1
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Nocchetti M, O'Hare D, Rabu P, Melanova K, Leroux F. Recent advances and perspectives for intercalation layered compounds. Part 2: applications in the field of catalysis, environment and health. Dalton Trans 2024; 53:14551-14581. [PMID: 39046465 DOI: 10.1039/d4dt00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, B.P. 50840, F54011, NancyCedex, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic.
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
2
|
SanaUllah I, Khan S, Ali D, Sajjad A, Shamaila S, Kanwal Z, Sabri AN, Atiq S, Naseem S, Riaz S. Investigation and optimization of In-Vitro behaviour of Perovskite barium titanate as a scaffold and protective coatings. J Mech Behav Biomed Mater 2024; 149:106215. [PMID: 37984284 DOI: 10.1016/j.jmbbm.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
The piezoelectric effect is widely known to have a significant physiological function in bone development, remodeling, and fracture repair. As a well-known piezoelectric material, barium titanate is particularly appealing as a scaffold layer to improve bone tissue engineering applications. Currently, the chemical bath deposition method is used to prepare green synthesized barium titanate coatings to improve mechanical and biological characteristics. Molarity of the solutions, an essential parameter in chemical synthesis, is changed at room temperature (0.1-1.2 Molar) to prepare coatings. The XRD spectra for as deposited coatings indicate amorphous behavior, while polycrystalline nature of coatings is observed after annealing (300 °C). Coatings prepared with solutions of relatively low molarities, i.e. from 0.1 to 0.8 M, exhibit mixed tetragonal - cubic phases. However, the tetragonal phase of Perovskite barium titanate is observed using solution molarities of 1.0 M and 1.2 M. Relatively high value of transmission, i.e. ∼80%, is observed for the coatings prepared with high molarities. Band gap of annealed coatings varies between 3.47 and 3.70 eV. For 1.2 M sample, the maximum spontaneous polarization (Ps) is 0.327x10-3 (μC/cm2) and the residual polarization (Pr) is 0.072x10-3 (μC/cm2). For 1.2M solution, a high hardness value (1510 HV) is recorded, with a fracture toughness of 28.80 MPam-1/2. Low values of weight loss, after dipping the coatings in simulated body fluid, is observed. The antibacterial activity of BaTiO3 is tested against E. coli and Bacillus subtilis. Drug encapsulation capability is also tested for different time intervals. As a result, CBD-based coatings are a promising nominee for use as scaffold and protective coatings.
Collapse
Affiliation(s)
- Ifra SanaUllah
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Sidra Khan
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amna Sajjad
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - S Shamaila
- Waterloo Institute for Nanotechnology, University of Waterloo, Ontario, Canada
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Anjum N Sabri
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Shahid Atiq
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
3
|
Radu (Dusman) RD, Voicu ME, Prodana M, Demetrescu I, Anuta V, Draganescu D. Electrospun PCL Wires Loaded with Vancomycin on Zirconium Substrate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7237. [PMID: 38005168 PMCID: PMC10672849 DOI: 10.3390/ma16227237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
The current study presents research about electrodeposition in relation to electrospinning PCL wires on a Zr substrate and loading the coating with vancomycin. The structural composition of the coatings was investigated via FT-IR analysis. The morphology evaluated using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, for the composition (SEM-EDS), evidenced the presence of the polymer wires, with and without drug vancomycin loading. The wettability of the coatings was evaluated from the hydrophobic-hydrophilic point of view, and the characterization was completed with mechanical and electrochemical tests. All the electrochemical tests performed in simulated body fluid highlighted that PCL represents a barrier against corrosion processes. The quantitative method to evaluate the loading efficiency shows that almost 80% of the total loaded vancomycin is released within 144 h; after the initial burst at 24 h, a steady release of vancomycin is observed over 7 days. A kinetic model of the drug release was also constructed.
