1
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
2
|
da Cruz JA, Pezarini RR, Sales AJM, Benjamin SR, de Oliveira Silva PM, Graça MPF. Study of biphasic calcium phosphate (BCP) ceramics of tilapia fish bones by age. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124289. [PMID: 38692101 DOI: 10.1016/j.saa.2024.124289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Biphasic calcium phosphate (BCP), consisting of bioceramics such as HAp + β-TCP and Ca10(PO4)6(OH)2 + Ca3(PO4)2, is a popular choice for optimizing performance due to its superior biological reabsorption and osseointegration. In this study, BCP was produced by calcining the bones of tilapia fish (Oreochromis niloticus) reared in net cages and slaughtered at an age ranging from 15 to 420 days. The bones were cleaned and dried, calcined at 900 °C for 8 h, and then subjected to high-energy grinding for 3 h to produce BCP powders. After the calcination process, the crystalline phase's hydroxyapatite (HAp) and/or beta-tricalcium phosphate (β-TCP) were present in the composition of the bioceramic. The age-dependent variation in phase composition was confirmed by complementary vibrational spectroscopy techniques, revealing characteristic peaks and bands of the bioceramic. This variation was marked by an increase in HAp phase and a decrease in β-TCP phase. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) from 25 to 1400 °C showed the characteristic mass losses of the material, with a greater loss observed for younger fish, indicating the complete removal of organic components at temperatures above 600 °C. Comparison of the results obtained by X-Ray Diffraction (XRD) and Rietveld refinement with Raman spectroscopy showed excellent agreement. These results showed that with temperature and environment control and adequate fish feeding, it is possible to achieve the desired amounts of each phase by choosing the ideal age of the fish. This bioceramic enables precise measurement of HAp and β-TCP concentrations and Ca/P molar ratio, suitable for medical orthopedics and dentistry.
Collapse
Affiliation(s)
- José Adauto da Cruz
- Department of Environment, State University of Maringá, Umuarama, PR ,87506-370, Brazil; Department of Physics, State University of Maringá, Maringá, PR, 87020-900, Brazil; i3N-Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal.
| | - Rogério Ribeiro Pezarini
- Department of Environment, State University of Maringá, Umuarama, PR ,87506-370, Brazil; Department of Physics, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Antonio Jefferson Mangueira Sales
- i3N-Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal; Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceará (UFC), Fortaleza, CE, 60455-760, Brazil
| | - Stephen Rathinaraj Benjamin
- Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceará (UFC), Fortaleza, CE, 60455-760, Brazil; Behavioral Neuroscience Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará (UFC), Coronel Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil
| | - Paulo Maria de Oliveira Silva
- Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceará (UFC), Fortaleza, CE, 60455-760, Brazil
| | | |
Collapse
|
3
|
Prathibha PM, Thomas NG, Dalvi YB, Varghese KG, Binsi PK, Zynudheen AA, Lekshmi M, Shilpa J, Sajith V, Sukumaran A. Fish scale-derived hydroxyapatite for alveolar ridge preservation. Biotechnol Appl Biochem 2024. [PMID: 38951991 DOI: 10.1002/bab.2627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/01/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024]
Abstract
Alveolar ridge resorption following tooth extraction poses significant challenges for future dental restorations. This study investigated the efficacy of fish scale-derived hydroxyapatite (FSHA) as a socket preservation graft material to maintain alveolar bone volume and architecture. FSHA was extracted from *Labeo rohita* fish scales and characterized using Fourier transform infrared (FTIR) analysis. In vitro, biocompatibility and osteogenic potential were assessed using Saos-2 human osteosarcoma cells. Cell viability, migration, and proliferation were evaluated using MTT and scratch assays. In vivo performance was assessed in a rat model, and FSHA was compared to a commercial xenograft (Osseograft) and ungrafted controls. Histological analysis was performed at 8-week post-implantation to quantify new bone formation. FTIR confirmed the purity and homogeneity of FSHA. In vitro, FSHA enhanced Saos-2 viability, migration, and proliferation compared to controls. In vivo, FSHA demonstrated superior bone regeneration compared to Osseograft and ungrafted sites, with balanced graft resorption and new bone formation. Histological analysis revealed an active incorporation of FSHA into new bone, with minimal gaps and ongoing remodeling. Approximately 50%-60% of FSHA was resorbed by 8 weeks, closely matching the rate of new bone deposition. FSHA stimulated more bone formation in the apical socket region than in coronal areas. In conclusion, FSHA is a promising biomaterial for alveolar ridge preservation, exhibiting excellent biocompatibility, osteogenic potential, and balanced resorption. Its ability to promote robust bone regeneration highlights its potential as an effective alternative to currently used graft materials in socket preservation procedures.
