1
|
Seifi S, Shamloo A, Barzoki AK, Bakhtiari MA, Zare S, Cheraghi F, Peyrovan A. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr Polym 2024; 339:122232. [PMID: 38823905 DOI: 10.1016/j.carbpol.2024.122232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.
Collapse
Affiliation(s)
- Saeed Seifi
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Ali Kheirkhah Barzoki
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohammad Ali Bakhtiari
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sona Zare
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Cheraghi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran, Iran
| | - Aisan Peyrovan
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Pelin G, Sonmez M, Pelin CE. The Use of Additive Manufacturing Techniques in the Development of Polymeric Molds: A Review. Polymers (Basel) 2024; 16:1055. [PMID: 38674976 PMCID: PMC11054453 DOI: 10.3390/polym16081055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The continuous growth of additive manufacturing in worldwide industrial and research fields is driven by its main feature which allows the customization of items according to the customers' requirements and limitations. There is an expanding competitiveness in the product development sector as well as applicative research that serves special-use domains. Besides the direct use of additive manufacturing in the production of final products, 3D printing is a viable solution that can help manufacturers and researchers produce their support tooling devices (such as molds and dies) more efficiently, in terms of design complexity and flexibility, timeframe, costs, and material consumption reduction as well as functionality and quality enhancements. The compatibility of the features of 3D printing of molds with the requirements of low-volume production and individual-use customized items development makes this class of techniques extremely attractive to a multitude of areas. This review paper presents a synthesis of the use of 3D-printed polymeric molds in the main applications where molds exhibit a major role, from industrially oriented ones (injection, casting, thermoforming, vacuum forming, composite fabrication) to research or single-use oriented ones (tissue engineering, biomedicine, soft lithography), with an emphasis on the benefits of using 3D-printed polymeric molds, compared to traditional tooling.
Collapse
Affiliation(s)
- George Pelin
- INCAS—National Institute for Aerospace Research “Elie Carafoli”, Bd. Iuliu Maniu 220, 061126 Bucharest, Romania;
| | - Maria Sonmez
- INCDTP-ICPI—National Research and Development Institute for Textile and Leather—Division Leather and Footwear Research Institute, Ion Minulescu St. 93, 031215 Bucharest, Romania;
| | - Cristina-Elisabeta Pelin
- INCAS—National Institute for Aerospace Research “Elie Carafoli”, Bd. Iuliu Maniu 220, 061126 Bucharest, Romania;
| |
Collapse
|
3
|
Honarvar A, Setayeshmehr M, Ghaedamini S, Hashemibeni B, Moroni L, Karbasi S. Chondrogenesis of mesenchymal stromal cells on the 3D printed polycaprolactone/fibrin/decellular cartilage matrix hybrid scaffolds in the presence of piascledine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:799-822. [PMID: 38289681 DOI: 10.1080/09205063.2024.2307752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Nowadays, cartilage tissue engineering (CTE) is considered important due to lack of repair of cartilaginous lesions and the absence of appropriate methods for treatment. In this study, polycaprolactone (PCL) scaffolds were fabricated by three-dimensional (3D) printing and were then coated with fibrin (F) and acellular solubilized extracellular matrix (ECM). After extracting adipose-derived stem cells (ADSCs), 3D-printed scaffolds were characterized and compared to hydrogel groups. After inducing the chondrogenic differentiation in the presence of Piascledine and comparing it with TGF-β3 for 28 days, the expression of genes involved in chondrogenesis (AGG, COLII) and the expression of the hypertrophic gene (COLX) were examined by real-time PCR. The expression of proteins COLII and COLX was also determined by immunohistochemistry. Glycosaminoglycan was measured by toluidine blue staining. 3D-printed scaffolds clearly improved cell proliferation, viability, water absorption and compressive strength compared to the hydrogel groups. Moreover, the use of compounds such as ECM and Piascledine in the process of ADSCs chondrogenesis induction increased cartilage-specific markers and decreased the hypertrophic marker compared to TGF-β3. In Piascledine groups, the expression of COLL II protein, COLL II and Aggrecan genes, and the amount of glycosaminoglycan showed a significant increase in the PCL/F/ECM compared to the PCL and PCL/F groups.
Collapse
Affiliation(s)
- Ali Honarvar
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohsen Setayeshmehr
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sho'leh Ghaedamini
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Wang C, Zhou Y. Sacrificial biomaterials in 3D fabrication of scaffolds for tissue engineering applications. J Biomed Mater Res B Appl Biomater 2024; 112:e35312. [PMID: 37572033 DOI: 10.1002/jbm.b.35312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Three-dimensional (3D) printing technology has progressed exceedingly in the area of tissue engineering. Despite the tremendous potential of 3D printing, building scaffolds with complex 3D structure, especially with soft materials, still exist as a challenge due to the low mechanical strength of the materials. Recently, sacrificial materials have emerged as a possible solution to address this issue, as they could serve as temporary support or templates to fabricate scaffolds with intricate geometries, porous structures, and interconnected channels without deformation or collapse. Here, we outline the various types of scaffold biomaterials with sacrificial materials, their pros and cons, and mechanisms behind the sacrificial material removal, compare the manufacturing methods such as salt leaching, electrospinning, injection-molding, bioprinting with advantages and disadvantages, and discuss how sacrificial materials could be applied in tissue-specific applications to achieve desired structures. We finally conclude with future challenges and potential research directions.
Collapse
Affiliation(s)
- Chi Wang
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| | - Yingge Zhou
- Systems Science and Industrial Engineering, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
5
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Liu S, Wang T, Li S, Wang X. Application Status of Sacrificial Biomaterials in 3D Bioprinting. Polymers (Basel) 2022; 14:2182. [PMID: 35683853 PMCID: PMC9182955 DOI: 10.3390/polym14112182] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing, also known as three-dimensional (3D) printing, relates to several rapid prototyping (RP) technologies, and has shown great potential in the manufacture of organoids and even complex bioartificial organs. A major challenge for 3D bioprinting complex org unit ans is the competitive requirements with respect to structural biomimeticability, material integrability, and functional manufacturability. Over the past several years, 3D bioprinting based on sacrificial templates has shown its unique advantages in building hierarchical vascular networks in complex organs. Sacrificial biomaterials as supporting structures have been used widely in the construction of tubular tissues. The advent of suspension printing has enabled the precise printing of some soft biomaterials (e.g., collagen and fibrinogen), which were previously considered unprintable singly with cells. In addition, the introduction of sacrificial biomaterials can improve the porosity of biomaterials, making the printed structures more favorable for cell proliferation, migration and connection. In this review, we mainly consider the latest developments and applications of 3D bioprinting based on the strategy of sacrificial biomaterials, discuss the basic principles of sacrificial templates, and look forward to the broad prospects of this approach for complex organ engineering or manufacturing.
