1
|
Burmistrov IA, Veselov MM, Mikheev AV, Borodina TN, Bukreeva TV, Chuev MA, Starchikov SS, Lyubutin IS, Artemov VV, Khmelenin DN, Klyachko NL, Trushina DB. Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field. Pharmaceutics 2021; 14:65. [PMID: 35056960 PMCID: PMC8777611 DOI: 10.3390/pharmaceutics14010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.
Collapse
Affiliation(s)
- Ivan A. Burmistrov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Maxim M. Veselov
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
| | - Alexander V. Mikheev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana N. Borodina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Tatiana V. Bukreeva
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- National Research Centre ‘‘Kurchatov Institute”, 123182 Moscow, Russia
| | - Michael A. Chuev
- Valiev Institute of Physics and Technology of RAS, 117218 Moscow, Russia;
| | - Sergey S. Starchikov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Igor S. Lyubutin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Dmitry N. Khmelenin
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
| | - Natalia L. Klyachko
- Department of Chemical Enzymology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.V.); (N.L.K.)
- Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| | - Daria B. Trushina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘‘Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia; (A.V.M.); (T.N.B.); (T.V.B.); (S.S.S.); (I.S.L.); (V.V.A.); (D.N.K.); (D.B.T.)
- Department of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Lemine OM, Madkhali N, Alshammari M, Algessair S, Gismelseed A, Mir LE, Hjiri M, Yousif AA, El-Boubbou K. Maghemite (γ-Fe 2O 3) and γ-Fe 2O 3-TiO 2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency. MATERIALS 2021; 14:ma14195691. [PMID: 34640088 PMCID: PMC8510075 DOI: 10.3390/ma14195691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 01/02/2023]
Abstract
In this report, the heating efficiencies of γ-Fe2O3 and hybrid γ-Fe2O3-TiO2 nanoparticles NPs under an alternating magnetic field (AMF) have been investigated to evaluate their feasible use in magnetic hyperthermia. The NPs were synthesized by a modified sol-gel method and characterized by different techniques. X-ray diffraction (XRD), Mössbauer spectroscopy and electron microscopy analyses confirmed the maghemite (γ-Fe2O3) phase, crystallinity, good uniformity and 10 nm core sizes of the as-synthesized composites. SQUID hysteresis loops showed a non-negligible coercive field and remanence suggesting the ferromagnetic behavior of the particles. Heating efficiency measurements showed that both samples display high heating potentials and reached magnetic hyperthermia (42 °C) in relatively short times with shorter time (~3 min) observed for γ-Fe2O3 compared to γ-Fe2O3-TiO2. The specific absorption rate (SAR) values calculated for γ-Fe2O3 (up to 90 W/g) are higher than that for γ-Fe2O3-TiO2 (~40 W/g), confirming better heating efficiency for γ-Fe2O3 NPs. The intrinsic loss power (ILP) values of 1.57 nHm2/kg and 0.64 nHm2/kg obtained for both nanocomposites are in the range reported for commercial ferrofluids (0.2–3.1 nHm2/kg). Finally, the heating mechanism responsible for NP heat dissipation is explained concluding that both Neel and Brownian relaxations are contributing to heat production. Overall, the obtained high heating efficiencies suggest that the fabricated nanocomposites hold a great potential to be utilized in a wide spectrum of applications, particularly in magnetic photothermal hyperthermia treatments.
Collapse
Affiliation(s)
- O. M. Lemine
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia; (N.M.); (S.A.)
- Correspondence: ; Tel.: +966-112586775
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia; (N.M.); (S.A.)
| | - Marzook Alshammari
- The National Center for Laser and Optoelectronics, KACST, 6086, Riyadh 11442, Saudi Arabia;
| | - Saja Algessair
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia; (N.M.); (S.A.)
| | - Abbasher Gismelseed
- Department of Physics, College of Science, Sultan Qaboos University, Code 123, Al Khoud P.O. Box 36, Oman; (A.G.); (A.A.Y.)
| | - Lassad El Mir
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhysMNE), Faculty of Sciences of Gabes, University of Gabes, Gabes 6072, Tunisia; (L.E.M.); (M.H.)
| | - Moktar Hjiri
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhysMNE), Faculty of Sciences of Gabes, University of Gabes, Gabes 6072, Tunisia; (L.E.M.); (M.H.)