Collapse
Affiliation(s)
- P M Prathibha
- Department of Oral and Maxillofacial Surgery, Pushpagiri College of Dental Sciences, Pushpagiri Medical Society, Tiruvalla, Kerala, India
| | - N G Thomas
- Department of Periodontology, Pushpagiri College of Dental Sciences, Pushpagiri Medical Society, Tiruvalla, Kerala, India
- Pushpagiri Research Center, Pushpagiri Institute of Medical Sciences and Research Centre, Pushpagiri Medical Society, Tiruvalla, Kerala, India
| | - Y B Dalvi
- Pushpagiri Research Center, Pushpagiri Institute of Medical Sciences and Research Centre, Pushpagiri Medical Society, Tiruvalla, Kerala, India
| | - K G Varghese
- Department of Oral and Maxillofacial Surgery, Pushpagiri College of Dental Sciences, Pushpagiri Medical Society, Tiruvalla, Kerala, India
| | - P K Binsi
- ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - A A Zynudheen
- ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - M Lekshmi
- Department of Periodontology, Pushpagiri College of Dental Sciences, Pushpagiri Medical Society, Tiruvalla, Kerala, India
| | - J Shilpa
- Department of Biotechnology, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Vellappally Sajith
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anil Sukumaran
- Pushpagiri Research Center, Pushpagiri Institute of Medical Sciences and Research Centre, Pushpagiri Medical Society, Tiruvalla, Kerala, India
- Oral Health Institute, Department of Dentistry, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
4
|
Muñoz F, Haidar ZS, Puigdollers A, Guerra I, Padilla MC, Ortega N, García MJ. A novel Chilean salmon fish backbone-based nanoHydroxyApatite functional biomaterial for potential use in bone tissue engineering. Front Med (Lausanne) 2024; 11:1330482. [PMID: 38774396 PMCID: PMC11106468 DOI: 10.3389/fmed.2024.1330482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/08/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Given the ensuing increase in bone and periodontal diseases and defects, de novo bone repair and/or regeneration strategies are constantly undergoing-development alongside advances in orthopedic, oro-dental and cranio-maxillo-facial technologies and improvements in bio-/nano-materials. Indeed, there is a remarkably growing need for new oro-dental functional biomaterials that can help recreate soft and hard tissues and restore function and aesthetics of teeth/ dentition and surrounding tissues. In bone tissue engineering, HydroxyApatite minerals (HAp), the most stable CaP/Calcium Phosphate bioceramic and a widely-used material as a bone graft substitute, have been extensively studied for regenerative medicine and dentistry applications, including clinical use. Yet, limitations and challenges owing principally to its bio-mechanical strength, exist and therefore, research and innovation efforts continue to pursue enhancing its bio-effects, particularly at the nano-scale. Methods Herein, we report on the physico-chemical properties of a novel nanoHydroxyApatite material obtained from the backbone of Salmon fish (patent-pending); an abundant and promising yet under-explored alternative HAp source. Briefly, our nanoS-HAp obtained via a modified and innovative alkaline hydrolysis-calcination process was characterized by X-ray diffraction, electron microscopy, spectroscopy, and a cell viability assay. Results and Discussion When compared to control HAp (synthetic, human, bovine or porcine), our nanoS-HAp demonstrated attractive characteristics, a promising biomaterial candidate for use in bone tissue engineering, and beyond.
Collapse
Affiliation(s)
- F. Muñoz
- Facultad de Odontología, Universidad Internacional de Cataluña, Barcelona, Spain
- Laboratorio BioMAT’X R&D&I (HAiDAR I+D+i LAB), Universidad de los Andes, Santiago, Chile
| | - Z. S. Haidar
- Laboratorio BioMAT’X R&D&I (HAiDAR I+D+i LAB), Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Ciencias Odontológicas, Facultad de Odontología, Universidad de los Andes, Santiago, Chile
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile
| | - A. Puigdollers
- Área de Ortodoncia, Facultat Internacional de Catalunya, Barcelona, Spain
| | - I. Guerra
- Facultad de Odontología, Universidad Internacional de Cataluña, Barcelona, Spain
| | - M. Cristina Padilla
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Investigación e Ingeniería de Biopolímeros (BiopREL), Universidad de los Andes, Santiago, Chile
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - N. Ortega
- Laboratorio de Investigación e Ingeniería de Biopolímeros (BiopREL), Universidad de los Andes, Santiago, Chile
| | - M. J. García
- Facultad de Odontología, Universidad Internacional de Cataluña, Barcelona, Spain
| |
Collapse
|
5
|
Eknapakul T, Kuimalee S, Sailuam W, Daengsakul S, Tanapongpisit N, Laohana P, Saenrang W, Bootchanont A, Khamkongkaeo A, Yimnirun R. Impacts of pre-treatment methods on the morphology, crystal structure, and defects formation of hydroxyapatite extracted from Nile tilapia scales. RSC Adv 2024; 14:4614-4622. [PMID: 38318621 PMCID: PMC10839550 DOI: 10.1039/d3ra07556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
The comprehensive control of hydroxyapatite (HAp), involving morphological and structural variations, particle sizes, and defect formations, has garnered considerable attention for its versatile functionalities, rendering it applicable in diverse contexts. This work examined the shape, structure and optical characteristics, and defect formation in hydroxyapatite (HAp) extracted from Nile tilapia (Oreochromis niloticus) scales with various pre-treatments through experiments and density functional theory (DFT) calculations. Utilizing scanning electron microscopy, our findings revealed that dried fish scales (FS-D) exhibited a layered pattern of collagen fibers, while boiled fish scales (FS-B) had smoother surfaces and significantly reduced collagen content. After calcination, the FS-D sample produced nanorods with an average length of 150 ± 44 nm, whereas the FS-B samples yielded agglomerated spherical particles whose size increased with the rising calcining temperature. In-depth analysis through X-ray diffraction and Fourier-transform infrared spectroscopy confirmed the presence of biphasic calcium phosphates in the FS-B samples, while the FS-D sample presented a pure HAp phase. The boiled fish scale calcined at 800 °C (FS-B800) exhibited an optical band gap (Eg) of 5.50 eV, whereas the dried fish scale calcined at 800 °C (FS-D800) showed two Eg values of 2.87 and 3.97 eV, as determined by UV-visible spectroscopy. DFT calculations revealed that the band gap of 3.97 eV correlated with OH- vacancies, while that of 2.87 eV indicated Mn-substituted HAp, explaining the blue powder. The Eg value for the white powder resembled pure HAp, S- and Cl- substituted OH- vacancies, and various cations substituting Ca sites of HAp. Different pre-treatment procedures influence the characteristics of HAp, offering opportunities for applications in bone replacement and scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Tanachat Eknapakul
- Functional Materials and Nanotechnology Center of Excellence, School of Science, Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Surasak Kuimalee
- Industrial Chemistry Innovation Programme, Faculty of Science, Maejo University Chiang Mai 50290 Thailand
| | - Wutthigrai Sailuam
- Department of Applied Physics, Faculty of Engineering, Rajamangala University of Technology ISAN (Khon Kaen Campus) Khon Kaen 40000 Thailand