Collapse
Affiliation(s)
- Ramona-Daniela Radu (Dusman)
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (R.-D.R.); (M.E.V.); (I.D.)
| | - Manuela Elena Voicu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (R.-D.R.); (M.E.V.); (I.D.)
| | - Mariana Prodana
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (R.-D.R.); (M.E.V.); (I.D.)
| | - Ioana Demetrescu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (R.-D.R.); (M.E.V.); (I.D.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| | - Doina Draganescu
- Department of Pharmaceutical Physics and Informatics, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
4
|
Kazemi-Andalib F, Mohammadikish M, Sahebi U, Divsalar A. Layer-By-Layer Synthesis of the pH-Responsive Hollow Microcapsule and Investigation of Its Drug Delivery and Anticancer Properties. J Pharm Sci 2023; 112:1072-1080. [PMID: 36503002 DOI: 10.1016/j.xphs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Multilayered pH-responsive hollow microcapsules with non-toxicity and biological specificity advantages were prepared from two kinds of polymers i.e., chitosan (CH) and poly (ethylene glycol dimethacrylate-co-methacrylic acid) (PE) via layer-by-layer (LbL) method, which is followed by subsequent removal of silica core. The hollow nature of obtained spherical microcapsules was found by transmission electron microscopy (TEM). The microcapsules were prepared as gemcitabine (GM) and curcumin (CR) carriers. The drugs have been loaded within the microcapsules during or after the synthetic procedure. Although acceptable loading efficiencies (LE) were obtained in both methods, the amount of drug loaded during the synthesis method is relatively higher. Values above 78% and 87%, for releasing efficiency (RE%) and encapsulation efficiency (EE%), respectively, demonstrate the high potential of the prepared microcapsules for drug delivery. In addition, the difference between the amount of drug released in acidic and neutral pH indicates the pH-responsivity of the prepared microcapsules. Moreover, the dose-dependent high cytotoxicity effect of the prepared microcapsules was observed on the HCT116 colorectal carcinoma cells.
Collapse
Affiliation(s)
| | - Maryam Mohammadikish
- Faculty of Chemistry, Kharazmi University, Tehran, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran.
| | - Unes Sahebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
5
|
Kazemi-Andalib F, Mohammadikish M, Divsalar A, Sahebi U. Hollow microcapsule with pH-sensitive chitosan/polymer shell for in vitro delivery of curcumin and gemcitabine. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Malhotra M, Puglia MK, Baveghems CL, Pattammattel A, Koubeck ME, Bruder K, Kumar CV. One-step preparation of bioactive enzyme/inorganic materials. J Mater Chem B 2021; 9:8451-8463. [PMID: 34545909 DOI: 10.1039/d1tb01652k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous exfoliation of crystalline α-zirconium phosphate (α-ZrP) nanosheets and enzyme binding, induced by shearing, without the addition of any toxic additives is reported here for the first time. These materials were thoroughly characterized and used for applications. The bulk α-ZrP material (20 mg mL-1) was exfoliated with low concentrations of a protein such as bovine serum albumin (BSA, 3 mg mL-1) in a shear reactor at 10k rpm for <80 minutes. Exfoliation was monitored by powder X-ray diffraction with samples displaying a gradual but complete loss of the 7.6 Å (002) peak, which is characteristic of bulk α-ZrP. The fully exfoliated sample loaded with the protein was characterized by transmission and scanning electron microscopy in addition to other biophysical methods. Lysozyme, glucose oxidase, met-hemoglobin, and ovalbumin also induced exfoliation and directly produced enzyme/ZrP biocatalysts. Thus, exfoliation, biophilization and enzyme binding are accomplished in a single step. Several factors contributed to the exfoliation kinetics, and the rate increased with α-ZrP and BSA concentrations and decreased with pH. However, the exfoliation efficiency inversely depended on the isoelectric point of the protein with ovalbumin (pI = 4.5) being the best and lysozyme (pI = 11.1) being the worst. A strong correlation between the protein size and exfoliation efficiency was noted, and the latter suggests the role of hydrodynamic factors in the process. Exfoliation was also achieved by simple stirring using a magnetic stirrer, under low volumes, and model enzymes, indicating 60-90% retention of bound enzymatic activities. The addition of BSA to enzymes as the diluent and stabilizing agent also prevents enzymes from the denaturing effect caused by stirring. This new method requires no pre-treatment of α-ZrP with toxic exfoliating agents such as tetrabutyl ammonium hydroxide and provides bioactive enzyme/inorganic materials in a single step. These protein-loaded biocompatible nanosheets may be useful for biocatalysis and biomedical applications.
Collapse
Affiliation(s)
- Mansi Malhotra
- Department of Chemistry, University of Connecticut, U3060, Storrs, CT, 06269, USA.
| | - Megan K Puglia
- Department of Chemistry, University of Connecticut, U3060, Storrs, CT, 06269, USA.
| | - Clive L Baveghems
- Department of Chemistry, University of Connecticut, U3060, Storrs, CT, 06269, USA.
| | - Ajith Pattammattel
- Department of Chemistry, University of Connecticut, U3060, Storrs, CT, 06269, USA.
| | - Monica E Koubeck
- Department of Chemistry, University of Connecticut, U3060, Storrs, CT, 06269, USA.
| | - Katharine Bruder
- Department of Chemistry, University of Connecticut, U3060, Storrs, CT, 06269, USA.
