1
|
Düzmen Ş, Aslanoglu M. Construction of a graphene nanoplatelets-erbium oxide based voltammetric platform for the sensitive determination of terbutaline. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Magnetic solid phase extraction of Sunitinib malate in urine samples assisted with mixed hemimicelle and spectrophotometric detection. Sci Rep 2023; 13:3361. [PMID: 36849725 PMCID: PMC9971239 DOI: 10.1038/s41598-023-30404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
The mixed hemimicelle-based solid phase extraction method using the coated sodium dodecyl sulfate by magnetic iron oxide nanoparticles as adsorbent was developed for extraction and determination of Sunitinib malate in real samples prior to determination by UV-Visible spectrophotometry. For the characterization of synthesized nanoparticles, Fourier transform infrared spectroscopy, and scanning electron microscopy was used. The influences of different factors affecting the extraction efficiency of Sunitinib malate, including the pH, the adsorbent amount, the volume and eluent type, the amount of the surfactant, the ionic strength, extraction, and desorption time, were investigated. At the optimized conditions, a good linearity with correlation coefficients of 0.998 and 0.999 was obtained over the concentration ranges of 1-22 and 1-19 µg/mL for water and urine samples, in order. The good recoveries of 97% and 99% and also, the limits of detection equal with 0.9, and 0.8 µg/mL for water and urine samples were enhanced, respectively. These results demonstrate that mixed hemimicelle solid phase extraction is a fast, efficient, economical and selective sample preparation method for the extraction and determination of Sunitinib malate in different water and urine sample solutions.
Collapse
|
3
|
Vural K, Karakaya S, Dilgin DG, Gökçel Hİ, Dilgin Y. Voltammetric determination of Molnupiravir used in treatment of the COVID-19 at magnetite nanoparticle modified carbon paste electrode. Microchem J 2023; 184:108195. [PMID: 36415585 PMCID: PMC9671532 DOI: 10.1016/j.microc.2022.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
To reduce the progression of the viral process in patients infected with COVID-19, new treatments and drug active substances are needed. One of these drugs is Molnupiravir (MNP) which has a direct antiviral effect and has also proven to be highly effective in reducing the azopharyngeal SARS-CoV-2 infectious virus and viral RNA. Due to the importance and frequent use of this drug in the treatment of COVID-19, its accurate, quick, and cheap detection in pharmaceutical or biological samples is crucial. In this work, electrochemical behavior and sensitive voltammetric determination of MNP are described using a magnetite nanoparticle modified carbon paste electrode (Fe3O4@CPE) for the first time. Fe3O4 nanoparticles (NPs) were characterized by recording their transmission electron microscopy (TEM) images, energy dispersive X-ray (EDX), and X-ray diffraction (XRD) spectra. Cyclic voltammetric measurements showed that MNP was irreversibly oxidized at Fe3O4@CPE at 760 mV in pH 2.0 Britton Robinson buffer solution (BRBS). The peak current of MNP was increased approximately threefold at Fe3O4@CPE compared to bare CPE due to a good electrocatalytic efficiency of Fe3O4 NPs. According to differential pulse voltammetric studies, the fabricated electrode exhibited a linear range (LR) between 0.25 and 750 µM with sensitivity and limit of detection (LOD) of 4591.0 µA mM-1 cm-2 and 0.05 µM, respectively. On the other hand, although lower sensitivity (327.3 µA mM-1 cm-2) was obtained from CV compared to DPV, a wider linear calibration curve between 0.25 and 1500 µM was obtained in CV. Studies performed in tablet samples confirmed that the Fe3O4@CPE exhibits high applicability for selective and accurate voltammetric determination of MNP in real samples.