Collapse
Affiliation(s)
- Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Tianlin Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Shenglong Li
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (S.L.); (T.W.); (S.L.)
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Ze Y, Li Y, Huang L, Shi Y, Li P, Gong P, Lin J, Yao Y. Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization. Front Bioeng Biotechnol 2022; 10:856398. [PMID: 35402417 PMCID: PMC8990266 DOI: 10.3389/fbioe.2022.856398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Mature vasculature is important for the survival of bioengineered tissue constructs, both in vivo and in vitro; however, the fabrication of fully vascularized tissue constructs remains a great challenge in tissue engineering. Indirect three-dimensional (3D) bioprinting refers to a 3D printing technique that can rapidly fabricate scaffolds with controllable internal pores, cavities, and channels through the use of sacrificial molds. It has attracted much attention in recent years owing to its ability to create complex vascular network-like channels through thick tissue constructs while maintaining endothelial cell activity. Biodegradable materials play a crucial role in tissue engineering. Scaffolds made of biodegradable materials act as temporary templates, interact with cells, integrate with native tissues, and affect the results of tissue remodeling. Biodegradable ink selection, especially the choice of scaffold and sacrificial materials in indirect 3D bioprinting, has been the focus of several recent studies. The major objective of this review is to summarize the basic characteristics of biodegradable materials commonly used in indirect 3D bioprinting for vascularization, and to address recent advances in applying this technique to the vascularization of different tissues. Furthermore, the review describes how indirect 3D bioprinting creates blood vessels and vascularized tissue constructs by introducing the methodology and biodegradable ink selection. With the continuous improvement of biodegradable materials in the future, indirect 3D bioprinting will make further contributions to the development of this field.
Collapse
Affiliation(s)
- Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Kim JM, Kyung H, Song YS. Analysis of poly(dioxanone) foam prepared using salt leaching method. J Appl Polym Sci 2022. [DOI: 10.1002/app.52331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jung Min Kim
- Department of Fiber Convergence Materials Engineering Dankook University Yongin‐si Gyeonggi Do Korea
| | - Haksu Kyung
- Department of Ophthalmology National Medical Center Seoul Korea
| | - Young Seok Song
- Department of Fiber Convergence Materials Engineering Dankook University Yongin‐si Gyeonggi Do Korea
| |
Collapse
|
10
|
Li P, Cao L, Sang F, Zhang B, Meng Z, Pan L, Hao J, Yang X, Ma Z, Shi C. Polyvinyl alcohol/sodium alginate composite sponge with 3D ordered/disordered porous structure for rapidly controlling noncompressible hemorrhage. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112698. [DOI: 10.1016/j.msec.2022.112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
11
|
Zamorano M, Castillo RL, Beltran JF, Herrera L, Farias JA, Antileo C, Aguilar-Gallardo C, Pessoa A, Calle Y, Farias JG. Tackling Ischemic Reperfusion Injury With the Aid of Stem Cells and Tissue Engineering. Front Physiol 2021; 12:705256. [PMID: 34603075 PMCID: PMC8484708 DOI: 10.3389/fphys.2021.705256] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | | | - Jorge F Beltran
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Joaquín A Farias
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibíñtez, Santiago, Chile
| | - Christian Antileo
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Cristobal Aguilar-Gallardo
- Hematological Transplant and Cell Therapy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, United Kingdom
| | - Jorge G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
12
|
Radhakrishna G, Dugad R, Gandhi A. Morphological evaluation of microcellular foamed composites developed through gas batch foaming integrating Fused Deposition Modeling (FDM) 3D printing technique. CELLULAR POLYMERS 2021. [DOI: 10.1177/02624893211040938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, the development of microcellular structure foams has developed by integrating the two successful and existing technologies, namely CO2 gas batch foaming and Fused Deposition Modeling (FDM) 3D printing technique. It is a novel approach to manufacture complex design porous products for customized applications. The eventual cell morphologies of the extruded 3D printing filament depends on the process parameters pertaining to both microcellular foaming and 3D printing processes. Further, morphological study has been conducted to evaluate the cell morphologies of the 3D printing filament developed through customized FDM setup. During this process, the significance of various process parameters including saturation pressure, saturation time, desorption time, feed rate and extrusion temperature were thoroughly studied. To pursue this study base material used was acrylonitrile butadiene styrene (ABS). The 3D printed filaments consisted of cells with an average cell size in the range of 2.3–276 µm and the average cell density in the range of 4.7 × 104 to 4.3 × 109 cells/cm3. Finally, it has found that by controlling the process parameters different cell morphologies can be developed as per the end application.
Collapse
Affiliation(s)
- G Radhakrishna
- CIPET: School for Advanced Research in Polymers (SARP)—APDDRL, Bengaluru, Karnataka, India
- CIPET: School for Advanced Research in Polymers (SARP)—LARPM, Bhubaneswar, Odisha, India
| | - Rupesh Dugad
- CIPET: School for Advanced Research in Polymers (SARP)—APDDRL, Bengaluru, Karnataka, India
- CIPET: School for Advanced Research in Polymers (SARP)—LARPM, Bhubaneswar, Odisha, India
| | - Abhishek Gandhi
- CIPET: School for Advanced Research in Polymers (SARP)—APDDRL, Bengaluru, Karnataka, India
- CIPET: School for Advanced Research in Polymers (SARP)—LARPM, Bhubaneswar, Odisha, India
- CIPET: IPT Murthal, Sonepat, Haryana, India
| |
Collapse
|
13
|
Liu H, Jain S, Ahlinder A, Fuoco T, Gasser TC, Finne-Wistrand A. Pliable, Scalable, and Degradable Scaffolds with Varying Spatial Stiffness and Tunable Compressive Modulus Produced by Adopting a Modular Design Strategy at the Macrolevel. ACS POLYMERS AU 2021; 1:107-122. [PMID: 36855428 PMCID: PMC9954393 DOI: 10.1021/acspolymersau.1c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical results obtained when degradable polymer-based medical devices are used in breast reconstruction following mastectomy are promising. However, it remains challenging to develop a large scaffold structure capable of providing both sufficient external mechanical support and an internal cell-like environment to support breast tissue regeneration. We propose an internal-bra-like prototype to solve both challenges. The design combines a 3D-printed scaffold with knitted meshes and electrospun nanofibers and has properties suitable for both breast tissue regeneration and support of a silicone implant. Finite element analysis (FEA) was used to predict the macroscopic and microscopic stiffnesses of the proposed structure. The simulations show that introduction of the mesh leads to a macroscopic scaffold stiffness similar to the stiffness of breast tissue, and mechanical testing confirms that the introduction of more layers of mesh in the modular design results in a lower elastic modulus. The compressive modulus of the scaffold can be tailored within a range from hundreds of kPa to tens of kPa. Biaxial tensile testing reveals stiffening with increasing strain and indicates that rapid strain-induced softening occurs only within the first loading cycle. In addition, the microscopic local stiffness obtained from FEA simulations indicates that cells experience significant heterogeneous mechanical stimuli at different places in the scaffold and that the local mechanical stimulus generated by the strand surface is controlled by the elastic modulus of the polymer, rather than by the scaffold architecture. From in vitro experiments, it was observed that the addition of knitted mesh and an electrospun nanofiber layer to the scaffold significantly increased cell seeding efficiency, cell attachment, and proliferation compared to the 3D-printed scaffold alone. In summary, our results suggest that the proposed design strategy is promising for soft tissue engineering of scaffolds to assist breast reconstruction and regeneration.