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, U3060, Storrs, CT, 06269, USA. .,Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.,Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
7
|
Mishra C, Mahapatra C. Physiological assessment of fish health in mineral-rich areas of Ganjam, Odisha, India, and chronic toxicity of zirconium oxychloride on the fishes of Channa punctata. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:679. [PMID: 34590193 DOI: 10.1007/s10661-021-09451-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The high concentration of metal toxicants in aquatic ecosystems has a detrimental impact on fish health that ultimately jeopardizes human health. Such threats mostly arise in mineral-rich areas where an increase in metal concentrations occurs in aquatic bodies due to anthropogenic activities like mining. The present study assessed the health of food fish Channa punctata from the mineral-rich areas of Ganjam, Odisha, India, mined for heavy and transition metal ores like ilmenite, zircon, monazite. The fishes collected from these areas showed histopathological anomalies in vital organs like the liver, kidney, gills, stomach and intestine while cytological analysis revealed vacuolated cytoplasm and micronuclei. Biochemical analysis showed a significantly lower lipid concentration in muscle (i.e., 0.177 ± 0.177 mg/gm) and liver (i.e., 0.169 ± 0.002 mg/gm) as compared to non-exposed fishes from adjoining non-mineral rich areas having a mean protein concentration of 87.48 ± 8.16 and 77.75 ± 0.892 mg/gm tissue in the muscle and liver, respectively, and a mean lipid concentration of 0.29 ± 0.009 mg/gm muscle and 0.34 ± 0.009 mg/gm liver. Chronic exposure to sublethal concentrations of zirconium oxychloride, a salt of zirconium, resulted in a significant decline in the concentration of protein, ranging from 57.5 ± 0.929 - 63.88 ± 1.95 mg/gm in muscle and 45.35 ± 2.332 - 51.98 ± 1.036 mg/gm in the liver. The lipid concentrations in muscle (0.03 ± 0.009 - 0.17 ± 0.009 mg/gm) and liver (0.06 ± 0.012 - 0.19 ± 0.007 mg/gm) were also significantly lower than the non-exposed fishes. Marked degenerative changes were identified in the histological sections of the gill, intestine, stomach, liver and kidney of zirconium oxychloride-treated fishes along with various nuclear deformities and micronucleus.
Collapse
Affiliation(s)
- Chirasmita Mishra
- 1Vyasanagar (Autonomous) College, Jajpur Road, 755019, Odisha, India
- Maharaja Sriram Chandra Bhanja Deo University, Takatpur, 757003, Baripada Odisha, India
| | - Cuckoo Mahapatra
- Maharaja Sriram Chandra Bhanja Deo University, Takatpur, 757003, Baripada Odisha, India.
| |
Collapse
|
8
|
Liu X, Wu Z, Cavalli R, Cravotto G. Sonochemical Preparation of Inorganic Nanoparticles and Nanocomposites for Drug Release–A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaolin Liu
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Zhilin Wu
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, 109807, Russia
| |
Collapse
|
9
|
García I, Trobajo C, Amghouz Z, Adawy A. Nanolayered Metal Phosphates as Biocompatible Reservoirs for Antimicrobial Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1481. [PMID: 33803515 PMCID: PMC8002866 DOI: 10.3390/ma14061481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 12/28/2022]
Abstract
There is an increasing demand on synthesizing pharmaceuticals and biomaterials that possess antimicrobial and/or antiviral activities. In this respective silver nanoparticles are known for their excellent antimicrobial activity. Nevertheless, their uncontrolled release in a biological medium can induce a cytotoxic effect. For this, we explored the use of nanolayered metal phosphates based on titanium and zirconium as materials that can be enriched with silver nanoparticles. Employing the hydrothermal route, crystalline α-phases of zirconium and titanium phosphates (α-ZrP, α-TiP) were synthesized and there after surface-enriched with silver nanoparticles. The structural assessment confirmed the stability of the structures and their sizes are in the nanoscale at least in one dimension. The cytocompatibility assays confirmed the biocompatibility of the pristine phases and the antimicrobial assay confirmed that both silver-enriched nanolayered structures maintain an antibacterial effect at reasonably low concentrations.