| | - Sujittra Daengsakul
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Nantawat Tanapongpisit
- School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Peerawat Laohana
- School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Wittawat Saenrang
- School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Atipong Bootchanont
- Smart Materials Research Unit, Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi Pathumthani 12110 Thailand
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi Pathumthani 12110 Thailand
| | - Atchara Khamkongkaeo
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University Phayathai Road, Wangmai Pathumwan Bangkok 10330 Thailand +66-2-218-6943
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University Bangkok Thailand
| | - Rattikorn Yimnirun
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology VISTEC Wangchan Rayong 21210 Thailand
| |
Collapse
|
6
|
Piccirillo C. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117896. [PMID: 37080100 DOI: 10.1016/j.jenvman.2023.117896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The production of increasing quantities of by-products is a key challenge for modern society; their valorisation - turning them into valuable compounds with technological applications - is the way forward, in line with circular economy principles. In this review, the conversion of bones (by-products of the agro-food industry) into bone char is described. Bone char is obtained with a process of pyrolysis, which converts the organic carbon into an inorganic graphitic one. Differently from standard biochar of plant origin, however, bone char also contains calcium phosphates, the main component of bone (often hydroxyapatite). The combination of calcium phosphate and graphitic carbon makes bone char a unique material, with different possible uses. Here bone chars' applications in environmental remediation, sustainable agriculture, catalysis and electrochemistry are discussed; several aspects are considered, including the bones used to prepare bone char, the preparation conditions, how these affect the properties of the materials (i.e. porosity, surface area) and its functional properties. The advantages and limitations of bone chars in comparison to traditional biochar are discussed, highlighting the directions the research should take for bone chars' performances to improve. Moreover, an analysis on the sustainability of bone chars' preparation and use is also included.
Collapse
Affiliation(s)
- Clara Piccirillo
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
7
|
Potential Cosmetic Active Ingredients Derived from Marine By-Products. Mar Drugs 2022; 20:md20120734. [PMID: 36547881 PMCID: PMC9787341 DOI: 10.3390/md20120734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The market demand for marine-based cosmetics has shown a tremendous growth rate in the last decade. Marine resources represent a promising source of novel bioactive compounds for new cosmetic ingredient development. However, concern about sustainability also becomes an issue that should be considered in developing cosmetic ingredients. The fisheries industry (e.g., fishing, farming, and processing) generates large amounts of leftovers containing valuable substances, which are potent sources of cosmeceutical ingredients. Several bioactive substances could be extracted from the marine by-product that can be utilized as a potent ingredient to develop cosmetics products. Those bioactive substances (e.g., collagen from fish waste and chitin from crustacean waste) could be utilized as anti-photoaging, anti-wrinkle, skin barrier, and hair care products. From this perspective, this review aims to approach the potential active ingredients derived from marine by-products for cosmetics and discuss the possible activity of those active ingredients in promoting human beauty. In addition, this review also covers the prospect and challenge of using marine by-products toward the emerging concept of sustainable blue cosmetics.
Collapse
|
8
|
Arokiasamy P, Al Bakri Abdullah MM, Abd Rahim SZ, Luhar S, Sandu AV, Jamil NH, Nabiałek M. Synthesis methods of hydroxyapatite from natural sources: A review. CERAMICS INTERNATIONAL 2022; 48:14959-14979. [DOI: 10.1016/j.ceramint.2022.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Structure and Electric Characterizations of the Derived Nanocrystalline Hydroxyapatite from Strombidae Strombus Seashells. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Gelcasting and sintering of hydroxyapatite materials: Effect of particle size and Ca/P ratio on microstructural, mechanical and biological properties. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2021.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Duta L, Dorcioman G, Grumezescu V. A Review on Biphasic Calcium Phosphate Materials Derived from Fish Discards. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2856. [PMID: 34835621 PMCID: PMC8620776 DOI: 10.3390/nano11112856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
This review summarizes the results reported on the production of biphasic calcium phosphate (BCP) materials derived from fish wastes (i.e., heads, bones, skins, and viscera), known as fish discards, and offers an in-depth discussion on their promising potential for various applications in many fields, especially the biomedical one. Thus, considerable scientific and technological efforts were recently focused on the capability of these sustainable materials to be transformed into economically attractive and highly valuable by-products. As a consequence of using these wastes, plenty of beneficial social effects, with both economic and environmental impact, will arise. In the biomedical field, there is a strong and continuous interest for the development of innovative solutions for healthcare improvement using alternative materials of biogenic origin. Thus, the orthopedic field has witnessed a significant development due to an increased demand for a large variety of implants, grafts, and/or scaffolds. This is mainly due to the increase of life expectancy and higher frequency of bone-associated injuries and diseases. As a consequence, the domain of bone-tissue engineering has expanded to be able to address a plethora of bone-related traumas and to deliver a viable and efficient substitute to allografts or autografts by combining bioactive materials and cells for bone-tissue ingrowth. Among biomaterials, calcium phosphate (CaP)-based bio-ceramics are widely used in medicine, in particular in orthopedics and dentistry, due to their excellent bioactive, osteoconductive, and osteointegrative characteristics. Recently, BCP materials (synthetic or natural), a class of CaP, which consist of a mixture of two phases, hydroxyapatite (HA) and beta tricalcium phosphate (β-TCP), in different concentrations, gained increased attention due to their superior overall performances as compared to single-phase formulations. Moreover, the exploitation of BCP materials from by-products of fish industry was reported to be a safe, cheap, and simple procedure. In the dedicated literature, there are many reviews on synthetic HA, β-TCP, or BCP materials, but to the best of our knowledge, this is the first collection of results on the effects of processing conditions on the morphological, compositional, structural, mechanical, and biological properties of the fish discard-derived BCPs along with the tailoring of their features for various applications.
