1
|
Shu F, Chen H, Zhang Z, Dun Z, Lv W, Sun W, Liu M. Shear Bond Strength to Enamel, Mechanical Properties and Cellular Studies of Fiber-Reinforced Composites Modified by Depositing SiO 2 Nanofilms on Quartz Fibers via Atomic Layer Deposition. Int J Nanomedicine 2024; 19:2113-2136. [PMID: 38476282 PMCID: PMC10929249 DOI: 10.2147/ijn.s446584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Poor interfacial bonding between the fibers and resin matrix in fiber-reinforced composites (FRCs) is a significant drawback of the composites. To enhance the mechanical properties of FRC, fibers were modified by depositing SiO2 nanofilms via the atomic layer deposition (ALD) technique. This study aims to evaluate the effect of ALD treatment of the fibers on the mechanical properties of the FRCs. Methods The quartz fibers were modified by depositing different cycles (50, 100, 200, and 400) of SiO2 nanofilms via the ALD technique and FRCs were proposed from the modified fibers. The morphologies, surface characterizations of nanofilms, mechanical properties, and cytocompatibility of FRCs were systematically investigated. Moreover, the shear bond strength (SBS) of FRCs to human enamel was also evaluated. Results The SEM and SE results showed that the ALD-deposited SiO2 nanofilms have good conformality and homogeneity. According to the results of FTIR and TGA, SiO2 nanofilms and quartz fiber surfaces had good chemical combinations. Three-point bending tests with FRCs showed that the deposited SiO2 nanofilms effectively improved FRCs' strength and Group D underwent 100 deposition cycles and had the highest flexural strength before and after aging. Furthermore, the strength of the FRCs demonstrated a crescendo-decrescendo tendency with SiO2 nanofilm thickness increasing. The SBS results also showed that Group D had outstanding performance. Moreover, the results of cytotoxicity experiments such as cck8, LDH and Elisa, etc., showed that the FRCs have good cytocompatibility. Conclusion Changing the number of ALD reaction cycles affects the mechanical properties of FRCs, which may be related to the stress relaxation and fracture between SiO2 nanofilm layers and the built-up internal stresses in the nanofilms. Eventually, the SiO2 nanofilms could enhance the FRCs' mechanical properties and performance to enamel by improving the interfacial bonding strength, and have good cytocompatibility.
Collapse
Affiliation(s)
- Fei Shu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Hong Chen
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Zhihao Zhang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Zhiyue Dun
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Weijin Lv
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Wangxinyue Sun
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| | - Mei Liu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
3
|
Khan MZ, Tahir D, Asim M, Israr M, Haider A, Xu DD. Revolutionizing Cancer Care: Advances in Carbon-Based Materials for Diagnosis and Treatment. Cureus 2024; 16:e52511. [PMID: 38371088 PMCID: PMC10874252 DOI: 10.7759/cureus.52511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer involves intricate pathological mechanisms marked by complexities such as cytotoxicity, drug resistance, stem cell proliferation, and inadequate specificity in current chemotherapy approaches. Cancer therapy has embraced diverse nanomaterials renowned for their unique magnetic, electrical, and optical properties to address these challenges. Despite the expanding corpus of knowledge in this area, there has been less advancement in approving nano drugs for use in clinical settings. Nanotechnology, and more especially the development of intelligent nanomaterials, has had a profound impact on cancer research and treatment in recent years. Due to their large surface area, nanoparticles can adeptly encapsulate diverse compounds. Furthermore, the modification of nanoparticles is achievable through a broad spectrum of bio-based substrates, including DNA, aptamers, RNA, and antibodies. This functionalization substantially enhances their theranostic capabilities. Nanomaterials originating from biological sources outperform their conventionally created counterparts, offering advantages such as reduced toxicity, lower manufacturing costs, and enhanced efficiency. This review uses carbon nanomaterials, including graphene-based materials, carbon nanotubes (CNTs) based nanomaterials, and carbon quantum dots (CQDs), to give a complete overview of various methods used in cancer theranostics. We also discussed their advantages and limitations in cancer diagnosis and treatment settings. Carbon nanomaterials might significantly improve cancer theranostics and pave the way for fresh tumor diagnosis and treatment approaches. More study is needed to determine whether using nano-carriers for targeted medicine delivery may increase material utilization. More insight is required to explore the correlation between heightened cytotoxicity and retention resulting from increased permeability.