Collapse
Affiliation(s)
- Kader Vural
- Çanakkale Onsekiz Mart University, Faculty of Education, Secondary Science and Mathematics Education Department, 17100 Çanakkale, Turkey
| | - Serkan Karakaya
- Çanakkale Onsekiz Mart University, Faculty of Science, Chemistry Department, 17100 Çanakkale, Turkey
| | - Didem Giray Dilgin
- Çanakkale Onsekiz Mart University, Faculty of Education, Secondary Science and Mathematics Education Department, 17100 Çanakkale, Turkey
| | - Hatice İsmet Gökçel
- Ege University, Faculty of Science, Department of Chemistry, 35100 Bornova-İzmir, Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart University, Faculty of Science, Chemistry Department, 17100 Çanakkale, Turkey
| |
Collapse
|
4
|
Baytak A, Aslanoglu M. Praseodymium doped dysprosium oxide‐carbon nanofibers based voltammetric platform for the simultaneous determination of sunset yellow and tartrazine. ELECTROANAL 2022. [DOI: 10.1002/elan.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Synthesis of Nickel-Doped Ceria Nanospheres for In Situ Profiling of Warfarin Sodium in Biological Media. Bioelectrochemistry 2022; 146:108166. [PMID: 35643022 DOI: 10.1016/j.bioelechem.2022.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
|
6
|
Beitollahi H, Tajik S, Di Bartolomeo A. Application of MnO2 Nanorod–Ionic Liquid Modified Carbon Paste Electrode for the Voltammetric Determination of Sulfanilamide. MICROMACHINES 2022; 13:mi13040598. [PMID: 35457903 PMCID: PMC9028730 DOI: 10.3390/mi13040598] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023]
Abstract
The current work introduced a convenient single-phase hydrothermal protocol to fabricate MnO2 nanorods (MnO2 NRs). Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscopy (FE-SEM) were used to determine the characteristics of MnO2 NR. Then, ionic liquid (IL) and MnO2 NRs were utilized to modify a carbon paste electrode (CPE) surface (MnO2NR-IL/CPE) to voltammetrically sense the sulfanilamide (SAA). An enhanced voltammetric sensitivity was found for the as-developed modified electrode toward SAA when compared with a bare electrode. The optimization experiments were designed to achieve the best analytical behavior of the SAA sensor. Differential pulse voltammetry (DPV) in the optimized circumstances portrayed a linear dependence on various SAA levels (between 0.07 and 100.0 μM), possessing a narrow detection limit (0.01 μM). The ability of the modified electrode to be used in sensor applications was verified in the determination of SAA present in the actual urine and water specimens, with impressive recovery outcomes.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran;
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence: (S.T.); (A.D.B.)
| | - Antonio Di Bartolomeo
- Physics Department “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Correspondence: (S.T.); (A.D.B.)
| |
Collapse
|
7
|
Abstract
Detecting warfarin levels in the blood is of critical importance in anticoagulant therapy because it is imperative that the concentration of the drug is maintained within a specific range. In this paper, we present a proof-of-concept of a novel sensing device based on ion-selective electrode (ISE) technology for the direct detection of warfarin in blood samples without any sample pretreatment. We used tetradodecylammonium chloride (TDDA) as an ion-exchanger to fabricate an ion-selective membrane. The ISE we developed showed high sensitivity, with a limit of detection (LOD) of 1.25 × 10−7 M and 1.4 × 10−5 M for detecting warfarin in buffer and blood, respectively. The sensor also exhibited promising selectivity in identifying the presence of various ions including chloride and salicylate, the most abundant ions in blood with a calibration slope of 58.8 mV/dec. We envision combining the ISE with a microfluidic system and a simple potentiometer to produce a sensitive, selective, and portable point-of-care testing device for monitoring the level of warfarin in patients’ blood during treatment.
