1
|
Reimers J, Trinh HC, Wiese B, Meyer S, Brehling J, Flenner S, Hagemann J, Kruth M, Kibkalo L, Ćwieka H, Hindenlang B, Lipinska-Chwalek M, Mayer J, Willumeit-Römer R, Greving I, Zeller-Plumhoff B. Development of a Bioreactor-Coupled Flow-Cell Setup for 3D In Situ Nanotomography of Mg Alloy Biodegradation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35600-35610. [PMID: 37459562 PMCID: PMC10375473 DOI: 10.1021/acsami.3c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Functional materials feature hierarchical microstructures that define their unique set of properties. The prediction and tailoring of these require a multiscale knowledge of the mechanistic interaction of microstructure and property. An important material in this respect is biodegradable magnesium alloys used for implant applications. To correlate the relationship between the microstructure and the nonlinear degradation process, high-resolution in situ three-dimensional (3D) imaging experiments must be performed. For this purpose, a novel experimental flow cell is presented which allows for the in situ 3D-nano imaging of the biodegradation process of materials with nominal resolutions below 100 nm using nanofocused hard X-ray radiation from a synchrotron source. The flow cell setup can operate under adjustable physiological and hydrodynamic conditions. As a model material, the biodegradation of thin Mg-4Ag wires in simulated body fluid under physiological conditions and a flow rate of 1 mL/min is studied. The use of two full-field nanotomographic imaging techniques, namely transmission X-ray microscopy and near-field holotomography, is compared, revealing holotomography as the superior imaging technique for this purpose. Additionally, the importance of maintaining physiological conditions is highlighted by the preliminary results. Supporting measurements using electron microscopy to investigate the chemical composition of the samples after degradation are performed.
Collapse
Affiliation(s)
- Jan Reimers
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Huu Chánh Trinh
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Björn Wiese
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Sebastian Meyer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Jens Brehling
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Silja Flenner
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Johannes Hagemann
- CXNS-Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Maximilian Kruth
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Lidia Kibkalo
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Birte Hindenlang
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Marta Lipinska-Chwalek
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Joachim Mayer
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraße 55, Aachen 52074, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Imke Greving
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| |
Collapse
|
2
|
Espiritu J, Berangi M, Cwieka H, Iskhakova K, Kuehne A, Florian Wieland D, Zeller-Plumhoff B, Niendorf T, Willumeit-Römer R, Seitz JM. Radiofrequency induced heating of biodegradable orthopaedic screw implants during magnetic resonance imaging. Bioact Mater 2023; 25:86-94. [PMID: 36733929 PMCID: PMC9883197 DOI: 10.1016/j.bioactmat.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Magnesium (Mg)-based implants have re-emerged in orthopaedic surgery as an alternative to permanent implants. Literature reveals little information on how the degradation of biodegradable implants may introduce safety implications for patient follow-up using medical imaging. Magnetic resonance imaging (MRI) benefits post-surgery monitoring of bone healing and implantation sites. Previous studies demonstrated radiofrequency (RF) heating of permanent implants caused by electromagnetic fields used in MRI. Our investigation is the first to report the effect of the degradation layer on RF-induced heating of biodegradable orthopaedic implants. WE43 orthopaedic compression screws underwent in vitro degradation. Imaging techniques were applied to assess the corrosion process and the material composition of the degraded screws. Temperature measurements were performed to quantify implant heating with respect to the degradation layer. For comparison, a commercial titanium implant screw was used. Strongest RF induced heating was observed for non-degraded WE43 screw samples. Implant heating had shown to decrease with the formation of the degradation layer. No statistical differences were observed for heating of the non-degraded WE43 material and the titanium equivalent. The highest risk of implant RF heating is most pronounced for Mg-based screws prior to degradation. Amendment to industry standards for MRI safety assessment is warranted to include biodegradable materials.
Collapse
Affiliation(s)
| | - Mostafa Berangi
- MRI.TOOLS GmbH, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hanna Cwieka
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - D.C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Thoralf Niendorf
- MRI.TOOLS GmbH, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | | |
Collapse
|
3
|
Bita T, Antoniac A, Ciuca I, Miculescu M, Cotrut CM, Paltanea G, Dura H, Corneschi I, Antoniac I, Carstoc ID, Bodog AD. Effect of Fluoride Coatings on the Corrosion Behavior of Mg-Zn-Ca-Mn Alloys for Medical Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4508. [PMID: 37444822 DOI: 10.3390/ma16134508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
The most critical shortcoming of magnesium alloys from the point of view of medical devices is the high corrosion rate, which is not well-correlated with clinical needs. It is well- known that rapid degradation occurs when an implant made of Mg-based alloys is placed inside the human body. Consequently, the implant loses its mechanical properties and failure can occur even if it is not completely degraded. The corrosion products that appear after Mg-based alloy degradation, such as H2 and OH- can have an essential role in decreasing biocompatibility due to the H2 accumulation process in the tissues near the implant. In order to control the degradation process of the Mg-based alloys, different coatings could be applied. The aim of the current paper is to evaluate the effect of fluoride coatings on the corrosion behavior of magnesium alloys from the system Mg-Zn-Ca-Mn potentially used for orthopedic trauma implants. The main functional properties required for the magnesium alloys to be used as implant materials, such as surface properties and corrosion behavior, were studied before and after surface modifications by fluoride conversion, with and without preliminary sandblasting, of two magnesium alloys from the system Mg-Zn-Ca-Mn. The experimental results showed that chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental magnesium alloys from the Mg-Zn-Ca-Mn system. Also, high surface free energy values obtained for the alloys treated with hydrofluoric acid correlated with wettability lead to the conclusion that there is an increased chance for biological factor adsorption and cell proliferation. Chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental Mg-Zn-Ca-Mn alloys.