Collapse
Affiliation(s)
| | | | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (L.D.); (G.D.)
| |
Collapse
|
12
|
Prado JPDS, Yamamura H, Magri AMP, Ruiz PLM, Prado JLDS, Rennó ACM, Ribeiro DA, Granito RN. In vitro and in vivo biological performance of hydroxyapatite from fish waste. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:109. [PMID: 34453621 PMCID: PMC8403112 DOI: 10.1007/s10856-021-06591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/09/2021] [Indexed: 05/13/2023]
Abstract
The aim of this study was to evaluate biocompatibility of hydroxyapatite (HAP) from fish waste using in vitro and in vivo assays. Fish samples (whitemouth croaker - Micropogonias furnieri) from the biowaste was used as HAP source. Pre-osteoblastic MC3T3-E1 cells were used in vitro study. In addition, bone defects were artificially created in rat calvaria and filled with HAP in vivo. The results demonstrated that HAP reduced cytotoxicity in pre-osteoblast cells after 3 and 6 days following HAP exposure. DNA concentration was lower in the HAP group after 6 days. Quantitative RT-PCR did not show any significant differences (p > 0.05) between groups. In vivo study revealed that bone defects filled with HAP pointed out moderate chronic inflammatory cells with slight proliferation of blood vessels after 7 and 15 days. Chronic inflammatory infiltrate was absent after 30 days of HAP exposure. There was also a decrease in the amount of biomaterial, being followed by newly formed bone tissue. All experimental groups also demonstrated strong RUNX-2 immoexpression in the granulation tissue as well as in cells in close contact with biomaterial. The number of osteoblasts inside the defect area was lower in the HAP group when compared to control group after 7 days post-implantation. Similarly, the osteoblast surface as well as the percentage of bone surface was higher in control group when compared with HAP group after 7 days post-implantation. Taken together, HAP from fish waste is a promising possibility that should be explored more carefully by tissue-engineering or biotechnology.
Collapse
Affiliation(s)
| | - Hirochi Yamamura
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | | | - Pedro Luiz Muniz Ruiz
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | | | | | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil.
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| |
Collapse
|
13
|
Venkatesan J, Anil S. Hydroxyapatite Derived from Marine Resources and their Potential Biomedical Applications. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0359-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Forero-Sossa PA, Salazar-Martínez JD, Giraldo-Betancur AL, Segura-Giraldo B, Restrepo-Parra E. Temperature effect in physicochemical and bioactive behavior of biogenic hydroxyapatite obtained from porcine bones. Sci Rep 2021; 11:11069. [PMID: 34040024 PMCID: PMC8154992 DOI: 10.1038/s41598-021-89776-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
Biogenic hydroxyapatite (BHAp) is a widely used material in the biomedical area due to its similarities with the bone tissue mineral phase. Several works have been spotlighted on the thermal behavior of bone. However, little research has focused on determining the influence of calcination temperature in the physicochemical and bioactive properties of BHAp. In this work, a study of the physicochemical properties’ changes and bioactive response of BHAp produced from porcine femur bones using calcination temperatures between 900 to 1200 °C was conducted. The samples’ structural, morphological, and compositional changes were determined using XRD, SEM, and FTIR techniques. XRD results identified three temperature ranges, in which there are structural changes in BHAp samples and the presence of additional phases. Moreover, FTIR results corroborated that B-type substitution is promoted by increasing the heat treatment temperature. Likewise, samples were immersed in a simulated biological fluid (SBF), following the methodology described by Kokubo and using ISO 23317:2014 standard, for 3 and 7 days. FTIR and SEM results determined that the highest reaction velocity was reached for samples above 1000 °C, due to intensity increasing of phosphate and carbonate bands and bone-like apatite morphologies, compared to other temperatures evaluated.