Collapse
Affiliation(s)
- Hailong Liu
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden,Department
of Engineering Mechanics, KTH Royal Institute
of Technology, 100 44, Stockholm, Sweden
| | - Shubham Jain
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - Astrid Ahlinder
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - Tiziana Fuoco
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - T. Christian Gasser
- Solid
Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden,Faculty
of Health Sciences, University of Southern
Denmark, 5230, Odense, Denmark,
| | - Anna Finne-Wistrand
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden,
| |
Collapse
|
14
|
Dugad R, Radhakrishna G, Gandhi A. Solid-state foaming of acrylonitrile butadiene styrene through microcellular 3D printing process. J CELL PLAST 2021. [DOI: 10.1177/0021955x211009443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lightweight products with superior specific strength are in great demand in numerous applications such as automotive, aerospace, biomedical, sports, etc. This work focussed on the manufacturing of lightweight products using the cellular three dimensional (3D) printing process. In this work, the continuous microcellular morphology has been developed in a single foamed filament using 3 D printing of carbon-di-oxide (CO2) saturated acrylonitrile butadiene styrene (ABS) filaments. The microcellular structures with average cell size in the range of 6–1040 µm were developed. The influence of printing parameters; nozzle temperature, feed rate, and flow rate on the foam characteristics and cell morphology at different levels were investigated. The different kinds of observed foamed extrudate irregularities were discussed.
Collapse
Affiliation(s)
- Rupesh Dugad
- CIPET: School for Advanced Research in Polymers (SARP) – APDDRL, Bengaluru, India
- CIPET: School for Advanced Research in Polymers (SARP) – LARPM, Bhubaneswar, India
| | - G Radhakrishna
- CIPET: School for Advanced Research in Polymers (SARP) – APDDRL, Bengaluru, India
- CIPET: School for Advanced Research in Polymers (SARP) – LARPM, Bhubaneswar, India
| | - Abhishek Gandhi
- CIPET: School for Advanced Research in Polymers (SARP) – APDDRL, Bengaluru, India
- CIPET: School for Advanced Research in Polymers (SARP) – LARPM, Bhubaneswar, India
| |
Collapse
|
15
|
Manita PG, Garcia-Orue I, Santos-Vizcaino E, Hernandez RM, Igartua M. 3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals (Basel) 2021; 14:ph14040362. [PMID: 33919848 PMCID: PMC8070826 DOI: 10.3390/ph14040362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to present 3D bioprinting of skin substitutes as an efficient approach of managing skin injuries. From a clinical point of view, classic treatments only provide physical protection from the environment, and existing engineered scaffolds, albeit acting as a physical support for cells, fail to overcome needs, such as neovascularisation. In the present work, the basic principles of bioprinting, together with the most popular approaches and choices of biomaterials for 3D-printed skin construct production, are explained, as well as the main advantages over other production methods. Moreover, the development of this technology is described in a chronological manner through examples of relevant experimental work in the last two decades: from the pioneers Lee et al. to the latest advances and different innovative strategies carried out lately to overcome the well-known challenges in tissue engineering of skin. In general, this technology has a huge potential to offer, although a multidisciplinary effort is required to optimise designs, biomaterials and production processes.
Collapse
Affiliation(s)
- Paula Gabriela Manita
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| |
Collapse
|
16
|
Inverse 3D Printing with Variations of the Strand Width of the Resulting Scaffolds for Bone Replacement. MATERIALS 2021; 14:ma14081964. [PMID: 33919880 PMCID: PMC8070765 DOI: 10.3390/ma14081964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
The objective of this study was to vary the wall thicknesses and pore sizes of inversely printed 3D molded bodies. Wall thicknesses were varied from 1500 to 2000 to 2500 µm. The pores had sizes of 500, 750 and 1000 µm. The sacrificial structures were fabricated from polylactide (PLA) using fused deposition modeling (FDM). To obtain the final bioceramic scaffolds, a water-based slurry was filled into the PLA molds. The PLA sacrificial molds were burned out at approximately 450 °C for 4 h. Subsequently, the samples were sintered at 1250 °C for at least 4 h. The scaffolds were mechanically characterized (native and after incubation in simulated body fluid (SBF) for 28 days). In addition, the biocompatibility was assessed by live/dead staining. The scaffolds with a strand spacing of 500 µm showed the highest compressive strength; there was no significant difference in compressive strength regardless of pore size. The specimens with 1000 µm pore size showed a significant dependence on strand width. Thus, the specimens (1000 µm pores) with 2500 µm wall thickness showed the highest compressive strength of 5.97 + 0.89 MPa. While the 1000(1500) showed a value of 2.90 + 0.67 MPa and the 1000(2000) of 3.49 + 1.16 MPa. As expected for beta-Tricalciumphosphate (β-TCP), very good biocompatibility was observed with increasing cell numbers over the experimental period.
Collapse
|
17
|
Solvent evaporation induced fabrication of porous polycaprolactone scaffold via low-temperature 3D printing for regeneration medicine researches. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Kwak Y, Kang Y, Park W, Jo E, Kim J. Fabrication of fine-pored polydimethylsiloxane using an isopropyl alcohol and water mixture for adjustable mechanical, optical, and thermal properties. RSC Adv 2021; 11:18061-18067. [PMID: 35480166 PMCID: PMC9033208 DOI: 10.1039/d1ra02466c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
A fabrication method for obtaining fine-pored PDMS is presented. Low-cost, volatile, and easily accessible IPA is used as a co-solvent in water and PDMS emulsions, allowing porous PDMS with adjustable mechanical, optical and thermal properties.