Collapse
Affiliation(s)
- Tiberiu Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ion Ciuca
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Marian Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Cosmin Mihai Cotrut
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| | - Iuliana Corneschi
- Romfire Protect Solution S.R.L., 39 Drumul Taberei, District 6, 061359 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romania Scientist, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Ioana Dana Carstoc
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| |
Collapse
|
4
|
van Gaalen K, Quinn C, Weiler M, Gremse F, Benn F, McHugh PE, Vaughan TJ, Kopp A. Predicting localised corrosion and mechanical performance of a PEO surface modified rare earth magnesium alloy for implant use through in-silico modelling. Bioact Mater 2023; 26:437-451. [PMID: 36993789 PMCID: PMC10040519 DOI: 10.1016/j.bioactmat.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
In this study, the influence of a plasma electrolytic oxidation (PEO) surface treatment on a medical-grade WE43-based magnesium alloy is examined through an experimental and computational framework that considers the effects of localised corrosion features and mechanical properties throughout the corrosion process. First, a comprehensive in-vitro immersion study was performed on WE43-based tensile specimens with and without PEO surface modification, which included fully automated spatial reconstruction of the phenomenological features of corrosion through micro-CT scanning, followed by uniaxial tensile testing. Then the experimental data of both unmodified and PEO-modified groups were used to calibrate parameters of a finite element-based surface corrosion model. In-vitro, it was found that the WE43-PEO modified group had a significantly lower corrosion rate and maintained significantly higher mechanical properties than the unmodified. While corrosion rates were ∼50% lower in the WE43-PEO modified specimens, the local geometric features of corroding surfaces remained similar to the unmodified WE43 group, however evolving after almost the double amount of time. We were also able to quantitatively demonstrate that the PEO surface treatment on magnesium continued to protect samples from corrosion throughout the entire period tested, and not just in the early stages of corrosion. Using the results from the testing framework, the model parameters of the surface-based corrosion model were identified for both groups. This enabled, for the first time, in-silico prediction of the physical features of corrosion and the mechanical performance of both unmodified and PEO modified magnesium specimens. This simulation framework can enable future in-silico design and optimisation of bioabsorbable magnesium devices for load-bearing medical applications. Examination of corrosion morphology and mechanics of PEO modified WE43. Automated phenomenological tracking of corrosion features by PitScan. Corrosion model of unmodified WE43 and WE43 PEO modified. Calibration through geometrical features and mechanical parameters followed. PEO treatment does not influence the severity of localised corrosion.
Collapse
Affiliation(s)
- Kerstin van Gaalen
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Meotec GmbH, Aachen, Germany
| | - Conall Quinn
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Gremse-IT GmbH, Aachen, Germany
| | - Felix Benn
- Meotec GmbH, Aachen, Germany
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Peter E. McHugh
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Ted J. Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Corresponding author. Biomechanics Research Centre (BioMEC), Biomedical Engineering, University of Galway, Galway, Ireland.
| | | |
Collapse
|
5
|
Wei L, Gao Z. Recent research advances on corrosion mechanism and protection, and novel coating materials of magnesium alloys: a review. RSC Adv 2023; 13:8427-8463. [PMID: 36926015 PMCID: PMC10013130 DOI: 10.1039/d2ra07829e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Magnesium alloys have achieved a good balance between biocompatibility and mechanical properties, and have great potential for clinical application, and their performance as implant materials has been continuously improved in recent years. However, a high degradation rate of Mg alloys in a physiological environment remains a major limitation before clinical application. In this review, according to the human body's intake of elements, the current mainstream implanted magnesium alloy system is classified and discussed, and the corrosion mechanism of magnesium alloy in vivo and in vitro is described, including general corrosion, localized corrosion, pitting corrosion, and degradation of body fluid environment impact etc. The introduction of methods to improve the mechanical properties and biocorrosion resistance of magnesium alloys is divided into two parts: the alloying part mainly discusses the strengthening mechanisms of alloying elements, including grain refinement strengthening, solid solution strengthening, dislocation strengthening and precipitation strengthening etc.; the surface modification part introduces the ideas and applications of novel materials with excellent properties such as graphene and biomimetic materials in the development of functional coatings. Finally, the existing problems are summarized, and the future development direction is prospected.
Collapse
Affiliation(s)
- Liangyu Wei
- School of Material Science and Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ziyuan Gao
- Central Research Institute of Building and Construction (CRIBC) Beijing 100088 China +86 18969880147
- State Key Laboratory of Iron and Steel Industry Environmental Protection Beijing 100088 China
| |
Collapse
|
6
|
High-resolution ex vivo analysis of the degradation and osseointegration of Mg-xGd implant screws in 3D. Bioact Mater 2022; 13:37-52. [PMID: 35224290 PMCID: PMC8844220 DOI: 10.1016/j.bioactmat.2021.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Biodegradable magnesium (Mg) alloys can revolutionize osteosynthesis, because they have mechanical properties similar to those of the bone, and degrade over time, avoiding the need of removal surgery. However, they are not yet routinely applied because their degradation behavior is not fully understood. In this study we have investigated and quantified the degradation and osseointegration behavior of two biodegradable Mg alloys based on gadolinium (Gd) at high resolution. Mg-5Gd and Mg-10Gd screws were inserted in rat tibia for 4, 8 and 12 weeks. Afterward, the degradation rate and degradation homogeneity, as well as bone-to-implant interface, were studied with synchrotron radiation micro computed tomography and histology. Titanium (Ti) and polyether ether ketone (PEEK) were used as controls material to evaluate osseointegration. Our results showed that Mg-5Gd degraded faster and less homogeneously than Mg-10Gd. Both alloys gradually form a stable degradation layer at the interface and were surrounded by new bone tissue. The results were correlated to in vitro data obtained from the same material and shape. The average bone-to-implant contact of the Mg-xGd implants was comparable to that of Ti and higher than for PEEK. The results suggest that both Mg-xGd alloys are suitable as materials for bone implants. High-resolution non-destructive synchrotron micro computed tomography of biodegradable Mg alloys ex vivo. Mg-xGd implants exhibit a high bone-to-implant contact, similar to titanium implants. Initially Mg-xGd implants are surrounded by a lesser bone volume fraction but reach similar levels as reference materials. Mg-xGd implants degrade at rates lower than 1 mm a−1 in vivo, decreasing to less than 0.4 mm a−1 after 12 weeks.