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ali A. Yousif
- Department of Physics, College of Science, Sultan Qaboos University, Code 123, Al Khoud P.O. Box 36, Oman; (A.G.); (A.A.Y.)
| | - Kheireddine El-Boubbou
- Department of Basic Sciences, College of Science & Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| |
Collapse
|
3
|
Marycz K, Sobierajska P, Wiglusz RJ, Idczak R, Nedelec JM, Fal A, Kornicka-Garbowska K. <p>Fe<sub>3</sub>O<sub>4</sub> Magnetic Nanoparticles Under Static Magnetic Field Improve Osteogenesis via RUNX-2 and Inhibit Osteoclastogenesis by the Induction of Apoptosis</p>. Int J Nanomedicine 2020; 15:10127-10148. [PMID: 36213447 PMCID: PMC9537728 DOI: 10.2147/ijn.s256542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Krzysztof Marycz
- The Department of Experimental Biology, University of Environmental and Life Sciences Wroclaw, Wroclaw50-375, Poland
- Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, Warsaw01-938, Poland
- International Institute of Translational Medicine, Malin55-114, Poland
- Correspondence: Krzysztof Marycz The Department of Experimental Biology, University of Environmental and Life Sciences Wroclaw, Norwida 27B, Wrocław50-375, PolandTel +48 71 320 5201 Email
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw50-422, Poland
| | - Rafał J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw50-422, Poland
| | - Rafał Idczak
- Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Wroclaw50-950, Poland
| | - Jean-Marie Nedelec
- CNRS, SIGMA Clermont, ICCF, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Andrzej Fal
- Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, Warsaw01-938, Poland
| | - Katarzyna Kornicka-Garbowska
- The Department of Experimental Biology, University of Environmental and Life Sciences Wroclaw, Wroclaw50-375, Poland
- International Institute of Translational Medicine, Malin55-114, Poland
| |
Collapse
|
4
|
Unveiling the Effect of Zn2+ Substitution in Enrichment of Structural, Magnetic, and Dielectric Properties of Cobalt Ferrite. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01523-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Marycz K, Sobierajska P, Roecken M, Kornicka-Garbowska K, Kępska M, Idczak R, Nedelec JM, Wiglusz RJ. Iron oxides nanoparticles (IOs) exposed to magnetic field promote expression of osteogenic markers in osteoblasts through integrin alpha-3 (INTa-3) activation, inhibits osteoclasts activity and exerts anti-inflammatory action. J Nanobiotechnology 2020; 18:33. [PMID: 32070362 PMCID: PMC7027282 DOI: 10.1186/s12951-020-00590-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/02/2020] [Indexed: 12/19/2022] Open
Abstract
Background Prevalence of osteoporosis is rapidly growing and so searching for novel therapeutics. Yet, there is no drug on the market available to modulate osteoclasts and osteoblasts activity simultaneously. Thus in presented research we decided to fabricate nanocomposite able to: (i) enhance osteogenic differentiation of osteoblast, (i) reduce osteoclasts activity and (iii) reduce pro-inflammatory microenvironment. As a consequence we expect that fabricated material will be able to inhibit bone loss during osteoporosis. Results The α-Fe2O3/γ-Fe2O3 nanocomposite (IOs) was prepared using the modified sol–gel method. The structural properties, size, morphology and Zeta-potential of the particles were studied by means of XRPD (X-ray powder diffraction), SEM (Scanning Electron Microscopy), PALS and DLS techniques. The identification of both phases was checked by the use of Raman spectroscopy and Mössbauer measurement. Moreover, the magnetic properties of the obtained IOs nanoparticles were determined. Then biological properties of material were investigated with osteoblast (MC3T3), osteoclasts (4B12) and macrophages (RAW 264.7) in the presence or absence of magnetic field, using confocal microscope, RT-qPCR, western blot and cell analyser. Here we have found that fabricated IOs: (i) do not elicit immune response; (ii) reduce inflammation; (iii) enhance osteogenic differentiation of osteoblasts; (iv) modulates integrin expression and (v) triggers apoptosis of osteoclasts. Conclusion Fabricated by our group α-Fe2O3/γ-Fe2O3 nanocomposite may become an justified and effective therapeutic intervention during osteoporosis treatment.