Collapse
Affiliation(s)
- Yeunjun Kwak
- School of Mechanical Engineering
- Yonsei University
- Seoul
- Republic of Korea
| | - Yunsung Kang
- School of Mechanical Engineering
- Yonsei University
- Seoul
- Republic of Korea
| | - Wonkeun Park
- School of Mechanical Engineering
- Yonsei University
- Seoul
- Republic of Korea
| | - Eunhwan Jo
- School of Mechanical Engineering
- Yonsei University
- Seoul
- Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering
- Yonsei University
- Seoul
- Republic of Korea
| |
Collapse
|
19
|
Zhou X, Zhou G, Junka R, Chang N, Anwar A, Wang H, Yu X. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration. Colloids Surf B Biointerfaces 2020; 197:111420. [PMID: 33113493 DOI: 10.1016/j.colsurfb.2020.111420] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023]
Abstract
Artificial bone grafts possess the advantages of good biodegradability, customizable dimensions, and sufficient mechanical properties, which can promote cell proliferation and differentiation in bone tissue regeneration. 3D printing is a delicate approach that endows the scaffolds with excellent controllability and repeatability when compared with conventional bio-fabrication methods. However, the limitation of printing resolution somehow makes it difficult to prepare bone defect substitution with high porosity and hierarchical construct. In this study, we utilized polylactic acid (PLA) as printing materials and developed a smart strategy to combine 3D printing technology with bio-fabrication methods. A porous planar scaffold was printed and then rolled up into a spiral structure with adjustable pore size and porosity. The topographic features and morphology of the artificial scaffolds were examined through stereomicroscope and SEM, respectively. The porous spiral scaffold presented good mechanical properties in a set of mechanical testing. Later, the human fetal osteoblasts (hFOB) were cultured on the porous spiral scaffold and its control groups for a total of 28 days. The MTS analysis, alkaline phosphatase (ALP) assay, and alizarin red S (ARS) staining were used to analyze the cell proliferation, osteogenic differentiation, and mineral deposition after a certain period of time. The results indicated that compared with the other two scaffolds, the porous spiral scaffold with larger surface area and better interconnections between internal porous networks could significantly improve the spatial cell compartment and promote cell growth and differentiation. The porous spiral scaffold may see versatile applications in large-volume bone defects regeneration.
Collapse
Affiliation(s)
- Xiaqing Zhou
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States; Department of Chemistry and Chemical Biology, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Gan Zhou
- Department of Chemistry and Chemical Biology, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Radoslaw Junka
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Ningxiao Chang
- Department of Chemistry and Chemical Biology, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Aneela Anwar
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States; Department of Basic Sciences and Humanities, University of Engineering and Technology, New Campus, GT Road, Lahore, 39020, Pakistan
| | - Haoyu Wang
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States; Department of Chemistry and Chemical Biology, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Xiaojun Yu
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ, 07030, United States.
| |
Collapse
|
20
|
Dugad R, Radhakrishna G, Gandhi A. Recent advancements in manufacturing technologies of microcellular polymers: a review. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02157-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
|
22
|
Advances in bioprinting using additive manufacturing. Eur J Pharm Sci 2019; 143:105167. [PMID: 31778785 DOI: 10.1016/j.ejps.2019.105167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/27/2023]
Abstract
Since its conception in the 1980's, several advances in the field of additive manufacturing have led to exploration of alternate as well as combination biomaterials. These progresses have directed the use of 3D printing in wider applications such as printing of dermal layers, cartilage, bone defects, and surgical implants. Furthermore, the incorporation of live and functional cells with or atop biomaterials has laid the foundation for its use in tissue engineering. The purpose of this review is to summarize the advances in 3D printing and bioprinting of several types of tissues such as skin, cartilage, bones, and cardiac valves. This review will address the current 3D technologies used in tissue construction and study the biomaterials being investigated. There are several requirements that need to be addressed, in order to reconstruct functional tissue such as mechanical strength, porosity of the replicate and cellular incorporation. Researchers have focused their studies to answer questions regarding these requirements.
Collapse
|
23
|
Seidenstuecker M, Lange S, Esslinger S, Latorre SH, Krastev R, Gadow R, Mayr HO, Bernstein A. Inversely 3D-Printed β-TCP Scaffolds for Bone Replacement. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3417. [PMID: 31635363 PMCID: PMC6829219 DOI: 10.3390/ma12203417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022]
Abstract
The aim of this study was to predefine the pore structure of β-tricalcium phosphate (β-TCP) scaffolds with different macro pore sizes (500, 750, and 1000 µm), to characterize β-TCP scaffolds, and to investigate the growth behavior of cells within these scaffolds. The lead structures for directional bone growth (sacrificial structures) were produced from polylactide (PLA) using the fused deposition modeling techniques. The molds were then filled with β-TCP slurry and sintered at 1250 °C, whereby the lead structures (voids) were burnt out. The scaffolds were mechanically characterized (native and after incubation in simulated body fluid (SBF) for 28 d). In addition, biocompatibility was investigated by live/dead, cell proliferation and lactate dehydrogenase assays. The scaffolds with a strand spacing of 500 µm showed the highest compressive strength, both untreated (3.4 ± 0.2 MPa) and treated with simulated body fluid (2.8 ± 0.2 MPa). The simulated body fluid reduced the stability of the samples to 82% (500), 62% (750) and 56% (1000). The strand spacing and the powder properties of the samples were decisive factors for stability. The fact that β-TCP is a biocompatible material is confirmed by the experiments. No lactate dehydrogenase activity of the cells was measured, which means that no cytotoxicity of the material could be detected. In addition, the proliferation rate of all three sizes increased steadily over the test days until saturation. The cells were largely adhered to or within the scaffolds and did not migrate through the scaffolds to the bottom of the cell culture plate. The cells showed increased growth, not only on the outer surface (e.g., 500: 36 ± 33 vital cells/mm² after three days, 180 ± 33 cells/mm² after seven days, and 308 ± 69 cells/mm² after 10 days), but also on the inner surface of the samples (e.g., 750: 49 ± 17 vital cells/mm² after three days, 200 ± 84 cells/mm² after seven days, and 218 ± 99 living cells/mm² after 10 days). This means that the inverse 3D printing method is very suitable for the presetting of the pore structure and for the ingrowth of the cells. The experiments on which this work is based have shown that the fused deposition modeling process with subsequent slip casting and sintering is well suited for the production of scaffolds for bone replacement.
Collapse
Affiliation(s)
- Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Svenja Lange
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany.
| | - Steffen Esslinger
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Faculty 07, University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany.
- GSaME - Graduate School of Excellence advanced Manufacturing Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Sergio H Latorre
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Rumen Krastev
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany.
| | - Rainer Gadow
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Faculty 07, University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany.