Collapse
|
7
|
Zeller-Plumhoff B, Laipple D, Slominska H, Iskhakova K, Longo E, Hermann A, Flenner S, Greving I, Storm M, Willumeit-Römer R. Evaluating the morphology of the degradation layer of pure magnesium via 3D imaging at resolutions below 40 nm. Bioact Mater 2021; 6:4368-4376. [PMID: 33997513 PMCID: PMC8111030 DOI: 10.1016/j.bioactmat.2021.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Magnesium is attractive for the application as a temporary bone implant due to its inherent biodegradability, non-toxicity and suitable mechanical properties. The degradation process of magnesium in physiological environments is complex and is thought to be a diffusion-limited transport problem. We use a multi-scale imaging approach using micro computed tomography and transmission X-ray microscopy (TXM) at resolutions below 40 nm. Thus, we are able to evaluate the nanoporosity of the degradation layer and infer its impact on the degradation process of pure magnesium in two physiological solutions. Magnesium samples were degraded in simulated body fluid (SBF) or Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS) for one to four weeks. TXM reveals the three-dimensional interconnected pore network within the degradation layer for both solutions. The pore network morphology and degradation layer composition are similar for all samples. By contrast, the degradation layer thickness in samples degraded in SBF was significantly higher and more inhomogeneous than in DMEM+10%FBS. Distinct features could be observed within the degradation layer of samples degraded in SBF, suggesting the formation of microgalvanic cells, which are not present in samples degraded in DMEM+10%FBS. The results suggest that the nanoporosity of the degradation layer and the resulting ion diffusion processes therein have a limited influence on the overall degradation process. This indicates that the influence of organic components on the dampening of the degradation rate by the suppression of microgalvanic degradation is much greater in the present study.
Collapse
Affiliation(s)
- Berit Zeller-Plumhoff
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Daniel Laipple
- Helmholtz-Zentrum hereon GmbH, Research Reactor, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Hanna Slominska
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Kamila Iskhakova
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Elena Longo
- Helmholtz-Zentrum hereon GmbH, Institute of Materials Physics, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Alexander Hermann
- Helmholtz-Zentrum hereon GmbH, Institute of Materials Systems Modelling, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Silja Flenner
- Helmholtz-Zentrum hereon GmbH, Institute of Materials Physics, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Imke Greving
- Helmholtz-Zentrum hereon GmbH, Institute of Materials Physics, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Malte Storm
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom
| | - Regine Willumeit-Römer
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| |
Collapse
|
8
|
Jung O, Hesse B, Stojanovic S, Seim C, Weitkamp T, Batinic M, Goerke O, Kačarević ŽP, Rider P, Najman S, Barbeck M. Biocompatibility Analyses of HF-Passivated Magnesium Screws for Guided Bone Regeneration (GBR). Int J Mol Sci 2021; 22:ijms222212567. [PMID: 34830451 PMCID: PMC8624161 DOI: 10.3390/ijms222212567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Magnesium (Mg) is one of the most promising materials for human use in surgery due to material characteristics such as its elastic modulus as well as its resorbable and regenerative properties. In this study, HF-coated and uncoated novel bioresorbable magnesium fixation screws for maxillofacial and dental surgical applications were investigated in vitro and in vivo to evaluate the biocompatibility of the HF coating. Methods: Mg alloy screws that had either undergone a surface treatment with hydrofluoric-acid (HF) or left untreated were investigated. In vitro investigation included XTT, BrdU and LDH in accordance with the DIN ISO 10993-5/-12. In vivo, the screws were implanted into the tibia of rabbits. After 3 and 6 weeks, degradation, local tissue reactions and bony integration were analyzed histopathologically and histomorphometrically. Additionally, SEM/EDX analysis and synchrotron phase-contrast microtomography (µCT) measurements were conducted. The in vitro analyses revealed that the Mg screws are cytocompatible, with improved results when the surface had been passivated with HF. In vivo, the HF-treated Mg screws implanted showed a reduction in gas formation, slower biodegradation and a better bony integration in comparison to the untreated Mg screws. Histopathologically, the HF-passivated screws induced a layer of macrophages as part of its biodegradation process, whereas the untreated screws caused a slight fibrous tissue reaction. SEM/EDX analysis showed that both screws formed a similar layer of calcium phosphates on their surfaces and were surrounded by bone. Furthermore, the µCT revealed the presence of a metallic core of the screws, a faster absorbing corrosion front and a slow absorbing region of corroded magnesium. Conclusions: Overall, the HF-passivated Mg fixation screws showed significantly better biocompatibility in vitro and in vivo compared to the untreated screws.
Collapse
Affiliation(s)
- Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
| | | | - Sanja Stojanovic
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (S.S.); (S.N.)
- Scientific Research Center for Biomedicine, Faculty of Medicine, Department for Cell and Tissue Engineering, University of Niš, 18108 Niš, Serbia
| | | | - Timm Weitkamp
- Synchrotron SOLEIL, Gif-sur-Yvette, 91190 Saint-Aubin, France;
| | - Milijana Batinic
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University of Berlin, 10623 Berlin, Germany; (M.B.); (O.G.)
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Oliver Goerke
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University of Berlin, 10623 Berlin, Germany; (M.B.); (O.G.)
| | - Željka Perić Kačarević
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Patrick Rider
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18108 Niš, Serbia; (S.S.); (S.N.)
- Scientific Research Center for Biomedicine, Faculty of Medicine, Department for Cell and Tissue Engineering, University of Niš, 18108 Niš, Serbia
| | - Mike Barbeck
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
- Correspondence: ; Tel.: +49-176-810-224-6
| |
Collapse
|
9
|
Martynenko NS, Anisimova NY, Kiselevskiy MV, Temralieva DR, Raab GI, Kornyushenkov EA, Rodionov MV, Dobatkin SV, Estrin YZ. In Vitro Biodegradation of Resorbable Magnesium Alloys Promising for Implant Development. Sovrem Tekhnologii Med 2021; 12:47-52. [PMID: 34796018 PMCID: PMC8596234 DOI: 10.17691/stm2020.12.6.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of the investigation was to study the biodegradation characteristics and rate of magnesium alloys in vitro.
