact angle reduced from the original 106 ± 2.3° to 88 ± 4.0°. After a further 24 h of NaOH treatment on PEEK-S-3, Na element was introduced into the obtained sample (PEEK-Na-24), which had a similar surface morphology and chemical structure with PEEK-S-3 and had a further reduced contact angle (77.9 ± 2.9°). The in vitro bioactivity tests showed that after only 3 days of immersion in simulated body fluid (SBF), PEEK-Na-24 was fully covered with a layer of uniform bone-like apatite. The apatite deposition sharply decreased the contact angle of the sample (PEEK-HA) to 16.6 ± 2.6° and increased its surface roughness to 1.05 ± 0.27 μm, leading to the enhanced adsorption of serum proteins on PEEK-HA. The in vitro cell culture indicated that all the three surface-modified samples (PEEK-S-3, PEEK-Na-24 and PEEK-HA) could promote the adhesion, spreading, proliferation and osteoblastic differentiation of MC3T3-E1 pre-osteoblasts, and PEEK-HA presented the best effect. Thus, the surface bioactive PEEK resulting from the optimized surface modification, i.e. combination of sulfonation, alkali treatment and biomimetic apatite deposition, could have good potential in clinical application.
Collapse
Affiliation(s)
- Qinwen Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Influence of Titanium Alloy Scaffolds on Enzymatic Defense against Oxidative Stress and Bone Marrow Cell Differentiation. Int J Biomater 2020; 2020:1708214. [PMID: 32802064 PMCID: PMC7411454 DOI: 10.1155/2020/1708214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/30/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
Studies have been directed towards the production of new titanium alloys, aiming for the replacement of Ti-6 Aluminium-4 Vanadium (TiAlV) alloy in the future. Many mechanisms related to biocompatibility and chemical characteristics have been studied in the field of implantology, but enzymatic defenses against oxidative stress remain underexplored. Bone marrow stromal cells have been explored as source of cells, which have the potential to differentiate into osteoblasts and therefore could be used as cells-based therapy. The objective of this study was to evaluate the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in porous scaffolds of Ti-6 Aluminium-4 Vanadium (TiAlV), Ti-35 Niobium (TiNb), and Ti-35 Niobium-7 Zirconium-5 Tantalum (TiNbZrTa) on mouse bone marrow stromal cells. Porous titanium alloy scaffolds were prepared by powder metallurgy. After 24 hours, cells plated on the scaffolds were analyzed by scanning electron microscopy (SEM). The antioxidant enzyme activity was measured 72 hours after cell plating. Quantitative real time PCR (qRT-PCR) was performed after 3, 7, and 14 days, and Runx2 (Runt-related transcription factor2) expression was evaluated. The SEM images showed the presence of interconnected pores and growth, adhesion, and cell spreading in the 3 scaffolds. Although differences were noted for SOD and CAT activity for all scaffolds analyzed, no statistical differences were observed (p > 0.05). The osteogenic gene Runx2 presented high expression levels for TiNbZrTa at day 7, compared to the control group (TiAlV day 3). At day 14, all scaffolds had more than 2-fold induction for Runx2 mRNA levels, with statistically significant differences compared to the control group. Even though we were not able to confirm statistically significant differences to justify the replacement of TiAlV regarding antioxidant enzymes, TiNbZrTa was able to induce faster bone formation at early time points, making it a good choice for biomedical and tissue bioengineering applications.