- GSaME - Graduate School of Excellence advanced Manufacturing Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Hermann O Mayr
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Anke Bernstein
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
24
|
Montazerian H, Mohamed MGA, Montazeri MM, Kheiri S, Milani AS, Kim K, Hoorfar M. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Acta Biomater 2019; 96:149-160. [PMID: 31252172 DOI: 10.1016/j.actbio.2019.06.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
In the present study, polydimethylsiloxane (PDMS) porous scaffolds are designed based on minimal surface architectures and fabricated through a low-cost and accessible sacrificial mold printing approach using a fused deposition modeling (FDM) 3D printer. The effects of pore characteristics on compressive properties and fluid permeability are studied. The results suggest that radially gradient pore distribution (as a potential way to enhance mechanically-efficient scaffolds with enhanced cell/scaffold integration) has higher elastic modulus and fluid permeability compared to their uniform porosity counterparts. Also, the scaffolds are fairly strain-reversible under repeated loading of up to 40% strain. Among different triply periodic minimal surface pore architectures, P-surface was observed to be stiffer, less permeable and have lower densification strain compared to the D-surface and G-surface-based pore shapes. The biocompatibility of the created scaffolds is assessed by filling the PDMS scaffolds using mouse embryonic fibroblasts with cell-laden gelatin methacryloyl which was cross-linked in situ by UV light. Cell viability is found to be over 90% after 4 days in 3D culture. This method allows for effectively fabricating biocompatible porous organ-shaped scaffolds with detailed pore features which can potentially tailor tissue regenerative applications. STATEMENT OF SIGNIFICANCE: Printing polymers with chemical curing mechanism required for materials such as PDMS is challenging and impossible to create high-resolution uniformly cured structures due to hard control on the base polymer and curing process. An interconnected porous mold with ordered internal architecture with complex geometries were 3D printed using low-cost and accessible FDM technology. The mold acted as a 3D sacrificial material to form internally architected flexible PDMS scaffolds for tissue engineering applications. The scaffolds are mechanically stable under high strain cyclic loads and provide enough pore and space for viably integrating cells within the gradient architecture in a controllable manner.
Collapse
Affiliation(s)
- H Montazerian
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA
| | - M G A Mohamed
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - M Mohaghegh Montazeri
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada; Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - S Kheiri
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - A S Milani
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - K Kim
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - M Hoorfar
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
25
|
Li S, Wang K, Hu Q, Zhang C, Wang B. Direct-write and sacrifice-based techniques for vasculatures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109936. [PMID: 31500055 DOI: 10.1016/j.msec.2019.109936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/22/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
Fabricating biomimetic vasculatures is considered one of the greatest challenges in tissue regeneration due to their complex structures across various length scales. Many strategies have been investigated on how to fabricate tissue-engineering vasculatures (TEVs), including vascular-like and vascularized structures that can replace their native counterparts. The advancement of additive manufacturing (AM) technologies has enabled a wide range of fabrication techniques that can directly-write TEVs with complex and delicate structures. Meanwhile, sacrifice-based techniques, which rely on the removal of encapsulated sacrificial templates to form desired cavity-like structures, have also been widely studied. This review will specifically focus on the two most promising methods in these recently developed technologies, which are the direct-write method and the sacrifice-based method. The performance, advantages, and shortcomings of each technique are analyzed and compared. In the discussion, we list current challenges in this field and present our vision of next-generation TEVs technologies. Perspectives on future research in this field are given at the end.
Collapse
Affiliation(s)
- Shuai Li
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China.
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
26
|
Acun A, Oganesyan R, Uygun BE. Liver Bioengineering: Promise, Pitfalls, and Hurdles to Overcome. CURRENT TRANSPLANTATION REPORTS 2019; 6:119-126. [PMID: 31289714 PMCID: PMC6615568 DOI: 10.1007/s40472-019-00236-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss the recent advancements in liver bioengineering and cell therapy and future advancements to improve the field towards clinical applications. RECENT FINDINGS 3D printing, hydrogel-based tissue fabrication, and the use of native decellularized liver extracellular matrix as a scaffold are used to develop whole or partial liver substitutes. The current focus is on developing a functional liver graft through achieving a non-leaky endothelium and a fully constructed bile duct. Use of cell therapy as a treatment is less invasive and less costly compared to transplantation, however, lack of readily available cell sources with low or no immunogenicity and contradicting outcomes of clinical trials are yet to be overcome. SUMMARY Liver bioengineering is advancing rapidly through the development of in vitro and in vivo tissue and organ models. Although there are major challenges to overcome, through optimization of the current methods and successful integration of induced pluripotent stem cells, the development of readily available, patient-specific liver substitutes can be achieved.
Collapse
Affiliation(s)
- Aylin Acun
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - Ruben Oganesyan
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| | - Basak E. Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, 51 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
27
|
Mi HY, Jiang Y, Jing X, Enriquez E, Li H, Li Q, Turng LS. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:241-249. [DOI: 10.1016/j.msec.2018.12.126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/09/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
|
28
|
Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109688. [PMID: 31349405 DOI: 10.1016/j.msec.2019.04.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/16/2019] [Accepted: 04/21/2019] [Indexed: 02/07/2023]
Abstract
In order to regenerate bone defects, bioactive hierarchically scaffolds play a key role due to their multilevel porous structure, high surface area, enhanced nutrient transport and diffusion. In this study, novel hierarchically porous silk fibroin (SF) and silk fibroin-bioactive glass (SF-BG) composite were fabricated with controlled architecture and interconnected structure, by combining indirect three-dimensional (3D) inkjet printing and freeze-drying methods. Further, the effect of 45S5 Bioactive glass particles of different sizes (<100 nm and 6 μm) on mechanical strength and cell behavior was investigated. The results demonstrated that the hierarchical structure in this scaffold was composed of two levels of pores in the order of 500-600 μm and 10-50 μm. The prepared SF-BG composite scaffolds utilized by nano and micro particles possessed mechanical properties with a compressive strength of 0.94 and 1.2 MPa, respectively, in dry conditions. In a wet condition, the hierarchically porous scaffolds did not exhibit any fluctuation after compression load cell and were incredibly flexible, with excellent mechanical stability. The SF-BG composite scaffold with nanoparticles presented a significant 50% increase in attachment of human bone marrow stem cells in comparison with SF and SF-BG scaffold with microparticles. Moreover, SF-BG scaffolds promoted alkaline phosphatase activity as compared to SF scaffolds without BG particles on day 14. In brief, the 3D porous silk fibroin-based composites containing BG nanoparticles with excellent mechanical properties are promising scaffolds for bone tissue regeneration in high load-bearing applications.