Collapse
Affiliation(s)
- Inés García
- Nanomaterials and Nanotechnology Research Centre—CINN (CSIC), 33940 El Entrego, Spain; (I.G.); (C.T.)
| | - Camino Trobajo
- Nanomaterials and Nanotechnology Research Centre—CINN (CSIC), 33940 El Entrego, Spain; (I.G.); (C.T.)
- Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Zakariae Amghouz
- Department of Material Science and Metallurgical Engineering, University of Oviedo, 33203 Gijón, Spain;
| | - Alaa Adawy
- Laboratory of High-Resolution Transmission Electron Microscopy, Institute for Scientific and Technological, Resources, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Kundu M, Majumder R, Das CK, Mandal M. Natural products based nanoformulations for cancer treatment: Current evolution in Indian research. Biomed Mater 2021; 16. [PMID: 33621207 DOI: 10.1088/1748-605x/abe8f2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
The use of medicinal plants is as ancient as human civilization. The development of phytochemistry and pharmacology facilitates the identification of natural bioactive compounds and their mechanisms of action, including against cancer. The efficacy and the safety of a bioactive compound depend on its optimal delivery to the target site. Most natural bioactive compounds (phenols, flavonoids, tannins, etc.) are unable to reach their target sites due to their low water solubility, less cellular absorption, and high molecular weight, leading to their failure into clinical translation. Therefore, many scientific studies are going on to overcome the drawbacks of natural products for clinical applications. Several studies in India, as well as worldwide, have proposed the development of natural products-based nanoformulations to increase their efficacy and safety profile for cancer therapy by improving the delivery of natural bioactive compounds to their target site. Therefore, we are trying to discuss the development of natural products-based nanoformulations in India to improve the efficacy and safety of natural bioactive compounds against cancer.
Collapse
Affiliation(s)
- Moumita Kundu
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Ranabir Majumder
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Chandan Kanta Das
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Mahitosh Mandal
- SMST, Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, 721302, INDIA
| |
Collapse
|
11
|
Influence of ZrO 2 Addition on Structural and Biological Activity of Phosphate Glasses for Bone Regeneration. MATERIALS 2020; 13:ma13184058. [PMID: 32932693 PMCID: PMC7560252 DOI: 10.3390/ma13184058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022]
Abstract
Zirconium doped calcium phosphate-based bioglasses are the most prominent bioactive materials for bone and dental repair and regeneration implants. In the present study, a 8ZnO–22Na2O–(24 − x)CaO–46P2O5–xZrO2 (0.1 ≤ x ≤ 0.7, all are in mol%) bioglass system was synthesized by the conventional melt-quenching process at 1100 °C. The glass-forming ability and thermal stability of the glasses were determined by measuring the glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm), using differential thermal analysis (DTA). The biological activity of the prepared samples was identified by analyzing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive spectra (SEM-EDS), before and after immersion in simulated body fluid (SBF) for various intervals of 0, 1 and 5 days, along with the magnitude of pH and the degradation of glasses also evaluated. The obtained results revealed that the glass-forming ability and thermal stability of glasses increased with the increase in zirconia mol%. The XRD, FTIR, and SEM-EDS data confirmed a thin hydroxyapatite (HAp) layer over the sample surface after incubation in SBF for 1 and 5 days. Furthermore, the development of layer found to be increased with the increase of incubation time. The degradation of the glasses in SBF increased with incubation time and decreased gradually with the increase content of ZrO2 mol% in the host glass matrix. A sudden rise in initial pH values of residual SBF for 1 day owing to ion leaching and increase of Ca2+ and PO43− ions and then decreased. These findings confirmed the suitability of choosing material for bone-related applications.
Collapse
|
12
|
Investigations on Physico-Mechanical and Spectral Studies of Zn2+ Doped P2O5-Based Bioglass System. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4030129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ZnO incorporated phosphate based bioglasses with the composition xZnO–22Na2O–24CaO–(54-X)P2O5 (where X = 2, 4, 6, 8, 10 mol%) were developed by melt-quenching process. The physical, thermal and other structural properties of the glasses were studied in detail. By employing various characterization techniques such as X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) in addition to the energy dispersion spectroscopy (EDS), and Raman spectroscopy, the structural properties were analyzed. Interestingly, physical, thermal and mechanical properties were enhanced with the increasing content of zinc oxide up to 8 mol%, due to the presence of more ionic nature of P–O–Zn bonds than P–O–P bonds in the glass network. The FTIR and Raman analysis revealed the evolution of the phosphate network with increasing zinc concentration and leads to progressive depolymerisation of the glass network. The obtained results from the physical and structural properties of these zinc added calcium phosphate glasses support their potential to use as bone implant applications.