Collapse
Affiliation(s)
- N S Martynenko
- Researcher, Laboratory of Non-Ferrous and Light Metals; A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Prospect, Moscow, 119334, Russia; Engineer, Laboratory of Hybrid Nanostructured Materials; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia
| | - N Y Anisimova
- Leading Researcher, Laboratory of Cell Immunity; N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - M V Kiselevskiy
- Professor, Head of the Laboratory of Cell Immunity; N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - D R Temralieva
- Junior Researcher, Laboratory of Non-Ferrous and Light Metals; A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Prospect, Moscow, 119334, Russia; PhD Student, Laboratory of Hybrid Nanostructured Materials; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia
| | - G I Raab
- Head of the Laboratory "Technologies of Severe Plastic Deformation (SPD)"; Ufa State Aviation Technical University, 12 K. Max St., Ufa, Republic of Bashkortostan, 450008, Russia
| | - E A Kornyushenkov
- Head of Experimental Therapy Clinic; N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - M V Rodionov
- Senior Researcher, Experimental Therapy Clinic; N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - S V Dobatkin
- Head of the Laboratory of Non-Ferrous and Light Metals Science; A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Prospect, Moscow, 119334, Russia; Professor, Department of Metallography and Physics of Strength; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia
| | - Y Z Estrin
- Honorary Professorial Fellow, Department of Materials Science and Engineering; Monash University, Department of Materials Science and Engineering, Clayton, VIC 3800, Australia; Adjunct Professor in the School of Mechanical and Chemical Engineering The University of Western Australia, Department of Mechanical Engineering, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
van Gaalen K, Gremse F, Benn F, McHugh PE, Kopp A, Vaughan TJ. Automated ex-situ detection of pitting corrosion and its effect on the mechanical integrity of rare earth magnesium alloy - WE43. Bioact Mater 2021; 8:545-558. [PMID: 34541419 PMCID: PMC8435990 DOI: 10.1016/j.bioactmat.2021.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023] Open
Abstract
This study develops a three-dimensional automated detection framework (PitScan) that systematically evaluates the severity and phenomenology of pitting corrosion. This framework uses a python-based algorithm to analyse microcomputer-tomography scans (μCT) of cylindrical specimens undergoing corrosion. The approach systematically identifies several surface-based corrosion features, enabling full spatial characterisation of pitting parameters, including pit density, pit size, pit depth as well as pitting factor according to ASTM G46-94. Furthermore, it is used to evaluate pitting formation in tensile specimens of a Rare Earth Magnesium alloy undergoing corrosion, and relationships between key pitting parameters and mechanical performance are established. Results demonstrated that several of the parameters described in ASTM G46-94, including pit number, pit density and pitting factor, showed little correlation to mechanical performance. However, this study did identify that other parameters showed strong correlations with the ultimate tensile strength and these tended to be directly linked to the reduction of the cross-sectional area of the specimen. Specifically, our results indicate, that parameters directly linked to the loss of the cross-sectional area (e.g. minimum material width), are parameters that are most suited to provide an indication of a specimen's mechanical performance. The automated detection framework developed in this study has the potential to provide a basis to standardise measurements of pitting corrosion across a range of metals and future prediction of mechanical strength over degradation time. In-vitro immersion study of dog bones manufactured from a WE43 Magnesium alloy. Novel approach characterizing spatial pit formation using micro-CT scans. Comparison of mass loss by hydrogen gas measurement and volume loss by μCT scans. Correlation between mechanical strength and geometrical pit formation features.
Collapse
Affiliation(s)
- Kerstin van Gaalen
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland.,Meotec GmbH, Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Felix Benn
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, United Kingdom.,Meotec GmbH, Aachen, Germany
| | - Peter E McHugh
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | | | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Gonzalez J, Lamaka SV, Mei D, Scharnagl N, Feyerabend F, Zheludkevich ML, Willumeit‐Römer R. Mg Biodegradation Mechanism Deduced from the Local Surface Environment under Simulated Physiological Conditions. Adv Healthc Mater 2021; 10:e2100053. [PMID: 34050703 PMCID: PMC11468144 DOI: 10.1002/adhm.202100053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/18/2021] [Indexed: 11/07/2022]
Abstract
Although certified magnesium-based implants are launched some years ago, the not well-defined Mg degradation mechanism under physiological conditions makes it difficult to standardize its use as a degradable biomaterial for a wide range of implant applications. Among other variables influencing the Mg degradation mechanism, monitoring the pH in the corrosive solution and, especially, at the corroding interface is important due to its direct relation with the formation and stability of the degradation products layer. The interface pH (pH at the Mg/solution interface) developed on Mg-2Ag and E11 alloys are studied in situ during immersion under dynamic conditions (1.5 mL min-1 ) in HBSS with and without the physiological amount of Ca2+ cations (2.5 × 10-3 m). The results show that the precipitation/dissolution of amorphous phosphate-containing phases, that can be associated with apatitic calcium-phosphates Ca10-x (PO4 )6-x (HPO4 or CO3 )x (OH or ½ CO3 )2-x with 0 ≤ x ≤ 2 (Ap-CaP), promoted in the presence of Ca2+ generates an effective local pH buffering system at the surface. Thus, high alkalinization is prevented, and the interface pH is stabilized in the range of 7.6 to 8.5.
Collapse
Affiliation(s)
- Jorge Gonzalez
- Institute of Metallic BiomaterialsHelmholtz‐Zentrum HereonGeesthacht21502Germany
| | | | - Di Mei
- Institute of Surface ScienceHelmholtz‐Zentrum HereonGeesthacht21502Germany
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium AlloyZhengzhou UniversityZhengzhou450001P. R. China
| | - Nico Scharnagl
- Institute of Surface ScienceHelmholtz‐Zentrum HereonGeesthacht21502Germany
| | - Frank Feyerabend
- Institute of Metallic BiomaterialsHelmholtz‐Zentrum HereonGeesthacht21502Germany
| | - Mikhail L. Zheludkevich
- Institute of Surface ScienceHelmholtz‐Zentrum HereonGeesthacht21502Germany
- Institute for Materials ScienceFaculty of EngineeringKiel UniversityKielD‐24143Germany
| | - Regine Willumeit‐Römer
- Institute of Metallic BiomaterialsHelmholtz‐Zentrum HereonGeesthacht21502Germany
- Institute for Materials ScienceFaculty of EngineeringKiel UniversityKielD‐24143Germany
| |
Collapse
|
12
|
Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112016. [PMID: 33947530 DOI: 10.1016/j.msec.2021.112016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022]
Abstract
The further development of future Magnesium based biodegradable implants must consider not only the freedom of design, but also comprise implant volume reduction, as both aspects are crucial for the development of higher functionalised implants, such as plate systems or scaffold grafts in bone replacement therapy. As conventional manufacturing methods such as turning and milling are often accompanied by limitations concerning implant design and functionality, the process of laser powder bed fusion (LPBF) specifically for Magnesium alloys was recently introduced. In addition, the control of the degradation rate remains a key aspect regarding biodegradable implants. Recent studies focusing on the degradation behaviour of additively manufactured Magnesium scaffolds disclosed additional intricacies when compared to conventionally manufactured Magnesium parts, as a notably larger surface area was exposed to the immersion medium and scaffold struts degraded non-uniformly. Moreover, chemical etching as post processing technique is applied to remove sintered powder particles from the surface, altering surface chemistry. In this study, cylindrical Magnesium specimens were manufactured by LPBF and surfaces were consecutively modified by phosphoric etching and machining. Degradation behaviour and biocompatibility were then investigated, revealing that etched samples exhibited the overall lowest degradation rates, but experienced large pit formation, while the reduction of surface roughness resulted in a delay of degradation.