Collapse
Affiliation(s)
- P A Forero-Sossa
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia- Manizales, Km 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia.,Centro de Investigación y de Estudios Avanzados del IPN, Lib. Norponiente 2000, Fracc. Real de Juriquilla, 76230, Querétaro, Qro, México
| | - J D Salazar-Martínez
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia- Manizales, Km 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia
| | - A L Giraldo-Betancur
- CONACYT-Centro de Investigación y de Estudios Avanzados del IPN, Lib. Norponiente 2000, Fracc. Real de Juriquilla, 76230, Querétaro, Qro, México
| | - B Segura-Giraldo
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia- Manizales, Km 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia
| | - E Restrepo-Parra
- Laboratorio de Física del Plasma, Universidad Nacional de Colombia- Manizales, Km 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia. .,PCM Computational Applications, Universidad Nacional de Colombia - Sede Manizales, km. 9 vía al aeropuerto, Campus La Nubia, Manizales, Colombia.
| |
Collapse
|
15
|
Calcium phosphate powders synthesized from CaCO 3 and CaO of natural origin using mechanical activation in different media combined with solid-state interaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111333. [PMID: 33254965 DOI: 10.1016/j.msec.2020.111333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 11/24/2022]
Abstract
The highly pure and crystalline calcium carbonate (CaCO3) and calcium oxide (CaO) with small amounts of As, Cd, Hg, and Pb were prepared by calcinating shells of a golden apple snail. Solid-state reaction and mechanical activation between the CaCO3 and CaO from calcined golden apple snail shells and dibasic calcium phosphate dihydrate (CaHPO4•2H2O, DCPD) were performed to develop calcium phosphate powders. The effects of the milling media used on the mechanical activation were examined. A solid-state reaction of manually mixed CaCO3 or CaO with DCPD powders at a temperature of 1100 °C produced mostly β-tricalcium phosphate (β-TCP). Hydroxyapatite (HAp) with a small quantity of β-TCP could be produced from a mixed CaCO3 + DCPD powder using dry and wet mechanical activations with distilled water, alcohol and acetone and from a mixed CaO + DCPD powder using dry mechanical activation combined with a solid-state reaction at a temperature of 1100 °C. A phase change of milled powders to β-TCP was clearly observed from a wet mechanical activation of CaO + DCPD powder with distilled water or alcohol in a solid-state reaction. The thermal instability of HAp powders from a combined mechanical activation with solid-state reaction of CaCO3 or CaO and DCPD powders could result from two factors. The first is that the pollution was released from the balls and pot mill materials during the mechanical process. Another factor is a reduced level of calcium in the CaO + DCPD mixed powder due to a reaction between CaO and water or alcohol during mechanical milling.
Collapse
|
16
|
Research progress on applications of calcium derived from marine organisms. Sci Rep 2020; 10:18425. [PMID: 33116162 PMCID: PMC7595125 DOI: 10.1038/s41598-020-75575-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Calcium is an important mineral that plays an integral role in human health, especially bone health. Marine biological calcium is an abundant resource that is generally accepted and has a complex active structure. This review evaluates research progress on marine biological calcium with regards to its sources, use of calcium supplements, calcium bioavailability, and novel applications of marine calcium. The potential for future development and the use of products incorporating marine biological calcium in biomedical research and the pharmaceutical, health care, and food industries are also reviewed. The goal of this review is to provide a comprehensive documentation on resource utilization and product development from marine organisms.
Collapse
|
17
|
Cunha CS, Castro PJ, Sousa SC, Pullar RC, Tobaldi DM, Piccirillo C, Pintado MM. Films of chitosan and natural modified hydroxyapatite as effective UV-protecting, biocompatible and antibacterial wound dressings. Int J Biol Macromol 2020; 159:1177-1185. [PMID: 32416293 DOI: 10.1016/j.ijbiomac.2020.05.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022]
Abstract
Chitosan is a natural polysaccharide widely used in biomedicine, for instance for wound dressing. Hydroxyapatite is a very bioactive calcium phosphate which, if modified with an appropriate element (iron Fe), can also have UV-absorbing properties. In this work, we report the study of films of chitosan incorporated with iron-modified hydroxyapatite of natural origin (from cod fish bones); this combination led to an innovative chitosan-based material with excellent and advanced functional properties. The films showed very high UV absorption (Ultraviolet Protection Factor (UPF) value higher than 50). This is the first time that a chitosan-based material has shown such high UV protection properties. The films also showed to be non-cytotoxic, and possessed antimicrobial activity towards both Gram-positive and negative strains. Their mechanical properties, optimised with an experimental design approach, confirmed their potential use as multifunctional wound dressing, capable of reducing bacterial infections and, at the same time, protecting from UV light.
Collapse
Affiliation(s)
- Carla S Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal; Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Pedro J Castro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Sérgio C Sousa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Robert C Pullar
- Department of Materials and Ceramic Engineering and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - David M Tobaldi
- Department of Materials and Ceramic Engineering and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Clara Piccirillo
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Lecce, Italy.
| | - Maria M Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| |
Collapse
|
18
|
Megat Abdul Wahab R, Abdullah N, Zainal Ariffin SH, Che Abdullah CA, Yazid F. Effects of the Sintering Process on Nacre-Derived Hydroxyapatite Scaffolds for Bone Engineering. Molecules 2020; 25:E3129. [PMID: 32650572 PMCID: PMC7397188 DOI: 10.3390/molecules25143129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023] Open
Abstract
A hydroxyapatite scaffold is a suitable biomaterial for bone tissue engineering due to its chemical component which mimics native bone. Electronic states which present on the surface of hydroxyapatite have the potential to be used to promote the adsorption or transduction of biomolecules such as protein or DNA. This study aimed to compare the morphology and bioactivity of sinter and nonsinter marine-based hydroxyapatite scaffolds. Field emission scanning electron microscopy (FESEM) and micro-computed tomography (microCT) were used to characterize the morphology of both scaffolds. Scaffolds were co-cultured with 5 × 104/cm2 of MC3T3-E1 preosteoblast cells for 7, 14, and 21 days. FESEM was used to observe the cell morphology, and MTT and alkaline phosphatase (ALP) assays were conducted to determine the cell viability and differentiation capacity of cells on both scaffolds. Real-time polymerase chain reaction (rtPCR) was used to identify the expression of osteoblast markers. The sinter scaffold had a porous microstructure with the presence of interconnected pores as compared with the nonsinter scaffold. This sinter scaffold also significantly supported viability and differentiation of the MC3T3-E1 preosteoblast cells (p < 0.05). The marked expression of Col1α1 and osteocalcin (OCN) osteoblast markers were also observed after 14 days of incubation (p < 0.05). The sinter scaffold supported attachment, viability, and differentiation of preosteoblast cells. Hence, sinter hydroxyapatite scaffold from nacreous layer is a promising biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Rohaya Megat Abdul Wahab
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (R.M.A.W.); (N.A.)