Collapse
|
11
|
Fu X, Liu P, Zhao D, Yuan B, Xiao Z, Zhou Y, Yang X, Zhu X, Tu C, Zhang X. Effects of Nanotopography Regulation and Silicon Doping on Angiogenic and Osteogenic Activities of Hydroxyapatite Coating on Titanium Implant. Int J Nanomedicine 2020; 15:4171-4189. [PMID: 32606671 PMCID: PMC7297339 DOI: 10.2147/ijn.s252936] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
Background Angiogenic and osteogenic activities are two major problems with biomedical titanium (Ti) and other orthopedic implants used to repair large bone defects. Purpose The aim of this study is to prepare hydroxyapatite (HA) coatings on the surface of Ti by using electrochemical deposition (ED), and to evaluate the effects of nanotopography and silicon (Si) doping on the angiogenic and osteogenic activities of the coating in vitro. Materials and Methods HA coating and Si-doped HA (HS) coatings with varying nanotopographies were fabricated using two ED modes, ie, the pulsive current (PC) and cyclic voltammetry (CV) methods. The coatings were characterized through scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), and atomic force microscopy (AFM), and their in vitro bioactivity and protein adsorption were assessed. Using MC3T3-E1 pre-osteoblasts and HUVECs as cell models, the osteogenic and angiogenic capabilities of the coatings were evaluated through in vitro cellular experiments. Results By controlling Si content in ~0.8 wt.%, the coatings resulting from the PC mode (HA-PC and HS-PC) and CV mode (HA-CV and HS-CV) had nanosheet and nanorod topographies, respectively. At lower crystallinity, higher ionic dissolution, smaller contact angle, higher surface roughness, and more negative zeta potential, the HS and PC samples exhibited quicker apatite deposition and higher BSA adsorption capacity. The in vitro cell study showed that Si doping was more favorable for enhancing the viability of the MC3T3-E1 cells, but nanosheet coating increased the area for cell spreading. Of the four coatings, HS-PC with Si doping and nanosheet topography exhibited the best effect in terms of up-regulating the expressions of the osteogenic genes (ALP, Col-I, OSX, OPN and OCN) in the MC3T3-E1 cells. Moreover, all leach liquors of the surface-coated Ti disks promoted the growth of the HUVECs, and the HS samples played a more significant role in promoting cell migration and tube formation than the HA samples. Of the four leach liquors, only the two HS samples up-regulated NO content and expressions of the angiogenesis-related genes (VEGF, bFGF and eNOS) in the HUVECs, and the HS-PC yielded a better effect. Conclusion The results show that Si doping while regulating the topography of the coating can help enhance the bone regeneration and vascularization of HA-coated Ti implants.
Collapse
Affiliation(s)
- Xi Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
| | - Pin Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
| | - Dingyun Zhao
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yong Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chongqi Tu
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
12
|
Fu X, Zhou X, Liu P, Chen H, Xiao Z, Yuan B, Yang X, Zhu X, Zhang K, Zhang X. The optimized preparation of HA/L-TiO 2/D-TiO 2 composite coating on porous titanium and its effect on the behavior osteoblasts. Regen Biomater 2020; 7:505-514. [PMID: 33149939 PMCID: PMC7597800 DOI: 10.1093/rb/rbaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023] Open
Abstract
Various surface bioactivation technology has been confirmed to improve the osteogenic ability of porous titanium (pTi) implants effectively. In this study, a three-layered composite coating, i.e. outer layer of hydroxyapatite (HA), middle layer of loose titanium dioxide (L-TiO2) and inner layer of dense TiO2 (D-TiO2), was fabricated on pTi by a combined processing procedure of pickling, alkali heat (AH), anodic oxidation (AO), electrochemical deposition (ED) and hydrothermal treatment (HT). After soaking in simulated body fluid for 48 h, the surface of the AHAOEDHT-treated pTi was completely covered by a homogeneous apatite layer. Using MC3T3-E1 pro-osteoblasts as cell model, the cell culture revealed that both the pTi without surface treatment and the AHAOEDHT sample could support the attachment, growth and proliferation of the cells. Compared to the pTi sample, the AHAOEDHT one induced higher expressions of osteogenesis-related genes in the cells, including alkaline phosphatase, Type I collagen, osteopontin, osteoclast inhibitor, osteocalcin and zinc finger structure transcription factor. As thus, besides the good corrosion resistance, the HA/L-TiO2/D-TiO2-coated pTi had good osteogenic activity, showing good potential in practical application for bone defect repair.
Collapse
Affiliation(s)
- Xi Fu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Xingyu Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Pin Liu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Hewei Chen
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29, Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
13
|
Affiliation(s)
- Jiahui Zhang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yihua Feng
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xuan Zhou
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanbin Shi
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Wang
- Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
14
|
Han Q, Wang C, Chen H, Zhao X, Wang J. Porous Tantalum and Titanium in Orthopedics: A Review. ACS Biomater Sci Eng 2019; 5:5798-5824. [PMID: 33405672 DOI: 10.1021/acsbiomaterials.9b00493] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Porous metal is metal with special porous structures, which can offer high biocompatibility and low Young's modulus to satisfy the need for orthopedic applications. Titanium and tantalum are the most widely used porous metals in orthopedics due to their excellent biomechanical properties and biocompatibility. Porous titanium and tantalum have been studied and applied for a long history until now. Here in this review, various manufacturing methods of titanium and tantalum porous metals are introduced. Application of these porous metals in different parts of the body are summarized, and strengths and weaknesses of these porous metal implants in clinical practice are discussed frankly for future improvement from the viewpoint of orthopedic surgeons. Then according to the requirements from clinics, progress in research for clinical use is illustrated in four aspects. Various creative designs of microporous and functionally gradient structure, surface modification, and functional compound systems of porous metal are exhibited as reference for future research. Finally, the directions of orthopedic porous metal development were proposed from the clinical view based on the rapid progress of additive manufacturing. Controllable design of both macroscopic anatomical bionic shape and microscopic functional bionic gradient porous metal, which could meet the rigorous mechanical demand of bone reconstruction, should be developed as the focus. The modification of a porous metal surface and construction of a functional porous metal compound system, empowering stronger cell proliferation and antimicrobial and antineoplastic property to the porous metal implant, also should be taken into consideration.