Collapse
|
8
|
Kuzikov AV, Filippova TA, Masamrekh RA, Shumyantseva VV. Electrochemical determination of (S)-7-hydroxywarfarin for analysis of CYP2C9 catalytic activity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
10
|
Development of a Dy 2O 3@Eu 2O 3-carbon nanofiber based electrode for highly sensitive detection of papaverine. Anal Chim Acta 2021; 1183:338972. [PMID: 34627531 DOI: 10.1016/j.aca.2021.338972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
A sensitive electrochemical method based on carbon nanofibers (CNFs) and bimetallic nanoparticles of dysprosium oxide (Dy2O3) and europium oxide (Eu2O3) was developed for the determination of papaverine in pharmaceuticals and human urine. Several electrodes were compared in respect to their electrochemically active surface area calculated as 0.0603, 0.1300, 0.3440, 0.3740 and 0.4990 cm2 for bare GCE, CNFs/GCE, Eu2O3-CNFs/GCE, Dy2O3-CNFs/GCE and Dy2O3@Eu2O3-CNFs/GCE, respectively. Electrodes were also compared in respect to their performance towards the voltammetric process of papaverine. The peak potential (Epa) of papaverine was 1.094 V, 0.993 V, 0.978 V, 0.969 V and 0.966 V at unmodified GCE, CNFs/GCE, Eu2O3-CNFs/GCE, Dy2O3-CNFs/GCE and Dy2O3@Eu2O3-CNFs/GCE, respectively. This indicated that the oxidation peak potential of papaverine shifted gradually towards the negative potentials and the peak current increased gradually from unmodified GCE to CNFs/GCE, Eu2O3-CNFs/GCE, Dy2O3-CNFs/GCE and Dy2O3@Eu2O3-CNFs/GCE. The influence of experimental parameters such as scan rate and pH on the voltammetry of papaverine was studied. The Dy2O3@Eu2O3-CNFs/GCE system presented a dynamic working range between 1.0 × 10-7 and 2.0 × 10-6 M with a detection limit of 1.0 × 10-8 M for papaverine. The platform (Dy2O3@Eu2O3-CNFs/GCE) exhibited excellent sensitivity and selectivity for papaverine in the presence of uric acid and was successfully applied for determining papaverine in pharmaceuticals and urine samples.
Collapse
|
11
|
Fabrication of an electrochemical biosensor based on Fe3O4 nanoparticles and uricase modified carbon paste electrode for uric acid determination. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02749-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hassanpour S, Behnam B, Baradaran B, Hashemzaei M, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 2020; 221:121610. [PMID: 33076140 DOI: 10.1016/j.talanta.2020.121610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotropes including carbon nanotubes and graphenes have been widely used for development of different Nano-biosensors for a diverse list of analytes because of their great physiochemical features such as high tensile strength, ultra-light weight, unique electronic construction, high thermo-chemical stability, and an appropriate capacity for electron transfer. Because of these exceptional properties, scientists have developed an immense interest in these nanomaterials. In this case, there are important reports to show the effective Nano-carbon based biosensors in the detection of NTI drugs and the present review will critically summarize the available data in this field.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
13
|
Ghalkhani M, Kaya SI, Bakirhan NK, Ozkan Y, Ozkan SA. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Crit Rev Anal Chem 2020; 52:481-503. [DOI: 10.1080/10408347.2020.1808442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sariye Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Nurgul K. Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Tajik S, Beitollahi H, Nejad FG, Safaei M, Zhang K, Van Le Q, Varma RS, Jang HW, Shokouhimehr M. Developments and applications of nanomaterial-based carbon paste electrodes. RSC Adv 2020; 10:21561-21581. [PMID: 35518767 PMCID: PMC9054518 DOI: 10.1039/d0ra03672b] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 01/22/2023] Open
Abstract
This review summarizes the progress that has been made in the past ten years in the field of electrochemical sensing using nanomaterial-based carbon paste electrodes. Following an introduction into the field, a first large section covers sensors for biological species and pharmaceutical compounds (with subsections on sensors for antioxidants, catecholamines and amino acids). The next section covers sensors for environmental pollutants (with subsections on sensors for pesticides and heavy metal ions). Several tables are presented that give an overview on the wealth of methods (differential pulse voltammetry, square wave voltammetry, amperometry, etc.) and different nanomaterials available. A concluding section summarizes the status, addresses future challenges, and gives an outlook on potential trends.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Mohadeseh Safaei