| | - Nurmimie Abdullah
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (R.M.A.W.); (N.A.)
| | - Shahrul Hisham Zainal Ariffin
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (R.M.A.W.); (N.A.)
| |
Collapse
|
19
|
Maschmeyer T, Luque R, Selva M. Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chem Soc Rev 2020; 49:4527-4563. [PMID: 32510068 DOI: 10.1039/c9cs00653b] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Currently, the Earth is subjected to environmental pressure of unprecedented proportions in the history of mankind. The inexorable growth of the global population and the establishment of large urban areas with increasingly higher expectations regarding the quality of life are issues demanding radically new strategies aimed to change the current model, which is still mostly based on linear economy approaches and fossil resources towards innovative standards, where both energy and daily use products and materials should be of renewable origin and 'made to be made again'. These concepts have inspired the circular economy vision, which redefines growth through the continuous valorisation of waste generated by any production or activity in a virtuous cycle. This not only has a positive impact on the environment, but builds long-term resilience, generating business, new technologies, livelihoods and jobs. In this scenario, among the discards of anthropogenic activities, biodegradable waste represents one of the largest and highly heterogeneous portions, which includes garden and park waste, food processing and kitchen waste from households, restaurants, caterers and retail premises, and food plants, domestic and sewage waste, manure, food waste, and residues from forestry, agriculture and fisheries. Thus, this review specifically aims to survey the processes and technologies for the recovery of fish waste and its sustainable conversion to high added-value molecules and bio(nano)materials.
Collapse
Affiliation(s)
- Thomas Maschmeyer
- F11 - School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Rafael Luque
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, P. R. China
| | - Maurizio Selva
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino, 155 - 30175 - Venezia Mestre, Italy.
| |
Collapse
|
20
|
Liu Y, Li J, Wang D, Yang F, Zhang L, Ji S, Wang S. Enhanced extraction of hydroxyapatite from bighead carp (Aristichthys nobilis) scales using deep eutectic solvent. J Food Sci 2019; 85:150-156. [PMID: 31877234 DOI: 10.1111/1750-3841.14971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022]
Abstract
Fish-scale waste is rich in biocompatible hydroxyapatite (HAp). In the present study, an environmentally friendly method of extracting HAp from fish-scale waste was developed in an effort to promote environmental sustainability. Deep eutectic solvents (choline chloride/glycerol, 1/2) were used to extract HAp from bighead carp (Aristichthys nobilis) scales. A relatively high extraction rate of 47.67% ± 1.81% was obtained under optimum conditions (70 °C, a solid/liquid ratio of 1/15 g/g and a 2.5 hr extraction time). The obtained HAp was characterized and its purity was determined using Fourier transform infrared spectroscopy and X-ray diffraction, respectively. The chemical composition was performed by energy-dispersive X-ray spectrometry and inductively coupled plasma-optical emission spectroscopy. Its morphology and particle size were observed using scanning electron microscopy and particle size distribution analysis. Thermogravimetric analysis was used to determine its thermal stability. Blood compatibility was determined using a hemolytic test. The results showed that this extraction yielded HAp with the irregular morphology, the higher Ca/P ratio, good thermal stability, and blood compatibility, indicating that the proposed method is an excellent alternative for the improved utilization of fish scale waste. PRACTICAL APPLICATION: Biocompatible hydroxyapatite (HAp) was extracted from fish scale (FS) waste by using an environmentally friendly deep eutectic solvent. The optimized extraction and structure characterization of extracted HAp were investigated in this study. The results showed that the extracted HAp had the irregular morphology, the higher Ca/P ratio, good thermal stability, and blood compatibility, which indicated that the proposed method was an excellent alternative to improving the utilization of FS waste.