Collapse
Affiliation(s)
- Qing Han
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Chenyu Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Hao Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Xue Zhao
- Department of Endocrine and Metabolism, The First Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000 Jilin Province, China
| |
Collapse
|
15
|
Zhang K, Zhou Y, Xiao C, Zhao W, Wu H, Tang J, Li Z, Yu S, Li X, Min L, Yu Z, Wang G, Wang L, Zhang K, Yang X, Zhu X, Tu C, Zhang X. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. SCIENCE ADVANCES 2019; 5:eaax6946. [PMID: 31414050 PMCID: PMC6677551 DOI: 10.1126/sciadv.aax6946] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite (HA) has been widely applied in bone repair because of its superior biocompatibility. Recently, a proliferation-suppressive effect of HA nanoparticles (n-HA) against various cancer cells was reported. This study was aimed at assessing the translational value of n-HA both as a bone-regenerating material and as an antitumor agent. Inhibition of tumor growth, prevention of metastasis, and enhancement of the survival rate of tumor-bearing rabbits treated with n-HA were demonstrated. Activated mitochondrial-dependent apoptosis in vivo was confirmed, and we observed that a stimulated immune response was involved in the n-HA-induced antitumor effect. A porous titanium scaffold loaded with n-HA was fabricated and implanted into a critical-sized segmental bone defect in a rabbit tumor model. The n-HA-releasing scaffold not only showed a prominent effect in suppressing tumor growth and osteolytic lesion but also promoted bone regeneration. These findings provide a rationale for using n-HA in tumor-associated bone segmental defects.
Collapse
Affiliation(s)
- Kun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yong Zhou
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Cong Xiao
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wanlu Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Jiaoqing Tang
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhongtao Li
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Li Min
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhentao Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Lin Wang
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chongqi Tu
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
16
|
Li Z, Wang C, Li C, Wang Z, Yang F, Liu H, Qin Y, Wang J. What we have achieved in the design of 3D printed metal implants for application in orthopedics? Personal experience and review. RAPID PROTOTYPING JOURNAL 2018; 24:1365-1379. [DOI: 10.1108/rpj-10-2017-0205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
PurposeThis paper aims to review the latest applications in terms of three-dimensional printed (3DP) metal implants in orthopedics, and, importantly, the design of 3DP metal implants through a series of cases operated at The Second Hospital of Jilin University were presented.Design/methodology/approachThis paper is available to practitioners who are use 3DP implants in orthopedics. This review began with the deficiency of traditional prostheses and basic concepts of 3DP implants. Then, representative 3DP clinical cases were summarized and compared, and the experiences using customized prostheses and directions for future potential development are also shown.FindingsThe results obtained from the follow-up of clinical applications of 3DP implants show that the 3D designed and printed metal implants could exhibit good bone defect matching, quick and safe joint functional rehabilitation as well as saving time in surgery, which achieved high patient satisfaction collectively.Originality/valueSingle center experiences of 3DP metal implants design were shared and the detailed technical points between various regions were compared and analyzed. In conclusion, the 3DP technology is infusive and will present huge potential to reform future orthopedic practice.