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Kaiqiang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
15
|
Rizk M, Attia AK, Mohamed HY, Elshahed MS. Validated Voltammetric Method for the Simultaneous Determination of Anti‐diabetic Drugs, Linagliptin and Empagliflozin in Bulk, Pharmaceutical Dosage Forms and Biological Fluids. ELECTROANAL 2020. [DOI: 10.1002/elan.202000007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed Rizk
- Department of Analytical Chemistry, Faculty of PharmacyHelwan University, EinHelwan 11795 Cairo Egypt
| | - Ali K. Attia
- National Organization for Drug Control and Research (NODCAR) P.O. Box 29 Giza Egypt
- Chemistry Department, College of Sciences Al-ZulfiMajmaah University AL-Majmaah 11952 Saudi Arabia
| | - Heba Y. Mohamed
- National Organization for Drug Control and Research (NODCAR) P.O. Box 29 Giza Egypt
| | - Mona S. Elshahed
- Department of Analytical Chemistry, Faculty of PharmacyHelwan University, EinHelwan 11795 Cairo Egypt
| |
Collapse
|
16
|
Dong-Wei C, Yuan Z, Xiao-Yi D, Yu Z, Guo-Hui L, Xue-Song F. Progress in Pretreatment and Analytical Methods of Coumarins: An Update since 2012 - A Review. Crit Rev Anal Chem 2020; 51:503-526. [PMID: 32314593 DOI: 10.1080/10408347.2020.1750338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coumarins are widely used due to their wide range of biological activities, but the long-term or excessive use of coumarin flavors can pose serious health hazards. Therefore, sensitive and specific methods for the quantification of these compounds in different matrices have been developed. In this review, an updated overview of the latest trends in sample preparation techniques and methods used to detect coumarins from March 2012 to April 2019 is provided. This study reviews different analytical methods (such as liquid chromatography coupled with different detectors, electrochemical sensors, capillary electrophoresis, etc.) and different pretreatment methods (such as liquid-liquid extraction, solid-phase extraction, dispersive liquid-liquid microextraction, etc.). Different methods for the pretreatment and determination of coumarins in plant, food, environmental, pharmaceutical and biological samples are summarized, discussed and compared.HighlightsProgress in pretreatment and analytical methods of coumarins are summarized.Fundamentals, instrumentation and applications of purification and quantification are summarized and compared.Optimization of experimental conditions are discussed.Newly emerged eco-friendly methods are introduced.
Collapse
Affiliation(s)
- Cui Dong-Wei
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhang Yuan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Duan Xiao-Yi
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhou Yu
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Guo-Hui
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Xue-Song
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Sanchayanukun P, Muncharoen S. Chitosan coated magnetite nanoparticle as a working electrode for determination of Cr(VI) using square wave adsorptive cathodic stripping voltammetry. Talanta 2020; 217:121027. [PMID: 32498824 DOI: 10.1016/j.talanta.2020.121027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022]
Abstract
The application of chitosan coated magnetite nanoparticle modified carbon paste electrode as a working electrode (chitosan@Fe3O4/CPE) for Cr(VI) analysis is presented. The electrochemical detection mode of square wave adsorptive cathodic stripping voltammetry (SWAdCSV) was selected for determination of Cr(VI) due to the high sensitivity and selectivity. The optimal conditions for electrode preparation and the electrode behavior including parameters affecting the SWAdCSV signal were investigated. Two linear ranges of Cr(VI) determination were observed 0.01-0.3 μg L-1 and 0.5-30 μg L-1 with limits of detection of 0.0061 and 0.078 μg L-1, respectively. The precision of the electrode output in terms of %RSD was 11.4% (n = 30). The method was successfully applied to determine Cr(VI) in drinking water and sea water samples with recovery percentages in range 87-110%. Moreover, the results obtained agree with a paired t-test at the 95% confidence level which were comparable to the standard UV-visible spectrophotometric method.
Collapse
Affiliation(s)
- Phetlada Sanchayanukun
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi, 20130, Thailand
| | - Sasithorn Muncharoen
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi, 20130, Thailand.