Collapse
Affiliation(s)
- Yanhong Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P. R. China.,School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Jia Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P. R. China.,School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Dezhen Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P. R. China.,School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Fei Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P. R. China.,School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Lingling Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P. R. China.,School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Shuhuan Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P. R. China.,School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
21
|
Hadagalli K, Panda AK, Mandal S, Basu B. Faster Biomineralization and Tailored Mechanical Properties of Marine-Resource-Derived Hydroxyapatite Scaffolds with Tunable Interconnected Porous Architecture. ACS APPLIED BIO MATERIALS 2019; 2:2171-2184. [DOI: 10.1021/acsabm.9b00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Komalakrushna Hadagalli
- Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka (NITK), Surathkal 575025, India
| | - Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Saumen Mandal
- Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka (NITK), Surathkal 575025, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Ben-Arfa BA, Salvado IMM, Ferreira JM, Pullar RC. Enhanced bioactivity of a rapidly-dried sol-gel derived quaternary bioglass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:36-43. [DOI: 10.1016/j.msec.2018.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 05/03/2018] [Indexed: 11/29/2022]
|
23
|
Granito RN, Muniz Renno AC, Yamamura H, de Almeida MC, Menin Ruiz PL, Ribeiro DA. Hydroxyapatite from Fish for Bone Tissue Engineering: A Promising Approach. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:80-90. [PMID: 30276163 PMCID: PMC6148500 DOI: 10.22088/ijmcm.bums.7.2.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Natural or synthetic hydroxyapatite (HA) has been frequently used as implant materials for orthopaedic and dental applications, showing excellent bioactivity, adequate mechanical rigidity and structure, osteoconductivity and angiogenic properties, no toxicity, and absence of inflammatory or antigenic reactions. HA can be easily synthesized or extracted from natural sources, such as bovine bone. However, the manufacturing costs to obtain HA are high, restricting the therapy. Herein, much effort has been paid for obtaning alternative natural sources for HA. The potential of HA extracted from skeleton of animals has been investigated. The aim of this review is to exploit the potential of HA derived from fish to fulfill biological activities for bone tissue engineering. In particular, HA from fish is easy to be manufactured regarding the majority of protocols that are based on the calcination method. Furthermore, the composition and structure of HA from fish were evaluated; the biomaterial showed good biocompatibility as a result of non-cytotoxicity and handling properties, demonstrating advantages in comparison with synthetic ones. Interestingly, another huge benefit brought by HA from bone fish is its positive effect for environment since this technique considerably reduces waste. Certainly, the process of transforming fish into HA is an environmentally friendly process and stands as a good chance for reducing costs of treatment in bone repair or replacement with little impact into the environment.
Collapse
Affiliation(s)
- Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | | | - Hirochi Yamamura
- Department of Chemistry, Catholic University of Santos, UNISANTOS, Santos, SP, Brazil
| | | | - Pedro Luiz Menin Ruiz
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Santos, SP, Brazil
| |
Collapse
|
24
|
Terzioğlu P, Öğüt H, Kalemtaş A. Natural calcium phosphates from fish bones and their potential biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:899-911. [PMID: 30033324 DOI: 10.1016/j.msec.2018.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/31/2018] [Accepted: 06/09/2018] [Indexed: 11/17/2022]
Abstract
The treatment and recovery of bio-wastes have raised considerable attention both from the environmental and economic point of view. Every year, a remarkable amount of fish processing by-products are generated and dumped as waste from all over the world. Fish bones can serve as a raw material for the production of high value-added compounds that can be used in various sectors including agrochemical, biomedical, food and pharmaceutical industries. The calcination of fish bones results in a single phase (hydroxyapatite) or bi-phasic (hydroxyapatite-tricalcium phosphate) bioceramics depending on the processing conditions as well as the content of the fish bones. This review summarizes the literature on the production of hydroxyapatite from fish bones and discusses their potential applications in biomedical field. The effect of processing conditions on the properties of final products including Ca/P ratio, crystal structure, particle shape, particle size and biological properties are presented in the light of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric-differential thermal analysis, bioactivity and biocompatibility investigations.
Collapse
Affiliation(s)
- Pınar Terzioğlu
- Muğla Sıtkı Koçman University, Muğla Vocational School, Department of Chemistry and Chemical Processing Technologies, Muğla, Turkey; Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Bursa, Turkey
| | - Hamdi Öğüt
- Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Bioengineering, Bursa, Turkey
| | - Ayşe Kalemtaş
- Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Bursa, Turkey.
| |
Collapse
|
25
|
Ben-Arfa BAE, Fernandes HR, Miranda Salvado IM, Ferreira JMF, Pullar RC. Synthesis and bioactivity assessment of high silica content quaternary glasses with Ca: P ratios of 1.5 and 1.67, made by a rapid sol-gel process. J Biomed Mater Res A 2017; 106:510-520. [DOI: 10.1002/jbm.a.36239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Basam A. E. Ben-Arfa
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials; University of Aveiro; Aveiro 3810-193 Portugal
| | - Hugo R. Fernandes
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials; University of Aveiro; Aveiro 3810-193 Portugal
| | - Isabel M. Miranda Salvado
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials; University of Aveiro; Aveiro 3810-193 Portugal
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials; University of Aveiro; Aveiro 3810-193 Portugal
| | - Robert C. Pullar
- Department of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials; University of Aveiro; Aveiro 3810-193 Portugal
| |
Collapse
|
26
|
Electrochemical hydroxyapatite-cobalt ferrite nanocomposite coatings as well hyperthermia treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:827-838. [DOI: 10.1016/j.msec.2017.03.126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/17/2022]
|
27
|
Synthesis and characterization of new β-chitin/calcium phosphate (DCPA) based composite using natural resources for environmental application. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharm 2016; 516:352-363. [PMID: 27887884 DOI: 10.1016/j.ijpharm.2016.11.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023]
Abstract
Because of the peculiarity of the bone microstructure, the uptake of chemotherapeutics often happens at non-targeted sites, which induces side effects. In order to solve this problem, we designed a bone-targeting drug delivery system that can release drug exclusively in the nidus of the bone. Alendronate (ALN), which has a high ability to target to hydroxyapatite, was used to fabricate double ALN-conjugated poly (ethylene glycol) 2000 material (ALN-PEG2k-ALN). The ALN-PEG2k-ALN was characterized using 1H NMR and 31P NMR and FTIR. ALN-PEG2k-ALN-modified calcium phosphate nanoparticles (APA-CPNPs) with an ALN targeting moiety and hydrophilic poly (ethylene glycol) arms tiled on the surface was prepared for bone-targeted drug delivery. The distribution of ALN-PEG2k-ALN was tested by X-ray photoelectron spectroscopy. Isothermal titration calorimetry data indicated that similar to free ALN, both ALN-PEG2k-ALN and APA-CPNPs can bind to calcium ions. The bone-binding ability of APA-CPNPs was verified via ex vivo imaging of bone fragments. An in vitro release experiment demonstrated that APA-CPNPs can release drug faster in an acid environment than a neutral environment. Cell viability experiments indicated that blank APA-CPNPs possessed excellent biocompatibility with normal cells. Methotrexate (MTX) loaded APA-CPNPs have the same ability to inhibit cancer cells as free drug at high concentrations, while they are slightly weaker at low concentrations. All of these experiments verified the prospective application of APA-CPNPs as a bone-targeting drug delivery system.