Collapse
|
17
|
Oral administration of coated PEDV-loaded microspheres elicited PEDV-specific immunity in weaned piglets. Vaccine 2018; 36:6803-6809. [DOI: 10.1016/j.vaccine.2018.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/13/2023]
|
18
|
Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018; 3:278-314. [PMID: 29744467 PMCID: PMC5935790 DOI: 10.1016/j.bioactmat.2017.10.001] [Citation(s) in RCA: 584] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Gareth Turnbull
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Jon Clarke
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Frédéric Picard
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Philip Riches
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| | - Luanluan Jia
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Wenmiao Shu
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| |
Collapse
|
19
|
Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering. Regen Biomater 2018; 5:115-124. [PMID: 29644093 PMCID: PMC5887944 DOI: 10.1093/rb/rby001] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Microporosity has a critical role in improving the osteogenesis of scaffolds for bone tissue engineering. Although the exact mechanism, by which it promotes new bone formation, is not well recognized yet, the related hypothesis can be found in many previous studies. This review presents those possible mechanisms about how the microporosity enhances the osteogenic-related functions of cells in vitro and the osteogenic activity of scaffolds in vivo. In summary, the increased specific surface areas by microporosity can offer more protein adsorption sites and accelerate the release of degradation products, which facilitate the interactions between scaffolds and cells. Meanwhile, the unique surface properties of microporous scaffolds have a considerable effect on the protein adsorption. Moreover, capillary force generated by the microporosity can improve the attachment of bone-related cells on the scaffolds surface, and even make the cells achieve penetration into the micropores smaller than them. This review also pays attention to the relationship between the biological and mechanical properties of microporous scaffolds. Although lots of achievements have been obtained, there is still a lot of work to do, some of which has been proposed in the conclusions and perspectives part.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 102402, China.,State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Li X, Deng Y, Wang M, Chen X, Xiao Y, Zhang X. Stabilization of Ca-deficient hydroxyapatite in biphasic calcium phosphate ceramics by adding alginate to enhance their biological performances. J Mater Chem B 2018; 6:84-97. [DOI: 10.1039/c7tb02620j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is of significance to further improve the bioactivity of existing calcium phosphate (Ca–P) biomaterials to satisfy the needs of regenerative medicine.
Collapse
Affiliation(s)
- Xiangfeng Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yanglong Deng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
21
|
Li X, Wang M, Deng Y, Chen X, Xiao Y, Zhang X. Fabrication and Properties of Ca-P Bioceramic Spherical Granules with Interconnected Porous Structure. ACS Biomater Sci Eng 2017; 3:1557-1566. [DOI: 10.1021/acsbiomaterials.7b00232] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiangfeng Li
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Menglu Wang
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yanglong Deng
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xuening Chen
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yumei Xiao
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research
Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
One-Dimensional Constitutive Model for Porous Titanium Alloy at Various Strain Rates and Temperatures. METALS 2017. [DOI: 10.3390/met7010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1047-1056. [DOI: 10.1016/j.msec.2016.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
|
24
|
Wang C, Chen H, Zhu X, Xiao Z, Zhang K, Zhang X. An improved polymeric sponge replication method for biomedical porous titanium scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1192-1199. [DOI: 10.1016/j.msec.2016.03.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
|
25
|
Li F, Li J, Kou H, Zhou L. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:485-488. [DOI: 10.1016/j.msec.2015.11.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/19/2015] [Accepted: 11/30/2015] [Indexed: 01/16/2023]
|
26
|
Roohani-Esfahani SI, Newman P, Zreiqat H. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci Rep 2016; 6:19468. [PMID: 26782020 PMCID: PMC4726111 DOI: 10.1038/srep19468] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022] Open
Abstract
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.
Collapse
Affiliation(s)
- Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of Aeronautical Mechanical and Mechatronics Engineering, University of Sydney, 2006, NSW, Australia
| | - Peter Newman
- Biomaterials and Tissue Engineering Research Unit, School of Aeronautical Mechanical and Mechatronics Engineering, University of Sydney, 2006, NSW, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aeronautical Mechanical and Mechatronics Engineering, University of Sydney, 2006, NSW, Australia
| |
Collapse
|
27
|
Lv Z, Wu C, Li J, Fang X, Yu D, Qin H, Yu P, Chen X. Stepwise cure and properties of silicone resin for high-ultraviolet-transmission optical elements. J Appl Polym Sci 2015. [DOI: 10.1002/app.43308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiyong Lv
- School of Materials Science and Engineering; Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
| | - Chonggang Wu
- School of Materials Science and Engineering; Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
| | - Jing Li
- Huangpi Non-Commissioned Officer (NCO) School, Air Force Early Warning Academy; Wuhan Hubei 430034 People's Republic of China
| | - Xiao Fang
- Huangpi Non-Commissioned Officer (NCO) School, Air Force Early Warning Academy; Wuhan Hubei 430034 People's Republic of China
| | - Dongdong Yu
- School of Materials Science and Engineering; Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
| | - Huchuan Qin
- School of Materials Science and Engineering; Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
| | - Peng Yu
- School of Materials Science and Engineering; Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry; Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
| | - Xuhuang Chen
- School of Materials Science and Engineering; Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry; Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
- Collaborative Innovation Center for Green Light-Weight Materials and Their Processing, Hubei University of Technology; Wuhan Hubei 430068 People's Republic of China
| |
Collapse
|
28
|
|