Collapse
|
13
|
Zhou N, Li P, Qiu H, Wang J, Huang N, Zhao A, Wang J. Comparison of in Vascular Bioreactors and In Vivo Models of Degradation and Cellular Response of Mg-Zn-Mn Stents. Ann Biomed Eng 2021; 49:1551-1560. [PMID: 33409851 DOI: 10.1007/s10439-020-02699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Traditional in vitro evaluation criteria of magnesium (Mg)-based stents cannot reflect the degradation process in vivo, due to the interdependence and interference between biodegradable properties and bioenvironment. The current direct and indirect evaluation approaches of in vitro biocompatibility do not have a hydrodynamic environment and vascular biological structure existing in vivo. Herein, we designed a vascular bioreactor to provide an ex vivo culture environment for vessels, which reveals the degradation behavior of Mg-Zn-Mn stent and the effect of its degradation on cells. We reported that rabbit carotid arteries could maintain native morphology and viability in the bioreactor under the best condition within a flow rate of 5.4 mL min-1 and a culture time of one week. With this culture condition, Mg-Zn-Mn stents were implanted into the arteries in the bioreactors and compared with in vivo rabbit models. The arteries maintained cell survival in the bioreactor, but the cell attachment was absent on the stent struts, associated with a fast degradation. Conversely, the stents achieved a rapid and complete endothelialization in vivo for two weeks. This study could provide a correlation and difference of the degradation behavior and cellular response to the degradation of Mg-based stent between ex vivo and in vivo approaches.
Collapse
Affiliation(s)
- Ningling Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Ping Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Hua Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Jin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Ansha Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China.
| | - Juan Wang
- Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
14
|
Palmroth A, Salpavaara T, Vuoristo P, Karjalainen S, Kääriäinen T, Miettinen S, Massera J, Lekkala J, Kellomäki M. Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31148-31161. [PMID: 32568505 PMCID: PMC7467565 DOI: 10.1021/acsami.0c07278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Bioresorbable passive resonance sensors based on inductor-capacitor (LC) circuits provide an auspicious sensing technology for temporary battery-free implant applications due to their simplicity, wireless readout, and the ability to be eventually metabolized by the body. In this study, the fabrication and performance of various LC circuit-based sensors are investigated to provide a comprehensive view on different material options and fabrication methods. The study is divided into sections that address different sensor constituents, including bioresorbable polymer and bioactive glass substrates, dissolvable metallic conductors, and atomic layer deposited (ALD) water barrier films on polymeric substrates. The manufactured devices included a polymer-based pressure sensor that remained pressure responsive for 10 days in aqueous conditions, the first wirelessly readable bioactive glass-based resonance sensor for monitoring the complex permittivity of its surroundings, and a solenoidal coil-based compression sensor built onto a polymeric bone fixation screw. The findings together with the envisioned orthopedic applications provide a reference point for future studies related to bioresorbable passive resonance sensors.
Collapse
Affiliation(s)
- Aleksi Palmroth
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Timo Salpavaara
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Petri Vuoristo
- Materials
Science and Environmental Engineering, Faculty of Engineering and
Natural Sciences, Tampere University, Korkeakoulunkatu 6, Tampere 33720, Finland
| | - Sanna Karjalainen
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Tommi Kääriäinen
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Susanna Miettinen
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Jonathan Massera
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Jukka Lekkala
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Minna Kellomäki
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| |
Collapse
|
15
|
Campos Becerra LH, Hernández Rodríguez MAL, Esquivel Solís H, Lesso Arroyo R, Torres Castro A. Bio-inspired biomaterial Mg-Zn-Ca: a review of the main mechanical and biological properties of Mg-based alloys. Biomed Phys Eng Express 2020; 6:042001. [PMID: 33444260 DOI: 10.1088/2057-1976/ab9426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The toxicity of alloying elements in magnesium alloys used for biomedical purposes is an interesting and innovative subject, due to the great technological advances that would result from their application in medical devices (MDs) in traumatology. Recently promising results have been published regarding the rates of degradation and mechanical integrity that can support Mg alloys; this has led to an interest in understanding the toxicological features of these emerging biomaterials. The growing interest of different segments of the MD market has increased the determination of different research groups to clarify the behavior of alloying elements in vivo. This review covers the influence of the alloying elements on the body, the toxicity of the elements in Mg-Zn-Ca, as well as the mechanical properties, degradation, processes of obtaining the alloy, medical approaches and future perspectives on the use of the Mg in the manufacture of MDs for various medical applications.