Collapse
Affiliation(s)
- K Marycz
- The Department of Experimental Biology, University of Environmental and Life Sciences Wroclaw, Norwida 27B, 50-375, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, Frankfurter 108, 35392, Giessen, Lahn, Germany. .,International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland.
| | - P Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422, Wrocław, Poland
| | - M Roecken
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, Frankfurter 108, 35392, Giessen, Lahn, Germany
| | - K Kornicka-Garbowska
- The Department of Experimental Biology, University of Environmental and Life Sciences Wroclaw, Norwida 27B, 50-375, Wrocław, Poland.,International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland
| | - M Kępska
- The Department of Experimental Biology, University of Environmental and Life Sciences Wroclaw, Norwida 27B, 50-375, Wrocław, Poland
| | - R Idczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422, Wrocław, Poland
| | - J-M Nedelec
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, Clermont-Ferrand, France
| | - R J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422, Wrocław, Poland.,Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950, Wrocław, Poland
| |
Collapse
|
6
|
Farhanian D, De Crescenzo G, Tavares JR. Large-Scale Encapsulation of Magnetic Iron Oxide Nanoparticles via Syngas Photo-Initiated Chemical Vapor Deposition. Sci Rep 2018; 8:12223. [PMID: 30111772 PMCID: PMC6093859 DOI: 10.1038/s41598-018-30802-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Photo-initiated chemical vapor deposition (PICVD) has been adapted for use in a jet-assisted fluidized bed configuration, allowing for the encapsulation of magnetic iron oxide nanoparticles on a larger scale than ever reported (5 g). This new methodology leads to a functional coating with a thickness of 1.4–10 nm, confirmed by HRTEM and TGA. XPS and TOF-SIMS characterization confirm that the coating is composed of both aliphatic and polymerized carbon chains, with incorporated organometallic bonds and oxygen-containing moieties. UV-Vis absorbance spectra show that the coating improved dispersion in non-polar solvents, such as n-dodecane. This process represents a first step towards the large-scale, solvent-free post-synthesis processing of nanoparticles to impart a functional coating.
Collapse
Affiliation(s)
- Donya Farhanian
- CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, H3C 3A7, Canada
| | - Gregory De Crescenzo
- CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, H3C 3A7, Canada
| | - Jason R Tavares
- CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, H3C 3A7, Canada.
| |
Collapse
|
7
|
Chen S, Zhang J, Jiang S, Lin G, Luo B, Yao H, Lin Y, He C, Liu G, Lin Z. Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI. NANOSCALE RESEARCH LETTERS 2016; 11:263. [PMID: 27216601 PMCID: PMC4877342 DOI: 10.1186/s11671-016-1479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/12/2016] [Indexed: 05/14/2023]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability.
Collapse
Affiliation(s)
- Shuzhen Chen
- Department of Microbiology and Immunology, Xiamen Medical College, Xiamen, 361008, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, 637007, China
| | - Shengwei Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huan Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuchun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengyong He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
8
|
Li X, Wei J, Aifantis KE, Fan Y, Feng Q, Cui FZ, Watari F. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A 2016; 104:1285-96. [DOI: 10.1002/jbm.a.35654] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/25/2015] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Jianrong Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Katerina E. Aifantis
- Department of Civil Engineering-Engineering Mechanics; University of Arizona; Tucson Arizona 85721
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University; Beijing 100191 China
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University; Beijing 100084 China
| | - Fu-Zhai Cui
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University; Beijing 100084 China
| | - Fumio Watari
- Department of Biomedical Materials and Engineering; Graduate School of Dental Medicine, Hokkaido University; Sapporo 060-8586 Japan
| |
Collapse
|