| |
Collapse
|
18
|
Zilberg RA, Maistrenko VN, Zagitova LR, Guskov VY, Dubrovsky DI. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Moreira F, Santana ER, Spinelli A. Ionic liquid-supported magnetite nanoparticles as electrode modifier materials for estrogens sensing. Sci Rep 2020; 10:1955. [PMID: 32029811 PMCID: PMC7005039 DOI: 10.1038/s41598-020-58931-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
This paper reports the application of a carbon paste electrode modified with magnetite nanoparticles and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in the electroanalytical determination of 17β-estradiol and estriol. These estrogens are potential endocrine disruptors and thus it is relevant the development of devices for their monitoring. Transmission electron microscopy, scanning electron microscopy and zeta potential techniques were applied to characterization of the modifier materials. In cyclic voltammetry experiments, irreversible oxidation peaks were observed for 17β-estradiol and estriol at +0.320 V and +0.400 V, respectively. The anodic currents obtained were approximately three times greater than those provided by the unmodified electrode due to the presence of magnetic nanoparticles and the ionic liquid, which improved the sensitivity of modified electrode. For the analysis, the parameters of the square-wave voltammetry (scan increment, amplitude and frequency) were optimized by Box-Behnken factorial design for each estrogen. For 17β-estradiol in B-R buffer pH 12.0, the calibration plot was linear from 0.10 to 1.0 μmol L-1, with a detection limit of 50.0 nmol L-1. For estriol in B-R buffer pH 11.0, the linear range was 1.0 to 10.0 μmol L-1, with a detection limit of 300.0 nmol L-1. The modified electrode was applied in the determination of 17β-estradiol and estriol in pharmaceutical formulations and the results were comparable to those obtained using UV/VIS spectrometry. Statistical tests were applied to evaluate the results and it was concluded that there was no significant difference regarding the precision and accuracy of the data provided by the two methods.
Collapse
Affiliation(s)
- Fernanda Moreira
- Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Departamento de Química - CFM, 88040-900, Florianópolis, SC, Brazil
| | - Edson Roberto Santana
- Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Departamento de Química - CFM, 88040-900, Florianópolis, SC, Brazil
| | - Almir Spinelli
- Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos, Universidade Federal de Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Departamento de Química - CFM, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
20
|
Baytak AK, Akbaş E, Aslanoglu M. A novel voltammetric platform based on dysprosium oxide for the sensitive determination of sunset yellow in the presence of tartrazine. Anal Chim Acta 2019; 1087:93-103. [DOI: 10.1016/j.aca.2019.08.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/11/2023]
|
21
|
Gold nanoparticle prepared by electrochemical deposition for electrochemical determination of gabapentin as an antiepileptic drug. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Teker T, Aslanoglu M. Sensitive Determination of Terbutaline Using a Platform Based on Nanoparticles of Europium Oxide and Carbon Nanotubes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tuğçe Teker
- Department of Chemistry; University of Harran Osmanbey Campus; Sanliurfa 63510 Turkey
| | - Mehmet Aslanoglu
- Department of Chemistry; University of Harran Osmanbey Campus; Sanliurfa 63510 Turkey
| |
Collapse
|
23
|
Simultaneous electrochemical sensing of warfarin and maycophenolic acid in biological samples. Anal Chim Acta 2018; 1034:46-55. [DOI: 10.1016/j.aca.2018.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/17/2022]
|
24
|
de Jesus Guedes T, Pio dos Santos WT. Fast and Simple Electrochemical Analysis Kit for Quality Control of Narrow Therapeutic Index Drugs. ELECTROANAL 2018. [DOI: 10.1002/elan.201800108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tiago de Jesus Guedes
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina, MG Brasil
| | - Wallans Torres Pio dos Santos
- Departamento de Farmácia; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina, MG Brasil
| |
Collapse
|
25
|
Jalalian SH, Karimabadi N, Ramezani M, Abnous K, Taghdisi SM. Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Molaakbari E, Mostafavi A, Beitollahi H, Tohidiyan Z. Synthesis of conductive polymeric ionic liquid/Ni nanocomposite and its application to construct a nanostructure based electrochemical sensor for determination of warfarin in the presence of tramadol. Talanta 2017; 171:25-31. [DOI: 10.1016/j.talanta.2017.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
|
27
|
Gholivand MB, Solgi M. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE). Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