Collapse
Affiliation(s)
- Luis Humberto Campos Becerra
- Facultad de Ingeniería Mecánica y Eléctrica., Biomateriales. Universidad Autónoma de Nuevo León (UANL), Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza, México
| | | | | | | | | |
Collapse
|
16
|
Mechanical Properties, Biodegradation, and Biocompatibility of Ultrafine Grained Magnesium Alloy WE43. MATERIALS 2019; 12:ma12213627. [PMID: 31690019 PMCID: PMC6862282 DOI: 10.3390/ma12213627] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
In this work, the effect of an ultrafine-grained (UFG) structure obtained by multiaxial deformation (MAD) on the mechanical properties, fatigue strength, biodegradation, and biocompatibility in vivo of the magnesium alloy WE43 was studied. The grain refinement down to 0.93 ± 0.29 µm and the formation of Mg41Nd5 phase particles with an average size of 0.34 ± 0.21 µm were shown to raise the ultimate tensile strength to 300 MPa. Besides, MAD improved the ductility of the alloy, boosting the total elongation from 9% to 17.2%. An additional positive effect of MAD was an increase in the fatigue strength of the alloy from 90 to 165 MPa. The formation of the UFG structure also reduced the biodegradation rate of the alloy under both in vitro and in vivo conditions. The relative mass loss after six weeks of experiment was 83% and 19% in vitro and 46% and 7% in vivo for the initial and the deformed alloy, respectively. Accumulation of hydrogen and the formation of necrotic masses were observed after implantation of alloy specimens in both conditions. Despite these detrimental phenomena, the desired replacement of the implant and the surrounding cavity with new connective tissue was observed in the areas of implantation.
Collapse
|
17
|
Jessen LK, Zamponi C, Willumeit-Römer R, Quandt E. Magnetron sputtered freestanding MgAg films with ultra-low corrosion rate. Acta Biomater 2019; 98:81-87. [PMID: 31141735 DOI: 10.1016/j.actbio.2019.05.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Magnesium based alloys are of great interest for temporary medical applications. In order to tailor the corrosion rate, Mg is often alloyed with other elements for the envisaged application as a biodegradable medical implant. In this study 10 µm thick freestanding MgAg thin film samples with varied Ag concentrations (nominal 2-10 wt%) are presented. These films could have the potential as scaffolds, e.g. in neurological applications. The films are fabricated by a combination of UV lithography, sacrificial layer technique and magnetron sputtering, where the latter allows the fabrication of supersaturated metastable alloys. After removing the sacrificial layer, the released freestanding thin film samples are investigated. The corrosion properties are determined using potentiodynamic polarization measurements in Hanks' balanced salt solution. The microstructure investigations are done by X-ray diffraction and scanning transmission electron microscopy. The results obtained show that it is possible using magnetron sputtering to achieve supersaturated materials with up to 6 wt% Ag which show a significant decrease in the corrosion rate compared to pure Mg by a factor of approximately three (0.04 ± 0.01 mm/yr compared to 0.12 ± 0.02 mm/yr). STATEMENT OF SIGNIFICANCE: In this study magnetron sputtered freestanding MgAg films with a Ag concentration of 2-10 wt% were investigated in terms of corrosion properties and microstructure. The 10 µm thick films were produced by a combination of UV lithography and magnetron sputtering, the latter allows the fabrication of supersaturated alloys. It was possible to fabricate participate free materials up to 6 wt% Ag, which showed a decrease in the corrosion rate by the factor of 3 compared to pure Mg. For materials with 10 wt% it was not possible to obtain single phasematerials, in this case the corrosion rate was increased by a factor of approximately 20 compared to pure Mg due to the formation of galvanic cells.
Collapse
|
18
|
Hou RQ, Scharnagl N, Willumeit-Römer R, Feyerabend F. Different effects of single protein vs. protein mixtures on magnesium degradation under cell culture conditions. Acta Biomater 2019; 98:256-268. [PMID: 30771533 DOI: 10.1016/j.actbio.2019.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
Bovine serum albumin (BSA) or fetal bovine serum (FBS), as the protein component, is usually added into solution to study the influence of proteins on Mg degradation. However, the specific character of proteins used and the interaction between organic molecules in FBS do not draw enough attention. This study investigated the influence of BSA, fibrinogen (Fib) and FBS on Mg degradation in Hanks' balanced salt solution without (HBSS) or with calcium (HBSSCa) and Dulbecco's modified eagle medium Glutamax-I (DMEM). The results reveal that the effect of BSA, Fib and FBS on the degradation rate of Mg is time- and media-dependent, as a result of the overlap of protein adsorption, binding/chelating to ions and interaction between organic molecules. The binding/chelating of proteins and/or the possible effect of proteins on the kinetics of products formation lead to the formation of different degradation precipitates on Mg surface in HBSS. The interaction between proteins and Ca2+/PO43- accelerates the formation of Ca-P salts in HBSSCa and DMEM, thereby impeding the degradation of Mg. Moreover, the interplay between organic molecules and the specific character of proteins are highlighted by the cooperative (in media + FBS) or competitive (in DMEM + BSA + Fib) effect of proteins in the presence of more kinds of proteins and the different effect of BSA and Fib on the degradation of Mg. Therefore, the addition of proteins to testing medium is necessary for in vitro tests and DMEM + 10% FBS is recommended as the in vitro testing medium to present an in vivo-like degradation for Mg. STATEMENT OF SIGNIFICANCE: The present study emphasizes the difference between proteins, and the difference between single protein and protein mixture in view of the effect on Mg degradation. The results highlight the importance of the interaction between proteins in media, which can increase or decrease the degradation of Mg compared to the single protein. It can aid other researchers to understand the effect of proteins on Mg degradation and to pay more attention to the interaction of organic molecules on Mg degradation when more kinds of organic molecules are used in medium, especially for FBS. The submitted work could be of significant importance to other researchers working in the related fields, thus appealing to the readers of Acta Biomaterialia.