Collapse
|
13
|
Huang D, Xu H, Jacob B, Ma R, Yuan S, Zhang L, Mannan MS, Cheng Z. Microwave-assisted preparation of two-dimensional amphiphilic nanoplate herding surfactants for offshore oil spill treatment. J Loss Prev Process Ind 2020. [DOI: 10.1016/j.jlp.2020.104213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Malkappa K, Bandyopadhyay J, Ray SS. Design of Poly(cyclotriphosphazene)-Functionalized Zirconium Phosphate Nanoplatelets To Simultaneously Enhance the Dynamic Mechanical and Flame Retardancy Properties of Polyamide 6. ACS OMEGA 2020; 5:13867-13877. [PMID: 32566853 PMCID: PMC7301536 DOI: 10.1021/acsomega.0c01247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
To obtain polyamide 6 (PA6) composites with improved flame retardancy and thermomechanical properties, highly cross-linked supramolecular poly(cyclotriphosphazene)-functionalized α-zirconium phosphate (f-ZrP) nanoplatelets were synthesized and melt-blended with PA6 in a twin-screw extruder. The performance enhancements of composites were investigated through measuring the dynamic mechanical property and observing cone calorimeter data, toxic gas evolution, and UL-94 rating. The thermomechanical performance of PA6 was increased by 37.2% after composite formation with f-ZrP. As for the fire retardancy performance, compared to neat PA6, the composite containing 10 wt % f-ZrP showed 41.7 and 30.4% decrease in the peak heat and total heat release rates, respectively, and the UL-94 rating of the composite was V-0. Moreover, the thermogravimetric analysis combined with infrared spectroscopy revealed that the addition of f-ZrP to the PA6 led to decrease in the evolution of the volatile compounds and toxic gases, with the formation of highly cross-linked P-N-containing dense char with microspheres, providing a strong barrier to the inhibition of the heat and flammable volatile components transferring between the flame zone area and substrate during the combustion test. Finally, based on the obtained results, the possible mechanisms for improved mechanical and fire retardancy properties of the composites were proposed.
Collapse
Affiliation(s)
- Kuruma Malkappa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Jayita Bandyopadhyay
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South
Africa
| |
Collapse
|
15
|
Kalita H, Patowary M. Fluorescent tumor-targeted polymer-bioconjugate: A potent theranostic platform for cancer therapy. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Karimi Alavijeh R, Akhbari K. Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin. Inorg Chem 2020; 59:3570-3578. [PMID: 32091212 DOI: 10.1021/acs.inorgchem.9b02756] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this study was the investigation of the potential of MIL-101(Fe) for load and sustained release of curcumin (CCM), as an anticancer drug, with pH stimulus. The reasons for choosing this type of metal-organic framework (MOF) are its high surface area, acceptable stability in a water medium, and its biocompatible components (iron and terephthalic acid) with low toxicity to normal cells. The obtained results from UV-vis analysis confirmed that this MOF is a smart carrier with a higher release rate in acidic pH (pH 5), which is a condition similar to that in cancer cells, than that at pH 7.4 (in normal cells). Therefore, this MOF is a pH-stimulus-controlled release carrier with 56.3% drug loading content and sustained drug release over 22 days. In order to evaluate the cell viability after treatment with free CCM, MIL-101(Fe), and MIL-101(Fe)@CCM, the cytotoxicity investigation using MTT assays was performed against HeLa and HEK 293 cell lines up to 48 h. Obtained results showed that MIL-101(Fe)@CCM exhibited more cell growth inhibition effect on HeLa cells in comparison with HEK 293. One of the reasons for the high loading and sustained release of CCM was surface adsorption of this drug and its interactions with open metal sites in MIL-101(Fe). In the end, the kinetic models of drug release were evaluated, and the obtained results showed that in this case diffusion is the main driving force for the drug release process.