de Jesus Guedes T, Antônio Reis Andrade G, Barbosa Lima A, Amorim Bezerra da Silva R, Torres Pio dos Santos W. Simple and Fast Determination of Warfarin in Pharmaceutical Samples Using Boron-doped Diamond Electrode in BIA and FIA Systems with Multiple Pulse Amperometric Detection. ELECTROANAL 2017. [DOI: 10.1002/elan.201700320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tiago de Jesus Guedes
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina - MG Brasil
| | - Glauber Antônio Reis Andrade
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina - MG Brasil
| | - Amanda Barbosa Lima
- Departamento de Química; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina - MG Brasil
| | | | - Wallans Torres Pio dos Santos
- Departamento de Farmácia; Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK; 39100-000 Diamantina - MG Brasil
| |
Collapse
|
29
|
Carbon paste electrode modified with Fe3O4 nanoparticles and BMI.PF6 ionic liquid for determination of estrone by square-wave voltammetry. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3678-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Introduction of a carbon paste electrode based on nickel carbide for investigation of interaction between warfarin and vitamin K1. J Pharm Biomed Anal 2017; 139:156-164. [DOI: 10.1016/j.jpba.2017.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022]
|
31
|
Liu J, Zhang Y, Jiang M, Tian L, Sun S, Zhao N, Zhao F, Li Y. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring. Biosens Bioelectron 2017; 91:714-720. [PMID: 28126661 DOI: 10.1016/j.bios.2017.01.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/04/2023]
Abstract
In this work, a novel electrochemical detection platform was established by integrating molecularly imprinting technique with microfluidic chip and applied for trace measurement of three therapeutic drugs. The chip foundation is acrylic panel with designed grooves. In the detection cell of the chip, a Pt wire is used as the counter electrode and reference electrode, and a Au-Ag alloy microwire (NPAMW) with 3D nanoporous surface modified with electro-polymerized molecularly imprinted polymer (MIP) film as the working electrode. Detailed characterization of the chip and the working electrode was performed, and the properties were explored by cyclic voltammetry and electrochemical impedance spectroscopy. Two methods, respectively based on electrochemical catalysis and MIP/gate effect were employed for detecting warfarin sodium by using the prepared chip. The linearity of electrochemical catalysis method was in the range of 5×10-6-4×10-4M, which fails to meet clinical testing demand. By contrast, the linearity of gate effect was 2×10-11-4×10-9M with remarkably low detection limit of 8×10-12M (S/N=3), which is able to satisfy clinical assay. Then the system was applied for 24-h monitoring of drug concentration in plasma after administration of warfarin sodium in rabbit, and the corresponding pharmacokinetic parameters were obtained. In addition, the microfluidic chip was successfully adopted to analyze cyclophosphamide and carbamazepine, implying its good versatile ability. It is expected that this novel electrochemical microfluidic chip can act as a promising format for point-of-care testing via monitoring different analytes sensitively and conveniently.
Collapse
Affiliation(s)
- Jiang Liu
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yu Zhang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Min Jiang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Liping Tian
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Shiguo Sun
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Na Zhao
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Feilang Zhao
- Jiangsu Devote Instrumental Science & Technology Co., Ltd., Huai'an, China
| | - Yingchun Li
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China; Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| |
Collapse
|
32
|
Taei M, Hasanpour F, Basiri F, Tavakkoli N, Rasouli N. Highly selective differential pulse voltammetric determination of warfarin in pharmaceutical and biological samples using MnFe2O4/MWCNT modified carbon paste electrode. Microchem J 2016. [DOI: 10.1016/j.microc.2016.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Ríos Á, Zougagh M. Recent advances in magnetic nanomaterials for improving analytical processes. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Bai X, Qin C, Huang X. Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1945-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Vilian ATE, Puthiaraj P, Kwak CH, Hwang SK, Huh YS, Ahn WS, Han YK. Fabrication of Palladium Nanoparticles on Porous Aromatic Frameworks as a Sensing Platform to Detect Vanillin. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12740-12747. [PMID: 27149292 DOI: 10.1021/acsami.6b03942] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here, we report the fabrication of palladium nanoparticles on porous aromatic frameworks (Pd/PAF-6) using a facile chemical approach, which was characterized by various spectro- and electrochemical techniques. The differential pulse voltammetry (DPV) response of Pd/PAF-6 toward the vanillin (VA) sensor shows a linear relationship over concentrations (10-820 pM) and a low detection limit (2 pM). Pd/PAF-6 also exhibited good anti-interference performance toward 2-fold excess of ascorbic acid, nitrophenol, glutathione, glucose, uric acid, dopamine, ascorbic acid, 4-nitrophenol, glutathione, glucose, uric acid, dopamine, and 100-fold excess of Na(+), Mg(2+), and K(+) during the detection of VA. The developed electrochemical sensor based on Pd/PAF-6 had good reproducibility, as well as high selectivity and stability. The established sensor revealed that Pd/PAF-6 could be used to detect VA in biscuit and ice cream samples with satisfactory results.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul , Seoul 04620, Republic of Korea
| | | | | | | | | | | | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul , Seoul 04620, Republic of Korea
| |
Collapse
|
36
|
Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosens Bioelectron 2016; 85:553-562. [PMID: 27219679 DOI: 10.1016/j.bios.2016.05.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/12/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023]
Abstract
In this research, we have improved two aptasensors based on a modified carbon paste electrode (CPE) with oleic acid (OA), and a magnetic bar carbon paste electrode (MBCPE) with Fe3O4 magnetic nanoparticles and oleic acid (OA). After the immobilization process of anti-TET at the electrode surfaces, the aptasensors were named CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET respectively. In this paper, the detection of tetracycline is compared using CPE/OA/anti-TET and MBCPE/Fe3O4NPs/OA/anti-TET aptasensors. These modified electrodes were characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), UV-vis spectroscopy, and voltammetric methods. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-12)-1.0×10(-7)M and 3.0×10(-13)M respectively by EIS method. The linear range and the detection limit for TET with the CPE/OA/anti-TET aptasensor were found to be 1.0×10(-10)-1.0×10(-7)M with a limit of detection of 2.9×10(-11)M using differential pulse voltammetry (DPV) technique. The MBCPE/Fe3O4NPs/OA/anti-TET aptasensor was used for determination of TET, and a liner range of 1.0×10(-14)-1.0×10(-6)M with a detection limit of 3.8×10(-15)M was obtained by EIS method. Also, the linear range and detection limit of 1.0×10(-12)-1.0×10(-6)M and 3.1×10(-13)M respectively, were obtained for MBCPE/Fe3O4NPs/OA/anti-TET aptasensor using DPV. The proposed aptasensors were applied for determination of tetracycline in some real samples such as drug, milk, honey and blood serum samples.
Collapse
|
37
|
Taei M, Abedi F. New modified multiwalled carbon nanotubes paste electrode for electrocatalytic oxidation and determination of warfarin in biological and pharmaceutical samples. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61039-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Farid MM, Goudini L, Piri F, Zamani A, Saadati F. Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem 2016; 194:61-7. [DOI: 10.1016/j.foodchem.2015.07.128] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 01/05/2023]
|
39
|
Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:847-854. [DOI: 10.1016/j.msec.2015.10.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/20/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022]
|
40
|
Baytak AK, Teker T, Duzmen S, Aslanoglu M. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:368-374. [DOI: 10.1016/j.msec.2015.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 11/15/2022]
|
41
|
Li Y, Zhang L, Liu J, Zhou SF, Al-Ghanim KA, Mahboob S, Ye BC, Zhang X. A novel sensitive and selective electrochemical sensor based on molecularly imprinted polymer on a nanoporous gold leaf modified electrode for warfarin sodium determination. RSC Adv 2016. [DOI: 10.1039/c6ra05553b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel electrochemical sensor was facilely fabricated by coupling nanoporous gold leaf (NPGL) with molecularly imprinted polymer (MIP), and afforded ultrasensitive and selective determination of warfarin sodium (WFS).
Collapse
Affiliation(s)
- Yingchun Li
- School of Pharmacy
- Shihezi University
- Shihezi 832000
- China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
| | - Lu Zhang
- School of Pharmacy
- Shihezi University
- Shihezi 832000
- China
| | - Jiang Liu
- School of Pharmacy
- Shihezi University
- Shihezi 832000
- China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Science
- College of Pharmacy
- University of South Florida
- Tampa
- USA
| | | | - Shahid Mahboob
- Department of Zoology
- College of Science
- King Saud University
- Riyadh-11451
- Saudi Arabia
| | - Bang-Ce Ye
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Shihezi 832003
- China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|