Collapse
|
19
|
Kopp A, Derra T, Müther M, Jauer L, Schleifenbaum JH, Voshage M, Jung O, Smeets R, Kröger N. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds. Acta Biomater 2019; 98:23-35. [PMID: 30959185 DOI: 10.1016/j.actbio.2019.04.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Magnesium shows promising properties concerning its use in absorbable implant applications such as biodegradability, improved mechanical strength and plastic deformability. Following extensive research, the first fixation and compression screws composed of magnesium rare earth alloys were commercialised, notably in the field of orthopaedic surgery. Preclinical and clinical follow-up studies showed that the rapid degradation of unprotected metallic Magnesium surfaces and concomitant hydrogen gas bursts still raise concern regarding certain surgical indications and need to be further improved. In order to enlarge the scope of further applications, the development of future magnesium implants must aim at freedom of design and reduction of volume, hereby enabling higher functionalised implants, as e.g. plate systems or scaffold grafts for bone replacement therapy. In order to overcome the boundaries of conventional manufacturing methods such as turning or milling, the process of Laser Powder Bed Fusion (LPBF) for magnesium alloys was recently introduced. It enables the production of lattice structures, therefore allowing for reduction of implant material volume. Nevertheless, the concomitant increase of free surface of such magnesium scaffolds further stresses the aforementioned disadvantages of vast degradation and early loss of mechanical stability if not prevented by suitable postprocessing methods. Magnesium scaffold structures with different pore sizes were therefore manufactured by LPBF and consequently further modified either by thermal heat treatment or Plasma Electrolytic Oxidation (PEO). Implant performance was assessed by conducting degradation studies and mechanical testing. PEO modified scaffolds with small pore sizes exhibited improved long-term stability, while heat treated specimens showed impaired performance regarding degradation and mechanical stability. STATEMENT OF SIGNIFICANCE: Magnesium based scaffold structures offer wide possibilities for advanced functionalized bioabsorbable implants. By implementing lattice structures, big implant sizes and mechanically optimized implant geometries can be achieved enabling full bone replacement or large-scale plate systems, e.g. for orthopedic applications. As shape optimization and lattice structuring of such scaffolds consequently lead to enlarged surface, suitable design and postprocessing routines come into focus. The presented study addresses these new and relevant topics for the first time by evaluating geometry as well as heat and surface treatment options as input parameters for improved chemical and mechanical stability. The outcome of these variations is measured by degradation tests and mechanical analysis. Evaluating these methods, a significant contribution to the development of absorbable magnesium scaffolds is made. The findings can help to better understand the interdependence of high surface to volume ratio Magnesium implants and to deliver methods to incorporate such lattice structures into future large-scale implant applications manufactured from bioabsorbable Magnesium alloys.
Collapse
Affiliation(s)
- Alexander Kopp
- Meotec GmbH & Co. KG, Philipsstr. 8, 52068 Aachen, Germany.
| | - Thomas Derra
- Meotec GmbH & Co. KG, Philipsstr. 8, 52068 Aachen, Germany
| | - Max Müther
- Meotec GmbH & Co. KG, Philipsstr. 8, 52068 Aachen, Germany
| | - Lucas Jauer
- Fraunhofer Institute for Laser Technology ILT, Steinbachstr. 15, 52074 Aachen, Germany
| | - Johannes H Schleifenbaum
- Fraunhofer Institute for Laser Technology ILT, Steinbachstr. 15, 52074 Aachen, Germany; Digital Additive Production DAP, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen, Germany
| | - Maximilian Voshage
- Digital Additive Production DAP, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen, Germany
| | - Ole Jung
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Ralf Smeets
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Nadja Kröger
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
20
|
Improved In Vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12. Int J Mol Sci 2019; 20:ijms20020255. [PMID: 30634646 PMCID: PMC6359522 DOI: 10.3390/ijms20020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 12/04/2022] Open
Abstract
Magnesium (Mg)-based biomaterials are promising candidates for bone and tissue regeneration. Alloying and surface modifications provide effective strategies for optimizing and tailoring their degradation kinetics. Nevertheless, biocompatibility analyses of Mg-based materials are challenging due to its special degradation mechanism with continuous hydrogen release. In this context, the hydrogen release and the related (micro-) milieu conditions pretend to strictly follow in vitro standards based on ISO 10993-5/-12. Thus, special adaptions for the testing of Mg materials are necessary, which have been described in a previous study from our group. Based on these adaptions, further developments of a test procedure allowing rapid and effective in vitro cytocompatibility analyses of Mg-based materials based on ISO 10993-5/-12 are necessary. The following study introduces a new two-step test scheme for rapid and effective testing of Mg. Specimens with different surface characteristics were produced by means of plasma electrolytic oxidation (PEO) using silicate-based and phosphate-based electrolytes. The test samples were evaluated for corrosion behavior, cytocompatibility and their mechanical and osteogenic properties. Thereby, two PEO ceramics could be identified for further in vivo evaluations.
Collapse
|
21
|
Hou R, Willumeit-Römer R, Garamus VM, Frant M, Koll J, Feyerabend F. Adsorption of Proteins on Degradable Magnesium-Which Factors are Relevant? ACS APPLIED MATERIALS & INTERFACES 2018; 10:42175-42185. [PMID: 30433751 DOI: 10.1021/acsami.8b17507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the adsorption of proteins on the Mg surface was ascribed to be the main reason for the effect of proteins on magnesium (Mg) degradation, few studies about the adsorption of proteins on the Mg surface were performed due to the labile circumstances during immersion. In the present study, the adsorption of bovine serum albumin (BSA) and fibrinogen (Fib) on the Mg surface during and after immersion was extensively investigated in different media for the first time. The results revealed that BSA and Fib showed a similar adsorption trend on the Mg surface during and after immersion, and they adsorbed more on the Mg surface in Hank's balanced salt solution (HBSS) than in Dulbecco's modified Eagle medium Glutamax-I (DMEM). The possible influence factors for protein adsorption, such as pH, surface roughness, and wettability, were considered to elucidate different adsorption in HBSS and DMEM. It was found that the participation of Ca2+ in the formation of degradation products largely affected the degradation rate of Mg, changed surface roughness, compactness, and surface charge during immersion, which largely suppressed the adsorption of proteins on the Mg surface.