Collapse
Affiliation(s)
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Nagesh PKB, Chowdhury P, Hatami E, Jain S, Dan N, Kashyap VK, Chauhan SC, Jaggi M, Yallapu MM. Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells. Sci Rep 2020; 10:980. [PMID: 31969643 PMCID: PMC6976712 DOI: 10.1038/s41598-020-57932-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PCa) cells exploit the aberrant lipid signaling and metabolism as their survival advantage. Also, intracellular storage lipids act as fuel for the PCa proliferation. However, few studies were available that addressed the topic of targeting lipid metabolism in PCa. Here, we assessed the tannic acid (TA) lipid-targeting ability and its capability to induce endoplasmic reticulum (ER) stress by reactive oxygen species (ROS) in PCa cells. TA exhibited dual effects by inhibiting lipogenic signaling and suppression of lipid metabolic pathways. The expression of proteins responsible for lipogenesis was down regulated. The membrane permeability and functionality of PCa were severely affected and caused nuclear disorganization during drug exposure. Finally, these consolidated events shifted the cell's survival balance towards apoptosis. These results suggest that TA distinctly interferes with the lipid signaling and metabolism of PCa cells.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Elham Hatami
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Shashi Jain
- Tumor Initiation and Maintenance, Sanford-Burnham Medical Research Institute, La Jolla, California, 92037, USA
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Nirnoy Dan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Vivek Kumar Kashyap
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Subhash C Chauhan
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Meena Jaggi
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
18
|
Suriyaraj SP, Ramadoss G, Chandraraj K, Selvakumar R. One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110021. [DOI: 10.1016/j.msec.2019.110021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
19
|
Nagesh PK, Chowdhury P, Hatami E, Kumari S, Kashyap VK, Tripathi MK, Wagh S, Meibohm B, Chauhan SC, Jaggi M, Yallapu MM. Cross-Linked Polyphenol-Based Drug Nano-Self-Assemblies Engineered to Blockade Prostate Cancer Senescence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38537-38554. [PMID: 31553876 PMCID: PMC8020616 DOI: 10.1021/acsami.9b14738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cellular senescence is one of the prevailing issues in cancer therapeutics that promotes cancer relapse, chemoresistance, and recurrence. Patients undergoing persistent chemotherapy often develop drug-induced senescence. Docetaxel, an FDA-approved treatment for prostate cancer, is known to induce cellular senescence which often limits the overall survival of patients. Strategic therapies that counter the cellular and drug-induced senescence are an unmet clinical need. Towards this an effort was made to develop a novel therapeutic strategy that targets and removes senescent cells from the tumors, we developed a nanoformulation of tannic acid-docetaxel self-assemblies (DSAs). The construction of DSAs was confirmed through particle size measurements, spectroscopy, thermal, and biocompatibility studies. This formulation exhibited enhanced in vitro therapeutic activity in various biological functional assays with respect to native docetaxel treatments. Microarray and immunoblot analysis results demonstrated that DSAs exposure selectively deregulated senescence associated TGFβR1/FOXO1/p21 signaling. Decrease in β-galactosidase staining further suggested reversion of drug-induced senescence after DSAs exposure. Additionally, DSAs induced profound cell death by activation of apoptotic signaling through bypassing senescence. Furthermore, in vivo and ex vivo imaging analysis demonstrated the tumor targeting behavior of DSAs in mice bearing PC-3 xenograft tumors. The antisenescence and anticancer activity of DSAs was further shown in vivo by inhibiting TGFβR1 proteins and regressing tumor growth through apoptotic induction in the PC-3 xenograft mouse model. Overall, DSAs exhibited such advanced features due to a natural compound in the formulation as a matrix/binder for docetaxel. Overall, DSAs showed superior tumor targeting and improved cellular internalization, promoting docetaxel efficacy. These findings may have great implications in prostate cancer therapy.
Collapse
Affiliation(s)
- Prashanth K.B. Nagesh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Elham Hatami
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Sonam Kumari
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vivek Kumar Kashyap
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Manish K. Tripathi
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Santosh Wagh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Subhash C. Chauhan
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Meena Jaggi
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Murali M. Yallapu
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Corresponding Author Mailing address: Department of Immunology and Microbiology, 5300 North L Street, Room 2.249, McAllen, TX 78504. Phone: (956) 296-1705. Fax No: (956)-296-1325.