Collapse
|
29
|
Wei X, Luo Y, Huang P. 3D bioprinting of alginate scaffolds with controlled micropores by leaching of recrystallized salts. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02690-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Pal P, Srivas PK, Dadhich P, Moulik D, Dhara S. Hybrid scaffold comprising of nanofibers and extrusion printed PCL for tissue engineering. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, Khoshroo K, Tayebi L. Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation. Sci Rep 2018; 8:14889. [PMID: 30291271 PMCID: PMC6173780 DOI: 10.1038/s41598-018-33245-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
3D dual porosity protein-based scaffolds have been developed using the combination of foaming and freeze-drying. The suggested approach leads to the production of large, highly porous scaffolds with negligible shrinkage and deformation compared to the conventional freeze-drying method. Scanning electron microscopy, standard histological processing and mercury intrusion porosimetry confirmed the formation of a dual network in the form of big primary pores (243 ± 14 µm) embracing smaller secondary pores (42 ± 3 µm) opened onto their surface, resembling a vascular network. High interconnectivity of the pores, confirmed by micro-CT, is shown to improve diffusion kinetics and support a relatively uniform distribution of isolated human dental pulp stem cells within the scaffold compared to conventional scaffolds. Dual network scaffolds indicate more than three times as high cell proliferation capability as conventional scaffolds in 14 days.
Collapse
Affiliation(s)
- Morteza Rasoulianboroujeni
- Marquette University School of Dentistry, Milwaukee, WI, USA.
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Nasim Kiaie
- Department of Tissue Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fahimeh Sadat Tabatabaei
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | | | - Kimia Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
32
|
Zhang J, Xiao D, He X, Shi F, Luo P, Zhi W, Duan K, Weng J. A novel porous bioceramic scaffold by accumulating hydroxyapatite spheres for large bone tissue engineering. III: Characterization of porous structure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:223-229. [DOI: 10.1016/j.msec.2018.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/10/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
|
33
|
Low L, Ramadan S, Coolens C, Naguib HE. 3D printing complex lattice structures for permeable liver phantom fabrication. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.e00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Numerical optimization of cell colonization modelling inside scaffold for perfusion bioreactor: A multiscale model. Med Eng Phys 2018; 57:40-50. [PMID: 29753628 DOI: 10.1016/j.medengphy.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 12/18/2022]
Abstract
Part of clinically applicable bone graft substitutes are developed by using mechanical stimulation of flow-perfusion into cell-seeded scaffolds. The role of fluid flow is crucial in driving the nutrient to seeded cells and in stimulating cell colonization. A common numerical approach is to use a multiscale model to link some physical quantities (wall shear stress and inlet flow rate) that act at different scales. In this study, a multiscale model is developed in order to determine the optimal inlet flow rate to cultivate osteoblast-like cells seeded in a controlled macroporous biomaterial inside a perfusion bioreactor system. We focus particularly on the influence of Wall Shear Stress on cell colonization to predict cell colonization at the macroscale. Results obtained at the microscale are interpolated at the macroscale to determine the optimal flow rate. For a macroporous scaffold made of interconnected pores with pore diameters of above 350 μm and interconnection diameters of 150 μm, the model predicts a cell colonization of 325% after a 7-day-cell culture with a constant inlet flow rate of 0.69 mL·min-1. Furthermore, the strength of this protocol is the possibility to adapt it to most porous biomaterials and dynamic cell culture systems.
Collapse
|
35
|
|
36
|
Starokozhko V, Hemmingsen M, Larsen L, Mohanty S, Merema M, Pimentel RC, Wolff A, Emnéus J, Aspegren A, Groothuis G, Dufva M. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering. J Tissue Eng Regen Med 2018; 12:1273-1284. [PMID: 29499107 PMCID: PMC5969064 DOI: 10.1002/term.2659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 01/30/2018] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
Abstract
Hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) under flow conditions in a 3D scaffold is expected to be a major step forward for construction of bioartificial livers. The aims of this study were to induce hepatic differentiation of hiPSCs under perfusion conditions and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted in slightly lower activity of some of the Phase I metabolism enzymes. Gene expression data indicate that hiPSCs differentiated into both hepatic and biliary directions. In conclusion, the hiPSC differentiated under flow conditions towards hepatocytes express a wide spectrum of liver functions at levels comparable with hPCLS indicating excellent future perspectives for the development of a bioartificial liver system for toxicity testing or as liver support device for patients.
Collapse
Affiliation(s)
- Viktoriia Starokozhko
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Mette Hemmingsen
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Layla Larsen
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | | | - Marjolijn Merema
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Rodrigo C. Pimentel
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Anders Wolff
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | - Jenny Emnéus
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| | | | - Geny Groothuis
- Groningen Research Institute for PharmacyUniversity of GroningenGroningenThe Netherlands
| | - Martin Dufva
- Department of Micro‐ and NanotechnologyTechnical University of DenmarkDenmark
| |
Collapse
|
37
|
Liu H, Mukherjee S, Liu Y, Ramakrishna S. Recent studies on electrospinning preparation of patterned, core-shell, and aligned scaffolds. J Appl Polym Sci 2018. [DOI: 10.1002/app.46570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huichao Liu
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Shayanti Mukherjee
- Centre for Nanofiber and Nanotechnology; National University of Singapore; Singapore 117576 Singapore
- The Ritchie Centre; Hudson Institute of Medical Research; Clayton Australia
| | - Yong Liu
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology; National University of Singapore; Singapore 117576 Singapore
| |
Collapse
|
38
|
Kim YT, Castro K, Bhattacharjee N, Folch A. Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography. MICROMACHINES 2018; 9:E125. [PMID: 30424059 PMCID: PMC6187461 DOI: 10.3390/mi9030125] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
We have developed a sequential stereolithographic co-printing process using two different resins for fabricating porous barriers in microfluidic devices. We 3D-printed microfluidic channels with a resin made of poly(ethylene glycol) diacrylate (MW = 258) (PEG-DA-258), a UV photoinitiator, and a UV sensitizer. The porous barriers were created within the microchannels in a different resin made of either PEG-DA (MW = 575) (PEG-DA-575) or 40% (w/w in water) PEG-DA (MW = 700) (40% PEG-DA-700). We showed selective hydrogen ion diffusion across a 3D-printed PEG-DA-575 porous barrier in a cross-channel diffusion chip by observing color changes in phenol red, a pH indicator. We also demonstrated the diffusion of fluorescein across a 3D-printed 40% PEG-DA-700 porous barrier in a symmetric-channel diffusion chip by measuring fluorescence intensity changes across the porous barrier. Creating microfluidic chips with integrated porous barriers using a semi-automated 3D printing process shortens the design and processing time, avoids assembly and bonding complications, and reduces manufacturing costs compared to micromolding processes. We believe that our digital manufacturing method for fabricating selective porous barriers provides an inexpensive, simple, convenient and reproducible route to molecule delivery in the fields of molecular filtration and cell-based microdevices.