Collapse
|
29
|
Márquez Brazón E, Piccirillo C, Moreira IS, Castro PML. Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:486-495. [PMID: 27526086 DOI: 10.1016/j.jenvman.2016.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceutical persistent pollutants pose a serious threat to the environment. The aim of this study was to use, for the first time, hydroxyapatite-based biomaterials as photocatalysts to degrade micropollutants. Diclofenac and fluoxetine were selected for these initial tests. Hydroxyapatite (Ca10(PO4)(OH)2, HAp) is one of the most commonly used biomaterials/bioceramics, being a major constituent of bone. In this work sustainable HAp-based materials of marine origin, obtained from cod fish bones, were used; these photocatalysts were previously fully studied and characterised. Both single-phase HAp and HAp-titania multicomponent materials (1 wt% TiO2) were employed as UV light photocatalysts, the latter showing better performance, indicated by higher degradation rates of both compounds. The HAp-titania photocatalyst showed excellent degradation of both persistent pollutants, the maximum degradation performance being 100% for fluoxetine and 92% for diclofenac, with pollutant and photocatalyst concentrations of 2 ppm and 4 g/L, respectively. Variations in features such as pollutant and photocatalyst concentrations were investigated, and results showed that generally fluoxetine was degraded more easily than diclofenac. The photocatalyst's crystallinity was not affected by the photodegradation reaction; indeed the material exhibited good photostability, as the degradation rate did not decrease when the material was reused. Tests were also performed using actual treated wastewater; the photocatalyst was still effective, even if with lower efficiency (-20% and -4% for diclofenac and fluoxetine, respectively). TOC analysis showed high but incomplete mineralisation of the pollutants (maximum 60% and 80% for DCF and FXT, respectively).
Collapse
Affiliation(s)
- E Márquez Brazón
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal; Departamento de Quimica, Escuela de Ciencias, Universidad de Oriente Nucleo Sucre, Cumaná, Venezuela
| | - C Piccirillo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal.
| | - I S Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal
| | - P M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior Biotecnologia, Porto, Portugal.
| |
Collapse
|
30
|
Barros AA, Aroso IM, Silva TH, Mano JF, Duarte ARC, Reis RL. In vitro
bioactivity studies of ceramic structures isolated from marine sponges. Biomed Mater 2016; 11:045004. [DOI: 10.1088/1748-6041/11/4/045004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Wahba SM, Darwish AS, Kamal SM. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer's disease in ovariectomized albino-rat model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:151-63. [DOI: 10.1016/j.msec.2016.04.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/27/2016] [Accepted: 04/11/2016] [Indexed: 01/16/2023]
|
32
|
Gradinaru S, Popescu LM, Piticescu RM, Zurac S, Ciuluvica R, Burlacu A, Tutuianu R, Valsan SN, Motoc AM, Voinea LM. Repair of the Orbital Wall Fractures in Rabbit Animal Model Using Nanostructured Hydroxyapatite-Based Implant. NANOMATERIALS 2016; 6:nano6010011. [PMID: 28344268 PMCID: PMC5302541 DOI: 10.3390/nano6010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
Cellular uptake and cytotoxicity of nanostructured hydroxyapatite (nanoHAp) are dependent on its physical parameters. Therefore, an understanding of both surface chemistry and morphology of nanoHAp is needed in order to be able to anticipate its in vivo behavior. The aim of this paper is to characterize an engineered nanoHAp in terms of physico-chemical properties, biocompatibility, and its capability to reconstitute the orbital wall fractures in rabbits. NanoHAp was synthesized using a high pressure hydrothermal method and characterized by physico-chemical, structural, morphological, and optical techniques. X-ray diffraction revealed HAp crystallites of 21 nm, while Scanning Electron Microscopy (SEM) images showed spherical shapes of HAp powder. Mean particle size of HAp measured by DLS technique was 146.3 nm. Biocompatibility was estimated by the effect of HAp powder on the adhesion and proliferation of mesenchymal stem cells (MSC) in culture. The results showed that cell proliferation on powder-coated slides was between 73.4% and 98.3% of control cells (cells grown in normal culture conditions). Computed tomography analysis of the preformed nanoHAp implanted in orbital wall fractures, performed at one and two months postoperative, demonstrated the integration of the implants in the bones. In conclusion, our engineered nanoHAp is stable, biocompatible, and may be safely considered for reconstruction of orbital wall fractures.
Collapse
Affiliation(s)
- Sinziana Gradinaru
- Ophthalmology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | | | | | - Sabina Zurac
- Pathology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Radu Ciuluvica
- Anatomy Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania.
| | - Raluca Tutuianu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania.
| | | | - Adrian Mihail Motoc
- National R & D Institute for Non-ferrous and Rare Metals, 077145 Ilfov, Romania.
| | - Liliana Mary Voinea
- Ophthalmology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|