| |
Collapse
|
20
|
Hosseinzadeh R, Khorsandi K. Photodynamic effect of Zirconium phosphate biocompatible nano-bilayers containing methylene blue on cancer and normal cells. Sci Rep 2019; 9:14899. [PMID: 31624290 PMCID: PMC6797777 DOI: 10.1038/s41598-019-51359-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
Pharmaceutical applications of methylene blue, especially as photosensitizer, have been limited due to its rapid enzymatic reduction in the biological systems. In this study nano-platelet zirconium phosphate was synthesized and its biocompatibility was evaluated. The synthesized material was considered as drug delivery vehicle for methylene blue to enhance the photodynamic therapy efficacy in human breast cancer cells. Zirconium phosphate-methylene blue nano-hybrids were characterized by X-Ray Powder Diffraction (XRPD), Scanning Electron Microscopy (SEM), and Thermo gravimetric Analysis (TGA). Biocompatibility of synthesized nano materials were studied on Hu02 human fibroblast normal cell and MDA-MB-231 human breast cancer cell. The results clarified that ZrP-MB nanoparticles could decrease the dark toxicity of free methylene blue. Photodynamic therapy using zirconium phosphate-methylene blue on MDA-MB-231 human breast cancer was evaluated by MTT assay, colony forming ability assay, AO/EB dual staining and flow cytometry detection of apoptosis. The results suggest that zirconium phosphate-methylene blue nano-hybrids significantly enhance photodynamic therapy efficacy probably via apoptosis cell death mechanism against human breast cancer cells. According to the results, zirconium phosphate nanoparticles could be suggested as a promising nano-carrier for photosensitizer delivery in photodynamic therapy.
Collapse
Affiliation(s)
- Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| |
Collapse
|
21
|
Halogen-free flame retardants for application in thermoplastics based on condensation polymers. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0431-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Preparation of highly-stable and recyclable novel Au/ZrP composite catalyst for 4-nitrophenol reduction. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Pica M, Donnadio A, Casciola M. From microcrystalline to nanosized α-zirconium phosphate: Synthetic approaches and applications of an old material with a bright future. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Nagesh PKB, Chowdhury P, Hatami E, Boya VKN, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. miRNA-205 Nanoformulation Sensitizes Prostate Cancer Cells to Chemotherapy. Cancers (Basel) 2018; 10:E289. [PMID: 30149628 PMCID: PMC6162422 DOI: 10.3390/cancers10090289] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
The therapeutic application of microRNA(s) in the field of cancer has generated significant attention in research. Previous studies have shown that miR-205 negatively regulates prostate cancer cell proliferation, metastasis, and drug resistance. However, the delivery of miR-205 is an unmet clinical need. Thus, the development of a viable nanoparticle platform to deliver miR-205 is highly sought. A novel magnetic nanoparticle (MNP)-based nanoplatform composed of an iron oxide core with poly(ethyleneimine)-poly(ethylene glycol) layer(s) was developed. An optimized nanoplatform composition was confirmed by examining the binding profiles of MNPs with miR-205 using agarose gel and fluorescence methods. The novel formulation was applied to prostate cancer cells for evaluating cellular uptake, miR-205 delivery, and anticancer, antimetastasis, and chemosensitization potentials against docetaxel treatment. The improved uptake and efficacy of formulations were studied with confocal imaging, flow cytometry, proliferation, clonogenicity, Western blot, q-RT-PCR, and chemosensitization assays. Our findings demonstrated that the miR-205 nanoplatform induces significant apoptosis and enhancing chemotherapeutic effects in prostate cancer cells. Overall, these study results provide a strong proof-of-concept for a novel nonviral-based nanoparticle protocol for effective microRNA delivery to prostate cancer cells.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Elham Hatami
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Vijaya K N Boya
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Vivek K Kashyap
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Bilal B Hafeez
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Baveghems CL, Anuganti M, Pattammattel A, Lin Y, Kumar CV. Tuning Enzyme/α-Zr(IV) Phosphate Nanoplate Interactions via Chemical Modification of Glucose Oxidase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:480-491. [PMID: 29228779 PMCID: PMC5860641 DOI: 10.1021/acs.langmuir.7b02919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Using glucose oxidase (GOx) and α-Zr(IV) phosphate nanoplates (α-ZrP) as a model system, a generally applicable approach to control enzyme-solid interactions via chemical modification of amino acid side chains of the enzyme is demonstrated. Net charge on GOx was systematically tuned by appending different amounts of polyamine to the protein surface to produce chemically modified GOx(n), where n is the net charge on the enzyme after the modification and ranged from -62 to +95 electrostatic units in the system. The binding of GOx(n) with α-ZrP nanosheets was studied by isothermal titration calorimetry (ITC) as well as by surface plasmon resonance (SPR) spectroscopy. Pristine GOx showed no affinity for the α-ZrP nanosheets, but GOx(n) where n ≥ -20 showed binding affinities exceeding (2.1 ± 0.6) × 106 M-1, resulting from the charge modification of the enzyme. A plot of GOx(n) charge vs Gibbs free energy of binding (ΔG) for n = +20 to n = +65 indicated an overall increase in favorable interaction between GOx(n) and α-ZrP nanosheets. However, ΔG is less dependent on the net charge for n > +45, as evidenced by the decrease in the slope as charge increased further. All modified enzyme samples and enzyme/α-ZrP complexes retained a significant amount of folding structure (examined by circular dichroism) as well as enzymatic activities. Thus, strong control over enzyme-nanosheet interactions via modulating the net charge of enzymes may find potential applications in biosensing and biocatalysis.