Collapse
|
39
|
Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:67-77. [DOI: 10.1016/j.msec.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
|
40
|
Pimentel C R, Ko SK, Caviglia C, Wolff A, Emnéus J, Keller SS, Dufva M. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater 2018; 65:174-184. [PMID: 29102798 DOI: 10.1016/j.actbio.2017.10.047] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023]
Abstract
One of the fundamental steps needed to design functional tissues and, ultimately organs is the ability to fabricate thick and densely populated tissue constructs with controlled vasculature and microenvironment. To date, bioprinting methods have been employed to manufacture tissue constructs with open vasculature in a square-lattice geometry, where the majority lacks the ability to be directly perfused. Moreover, it appears to be difficult to fabricate vascular tissue constructs targeting the stiffness of soft tissues such as the liver. Here we present a method for the fabrication of thick (e.g. 1 cm) and densely populated (e.g. 10 million cells·mL-1) tissue constructs with a three-dimensional (3D) four arm branch network and stiffness in the range of soft tissues (1-10 kPa), which can be directly perfused on a fluidic platform for long time periods (>14 days). Specifically, we co-print a 3D four-arm branch using water-soluble Poly(vinyl alcohol) (PVA) as main material and Poly(lactic acid) (PLA) as the support structure. The PLA support structure was selectively removed, and the water soluble PVA structure was used for creating a 3D vascular network within a customized extracellular matrix (ECM) targeting the stiffness of the liver and with encapsulated hepatocellular carcinoma (HepG2) cells. These constructs were directly perfused with medium inducing the proliferation of HepG2 cells and the formation of spheroids. The highest spheroid density was obtained with perfusion, but overall the tissue construct displayed two distinct zones, one of rapid proliferation and one with almost no cell division and high cell death. The created model, therefore, simulate gradients in tissues of necrotic regions in tumors. This versatile method could represent a fundamental step in the fabrication of large functional and complex tissues and finally organs. STATEMENT OF SIGNIFICANCE Vascularization within hydrogels with mechanical properties in the range of soft tissues remains a challenge. To date, bioprinting have been employed to manufacture tissue constructs with open vasculature in a square-lattice geometry that are most of the time not perfused. This study shows the creation of densely populated tissue constructs with a 3D four arm branch network and stiffness in the range of soft tissues, which can be directly perfused. The cells encapsulated within the construct showed proliferation as a function of the vasculature distance, and the control of the micro-environment induced the encapsulated cells to aggregate in spheroids in specific positions. This method could be used for modeling tumors and for fabricating more complex and densely populated tissue constructs with translational potential.
Collapse
Affiliation(s)
- Rodrigo Pimentel C
- Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark
| | - Suk Kyu Ko
- Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark
| | - Claudia Caviglia
- Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark
| | - Anders Wolff
- Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark
| | - Jenny Emnéus
- Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark
| | | | - Martin Dufva
- Department of Micro- and Nanotechnology, Technical University of Denmark, Denmark.
| |
Collapse
|
41
|
Li VCF, Dunn CK, Zhang Z, Deng Y, Qi HJ. Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures. Sci Rep 2017; 7:8018. [PMID: 28808235 PMCID: PMC5556020 DOI: 10.1038/s41598-017-07771-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Pure cellulose nanocrystal (CNC) aerogels with controlled 3D structures and inner pore architecture are printed using the direct ink write (DIW) technique. While traditional cellulosic aerogel processing approaches lack the ability to easily fabricate complete aerogel structures, DIW 3D printing followed by freeze drying can overcome this shortcoming and can produce CNC aerogels with minimal structural shrinkage or damage. The resultant products have great potential in applications such as tissue scaffold templates, drug delivery, packaging, etc., due to their inherent sustainability, biocompatibility, and biodegradability. Various 3D structures are successfully printed without support material, and the print quality can be improved with increasing CNC concentration and printing resolution. Dual pore CNC aerogel scaffolds are also successfully printed, where the customizable 3D structure and inner pore architecture can potentially enable advance CNC scaffold designs suited for specific cell integration requirements.
Collapse
Affiliation(s)
- Vincent Chi-Fung Li
- Renewable Bioproducts Institute at Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, 30318, USA
| | - Conner K Dunn
- Renewable Bioproducts Institute at Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Zhe Zhang
- Renewable Bioproducts Institute at Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, 30318, USA
| | - Yulin Deng
- Renewable Bioproducts Institute at Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, 30318, USA.
| | - H Jerry Qi
- Renewable Bioproducts Institute at Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, 30332, USA.
| |
Collapse
|
42
|
Ho CC, Fang HY, Wang B, Huang TH, Shie MY. The effects of Biodentine/polycaprolactone three-dimensional-scaffold with odontogenesis properties on human dental pulp cells. Int Endod J 2017. [PMID: 28631418 DOI: 10.1111/iej.12799] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To determine the feasibility of using three-dimensional printed Biodentine/polycaprolactone composite scaffolds for orthopaedic and dental applications. The physicochemical properties and the odontogenic differentiation of human dental pulp cells (hDPCs) were investigated. METHODOLOGY Biodentine was well-suspended in ethanol and dropped slowly into molten polycaprolactone with vigorous stirring. The Biodentine/polycaprolactone composite scaffolds were then fabricated into controlled macropore sizes and structures using an extrusion-based three-dimensional (3D) printer. The mechanical properties, bioactivity, and the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs) cultured on the scaffolds were evaluated. RESULTS Biodentine/polycaprolactone scaffolds had uniform macropores 550 μm in size with established interconnections and a compressive strength of 6.5 MPa. In addition, the composite scaffolds exhibited a good apatite-forming ability and were capable of supporting the proliferation and differentiation of hDPCs. CONCLUSION The composite scaffolds fabricated by an extrusion-based 3D printing technique had similar characteristics to Biodentine cement, including bioactivity and the ability to promote the differentiation of hDPCs. These results indicate that the composite scaffold would be a candidate for dental and bone regeneration.
Collapse
Affiliation(s)
- C-C Ho
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan.,Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA, USA
| | - H-Y Fang
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - B Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA, USA.,H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - T-H Huang
- School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan
| | - M-Y Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan.,School of Dentistry, China Medical University, Taichung City, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
| |
Collapse
|
43
|
Lim J, You M, Li J, Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629097 DOI: 10.1016/j.msec.2017.05.132] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials.