Collapse
Affiliation(s)
| | | | | | - Marion Frant
- Department of Biomaterials , Institute for Bioprocessing and Analytical Measurement Techniques , Rosenhof , D-37308 Heiligenstadt , Germany
| | | | | |
Collapse
|
22
|
Zhou Y, Liu X, Huang N, Chen Y. Magnesium ion leachables induce a conversion of contractile vascular smooth muscle cells to an inflammatory phenotype. J Biomed Mater Res B Appl Biomater 2018; 107:988-1001. [PMID: 30270501 DOI: 10.1002/jbm.b.34192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/27/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022]
Abstract
Phenotype switching is a characteristic response of vascular smooth muscle cells (vSMCs) to the dynamic microenvironment and contributes to all stages of atherosclerotic plaque. Here, we immersed pure magnesium and AZ31 alloy in the completed medium under cell culture condition, applied the resultant leaching extracts to the isolated contractile rat aortic vSMCs and investigated how vSMCs phenotypically responded to the degradation of the magnesium-based stent materials. vSMCs became more proliferative and migratory but underwent more apoptosis when exposed to the degradation products of pure magnesium; while the AZ31 extracts caused less cell division but more apoptosis, thus slowing cell moving and growing. Noticeably, both leaching extracts dramatically downregulated the contractile phenotypic genes at mRNA and protein levels while significantly induced the inflammatory adhesive molecules and cytokines. Exogenously added Mg ions excited similar transformations of vSMCs. With the liberation or supplementation of Mg2+ , the expression patterns of the pro-contractile transactivator myocardin and the pro-inflammatory transcriptional factor kruppel-like factor 4 (KLF4) were reversed. Overall, the degradation of the Mg-based materials would evoke a shift of the contractile vSMCs to an inflammatory phenotype via releasing Mg ions to induce a transition from the phenotypic control of vSMCs by the myocardin to that by the KLF4. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 988-1001, 2019.
Collapse
Affiliation(s)
- Yuehua Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xing Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuping Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacy, University of South China, Hengyang, Hunan, 421001, China.,Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
23
|
Gonzalez J, Hou RQ, Nidadavolu EPS, Willumeit-Römer R, Feyerabend F. Magnesium degradation under physiological conditions - Best practice. Bioact Mater 2018; 3:174-185. [PMID: 29744455 PMCID: PMC5935771 DOI: 10.1016/j.bioactmat.2018.01.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches. Physiological conditions are mandatory for mechanistic understanding of magnesium degradation. Guidelines and caveats for experimental setups are reviewed. Media composition is essential for reliable experiments.
Collapse
Affiliation(s)
- Jorge Gonzalez
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Rui Qing Hou
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eshwara P S Nidadavolu
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Frank Feyerabend
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
24
|
Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:25-34. [DOI: 10.1016/j.msec.2016.09.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022]
|
25
|
Vlček M, Lukáč F, Kudrnová H, Smola B, Stulíková I, Luczak M, Szakács G, Hort N, Willumeit-Römer R. Microhardness and In Vitro Corrosion of Heat-Treated Mg-Y-Ag Biodegradable Alloy. MATERIALS 2017; 10:ma10010055. [PMID: 28772414 PMCID: PMC5344547 DOI: 10.3390/ma10010055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/19/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Magnesium alloys are promising candidates for biodegradable medical implants which reduce the necessity of second surgery to remove the implants. Yttrium in solid solution is an attractive alloying element because it improves mechanical properties and exhibits suitable corrosion properties. Silver was shown to have an antibacterial effect and can also enhance the mechanical properties of magnesium alloys. Measurements of microhardness and electrical resistivity were used to study the response of Mg-4Y and Mg-4Y-1Ag alloys to isochronal or isothermal heat treatments. Hardening response and electrical resistivity annealing curves in these alloys were compared in order to investigate the effect of silver addition. Procedures for solid solution annealing and artificial aging of the Mg-4Y-1Ag alloy were developed. The corrosion rate of the as-cast and heat-treated Mg-4Y-1Ag alloy was measured by the mass loss method. It was found out that solid solution heat treatment, as well artificial aging to peak hardness, lead to substantial improvement in the corrosion properties of the Mg-4Y-1Ag alloy.
Collapse
Affiliation(s)
- Marián Vlček
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic.
| | - František Lukáč
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic.
| | - Hana Kudrnová
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic.
| | - Bohumil Smola
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic.
| | - Ivana Stulíková
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic.
| | - Monika Luczak
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Gábor Szakács
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Norbert Hort
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Regine Willumeit-Römer
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| |
Collapse
|
26
|
Nidadavolu EPS, Feyerabend F, Ebel T, Willumeit-Römer R, Dahms M. On the Determination of Magnesium Degradation Rates under Physiological Conditions. MATERIALS 2016; 9:ma9080627. [PMID: 28773749 PMCID: PMC5509045 DOI: 10.3390/ma9080627] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/28/2023]
Abstract
The current physiological in vitro tests of Mg degradation follow the procedure stated according to the ASTM standard. This standard, although useful in predicting the initial degradation behavior of an alloy, has its limitations in interpreting the same for longer periods of immersion in cell culture media. This is an important consequence as the alloy's degradation is time dependent. Even if two different alloys show similar corrosion rates in a short term experiment, their degradation characteristics might differ with increased immersion times. Furthermore, studies concerning Mg corrosion extrapolate the corrosion rate from a single time point measurement to the order of a year (mm/y), which might not be appropriate because of time dependent degradation behavior. In this work, the above issues are addressed and a new methodology of performing long-term immersion tests in determining the degradation rates of Mg alloys was put forth. For this purpose, cast and extruded Mg-2Ag and powder pressed and sintered Mg-0.3Ca alloy systems were chosen. DMEM Glutamax +10% FBS (Fetal Bovine Serum) +1% Penicillin streptomycin was used as cell culture medium. The advantages of such a method in predicting the degradation rates in vivo deduced from in vitro experiments are discussed.
Collapse
Affiliation(s)
- Eshwara Phani Shubhakar Nidadavolu
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Frank Feyerabend
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Thomas Ebel
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Regine Willumeit-Römer
- Division Metallic Biomaterials, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Michael Dahms
- Materials Technology, Hochschule Flensburg, Kanzleistraße 91-93, Flensburg 24943, Germany.
| |
Collapse
|
27
|
Myrissa A, Martinelli E, Szakács G, Berger L, Eichler J, Fischerauer SF, Kleinhans C, Hort N, Schäfer U, Weinberg AM. In vivo degradation of binary magnesium alloys – a long-term study. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bnm-2016-0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractBioresorbable magnesium materials are widely investigated because of their promising properties as orthopedic devices. Pure magnesium (99.99%) and two binary magnesium alloys (Mg2Ag and Mg10Gd) were used to investigate the degradation behavior, the bone adherence and bone-implant interface mechanics of these materials in growing Sprague-Dawley
Collapse
|