Collapse
Affiliation(s)
- Clive L. Baveghems
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Murali Anuganti
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Ajith Pattammattel
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
26
|
Boccalon E, Nocchetti M, Pica M, Romani A, Casciola M. Layered double hydroxide and zirconium phosphate as ion exchangers for the removal of ‘black crusts’ from the surface of ancient monuments. Dalton Trans 2018; 47:2976-2985. [DOI: 10.1039/c7dt03957c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two ion exchanger solids (LDH and ZrP) as an innovative tool to remove gypsum from ancient monuments.
Collapse
Affiliation(s)
- E. Boccalon
- Dipartimento di Chimica Biologia e Biotecnologie
- University of Perugia
- 06123 Perugia
- Italy
| | - M. Nocchetti
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - M. Pica
- Dipartimento di Scienze Farmaceutiche
- University of Perugia
- Perugia
- Italy
| | - A. Romani
- Dipartimento di Chimica Biologia e Biotecnologie
- University of Perugia
- 06123 Perugia
- Italy
| | - M. Casciola
- Dipartimento di Chimica Biologia e Biotecnologie
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
27
|
Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:363-371. [DOI: 10.1016/j.msec.2016.09.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022]
|
28
|
Hu H, Wang X, Lee KI, Ma K, Hu H, Xin JH. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite. Sci Rep 2016; 6:31815. [PMID: 27539298 PMCID: PMC4990926 DOI: 10.1038/srep31815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 01/20/2023] Open
Abstract
We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO's unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases.
Collapse
Affiliation(s)
- Huawen Hu
- Foshan University, Guangdong, 528000, China
| | - Xiaowen Wang
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Ka I Lee
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Kaikai Ma
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Hong Hu
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - John H. Xin
- The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
29
|
An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 2016; 93:1338-1353. [PMID: 27012892 DOI: 10.1016/j.ijbiomac.2016.03.041] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 01/06/2023]
Abstract
Chitin and chitosan based nanocomposite scaffolds have been widely used for bone tissue engineering. These chitin and chitosan based scaffolds were reinforced with nanocomponents viz Hydroxyapatite (HAp), Bioglass ceramic (BGC), Silicon dioxide (SiO2), Titanium dioxide (TiO2) and Zirconium oxide (ZrO2) to develop nanocomposite scaffolds. Plenty of works have been reported on the applications and characteristics of the nanoceramic composites however, compiling the work done in this field and presenting it in a single article is a thrust area. This review is written with an aim to fill this gap and focus on the preparations and applications of chitin or chitosan/nHAp, chitin or chitosan/nBGC, chitin or chitosan/nSiO2, chitin or chitosan/nTiO2 and chitin or chitosan/nZrO2 in the field of bone tissue engineering in detail. Many reports so far exemplify the importance of ceramics in bone regeneration. The effect of nanoceramics over native ceramics in developing composites, its role in osteogenesis etc. are the gist of this review.
Collapse
|
30
|
Kalita H, Rajput S, Kumar BNP, Mandal M, Pathak A. Fe3O4@zirconium phosphate core–shell nanoparticles for pH-sensitive and magnetically guided drug delivery applications. RSC Adv 2016. [DOI: 10.1039/c5ra27215g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fe3O4@zirconium phosphate core–shell nanoparticles with good biocompatibility have been synthesized for pH-sensitive and magnetically guided drug delivery applications.
Collapse
Affiliation(s)
- Himani Kalita
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Shashi Rajput
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- India
| | - B. N. Prashanth Kumar
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- India
| | - Mahitosh Mandal
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- India
| | - Amita Pathak
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|