Collapse
Affiliation(s)
- Janice Lim
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mingliang You
- Cancer Science Institute of Singapore, National University of Singapore, 14 medical drive, Singapore 117599, Singapore
| | - Jian Li
- Center for translational medicine research and development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Guangdong 518055, China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| |
Collapse
|
44
|
Ribeiro JFM, Oliveira SM, Alves JL, Pedro AJ, Reis RL, Fernandes EM, Mano JF. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(
ε
-caprolactone) scaffolds. Biofabrication 2017; 9:025015. [DOI: 10.1088/1758-5090/aa698e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Dou Q, Low ZWK, Zhang K, Loh XJ. A new light triggered approach to develop a micro porous tough hydrogel. RSC Adv 2017. [DOI: 10.1039/c7ra03214e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A porous tough hydrogel (alginate–polyacrylamide) is successfully synthesized using a photo-gelling polymer as a templating agent.
Collapse
Affiliation(s)
- Qingqing Dou
- Institute of Materials Research and Engineering (IMRE)
- Singapore 138634
| | - Zhi Wei Kenny Low
- Institute of Materials Research and Engineering (IMRE)
- Singapore 138634
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore 117576
| | - Kangyi Zhang
- Institute of Materials Research and Engineering (IMRE)
- Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Singapore 138634
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
46
|
Mesquita-Guimarães J, Leite MA, Souza JCM, Henriques B, Silva FS, Hotza D, Boccaccini AR, Fredel MC. Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. J Biomed Mater Res A 2016; 105:590-600. [DOI: 10.1002/jbm.a.35937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/07/2022]
Affiliation(s)
- J. Mesquita-Guimarães
- Department of Mechanical Engineering (EMC); Federal University of Santa Catarina (UFSC); Florianópolis SC Brazil
- Center for Microelectromechanical Systems (CMEMS-UMinho); University of Minho; Azurém Guimarães Portugal
| | - M. A. Leite
- Department of Mechanical Engineering (EMC); Federal University of Santa Catarina (UFSC); Florianópolis SC Brazil
| | - J. C. M. Souza
- Center for Microelectromechanical Systems (CMEMS-UMinho); University of Minho; Azurém Guimarães Portugal
- Center for Research on Dental Implants (CEPID); School of Dentistry (ODT), Federal University of Santa Catarina (UFSC); Florianópolis SC Brazil
| | - B. Henriques
- Department of Mechanical Engineering (EMC); Federal University of Santa Catarina (UFSC); Florianópolis SC Brazil
- Center for Microelectromechanical Systems (CMEMS-UMinho); University of Minho; Azurém Guimarães Portugal
| | - F. S. Silva
- Center for Microelectromechanical Systems (CMEMS-UMinho); University of Minho; Azurém Guimarães Portugal
| | - D. Hotza
- Department of Mechanical Engineering (EMC); Federal University of Santa Catarina (UFSC); Florianópolis SC Brazil
| | - A. R. Boccaccini
- Institute of Biomaterials; Department of Materials Science and Engineering, University of Erlangen-Nuremberg; Erlangen Germany
| | - M. C. Fredel
- Department of Mechanical Engineering (EMC); Federal University of Santa Catarina (UFSC); Florianópolis SC Brazil
| |
Collapse
|
47
|
Wu CS, Liao HT. Polyester-based green composites for three-dimensional printing strips: preparation, characterization and antibacterial properties. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1836-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Hartmann SB, Mohanty S, Skovgaard K, Brogaard L, Flagstad FB, Emnéus J, Wolff A, Summerfield A, Jungersen G. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells. PLoS One 2016; 11:e0158503. [PMID: 27362493 PMCID: PMC4928952 DOI: 10.1371/journal.pone.0158503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.
Collapse
Affiliation(s)
- Sofie Bruun Hartmann
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Soumyaranjan Mohanty
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kerstin Skovgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | - Louise Brogaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | | | - Jenny Emnéus
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders Wolff
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland
| | - Gregers Jungersen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
49
|
Mohanty S, Alm M, Hemmingsen M, Dolatshahi-Pirouz A, Trifol J, Thomsen P, Dufva M, Wolff A, Emnéus J. 3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties. Biomacromolecules 2016; 17:1321-9. [DOI: 10.1021/acs.biomac.5b01722] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Soumyaranjan Mohanty
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Martin Alm
- BioModics ApS, Gregersensvej 7, DK-2630 Taastrup, Denmark
| | - Mette Hemmingsen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Alireza Dolatshahi-Pirouz
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
- Technical
University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kgs, Denmark
| | - Jon Trifol
- Danish Polymer Centre, Department of Chemical and
Biochemical Engineering, Søltofts Plads, Building 229, DK-2800, Kgs, Lyngby, Denmark
| | - Peter Thomsen
- BioModics ApS, Gregersensvej 7, DK-2630 Taastrup, Denmark
| | - Martin Dufva
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Anders Wolff
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Jenny Emnéus
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
50
|
Bhowmick S, Scharnweber D, Koul V. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study. Biomaterials 2016; 88:83-96. [PMID: 26946262 DOI: 10.1016/j.biomaterials.2016.02.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Fortifying the scaffold with bioactive molecules and glycosaminoglycans (GAGs), is an efficient way to design new generation tissue engineered biomaterials. In this study, we evaluated the synergistic effect of electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) loaded with sericin and, contact co-culture of human mesenchymal stem cells (hMSCs)-keratinocytes on hMSCs' differentiation towards epithelial lineage. Cationic gelatin is prepared with one step novel synthesis process by grafting quaternary ammonium salts to the backbone of gelatin. Release kinetics studies showed that Fickian diffusion is the major release mechanism for both GAGs and sericin/gelatin. In vitro biocompatibility of the electrospun scaffold was evaluated in terms of LDH and DNA quantification assay on human foreskin fibroblast, human keratinocyte and hMSC. Significant proliferation (∼ 4-6 fold) was detected after culturing all three cell on the electrospun scaffold containing sericin. After 5 days of contact co-culture, results revealed that electrospun scaffold containing sericin promote epithelial differentiation of hMSC in terms of several protein markers (keratin 14, ΔNp63α and Pan-cytokeratin) and gene expression of some dermal proteins (keratin 14, ΔNp63α). Findings of this study will foster the progress of current skin tissue engineering scaffolds by understanding the skin regeneration and wound healing process.
Collapse
Affiliation(s)
- Sirsendu Bhowmick
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, 01069 Dresden, Germany; Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India
| | - Dieter Scharnweber
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, 01069 Dresden, Germany
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India.
| |
Collapse
|