Collapse
Affiliation(s)
| | - Danial Tahir
- Internal Medicine, Nazareth Hospital, Philadelphia, USA
| | - Muhammad Asim
- Internal Medicine, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, GBR
| | | | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| | - Dan Dan Xu
- Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, CHN
| |
Collapse
|
4
|
Ashique S, Garg A, Mishra N, Raina N, Ming LC, Tulli HS, Behl T, Rani R, Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2769-2792. [PMID: 37219615 DOI: 10.1007/s00210-023-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Lung cancer is the most common type of cancer, with over 2.1 million cases diagnosed annually worldwide. It has a high incidence and mortality rate, leading to extensive research into various treatment options, including the use of nanomaterial-based carriers for drug delivery. With regard to cancer treatment, the distinct biological and physico-chemical features of nano-structures have acquired considerable impetus as drug delivery system (DDS) for delivering medication combinations or combining diagnostics and targeted therapy. This review focuses on the use of nanomedicine-based drug delivery systems in the treatment of lung cancer, including the use of lipid, polymer, and carbon-based nanomaterials for traditional therapies such as chemotherapy, radiotherapy, and phototherapy. The review also discusses the potential of stimuli-responsive nanomaterials for drug delivery in lung cancer, and the limitations and opportunities for improving the design of nano-based materials for the treatment of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, 250103, UP, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology, Jabalpur, M.P, 483001, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong,, Brunei, Darussalam
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Radha Rani
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpVihar, New Delhi, 110017, India.
| |
Collapse
|
5
|
Li R, Bao Z, Wang P, Deng Y, Fan J, Zhu X, Xia X, Song Y, Yao H, Li D. Gelatin-Functionalized Carbon Nanotubes Loaded with Cisplatin for Anti-Cancer Therapy. Polymers (Basel) 2023; 15:3333. [PMID: 37631391 PMCID: PMC10458187 DOI: 10.3390/polym15163333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cisplatin (Cp), a chemotherapeutic agent, interacts with purines on tumor DNA, causing tumor cell apoptosis. However, cisplatin has the characteristics of non-specific distribution and lack of selectivity, resulting in systemic toxicity. Moreover, it cannot maintain the drug's high concentration in the tumor-weak acid environment. These flaws of cisplatin restrict its use in clinical applications. Therefore, a pH-responsive carbon nanotube-modified nano-drug delivery system (CNTs/Gel/Cp) was constructed in this study using gelatin (Gel)-modified carbon nanotubes (CNTs/Gel) loaded with cisplatin to release drugs precisely and slowly, preventing premature inactivation and maintaining an effective concentration. When MCp:MCNTs/Gel = 1:1, the drug reaches the highest loading rate and entrapment efficiency. To achieve the sustained-release effect, CNTs/Gel/Cp can release the medicine steadily for a long time in a pH environment of 6.0. Additionally, CNTs/Gel/Cp display antitumor properties comparable to cisplatin in a manner that varies with the dosage administered. These findings indicate that CNTs/Gel/Cp have an effective, sustained release of cisplatin and a good antitumor effect, providing a theoretical and experimental basis for the clinical application of modified carbon nanotubes (CNTs) as a new drug delivery system.
Collapse
Affiliation(s)
- Rong Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Zhenfei Bao
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Pei Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yunyun Deng
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Junping Fan
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Xin Zhu
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Xinyu Xia
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Yiming Song
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| | - Dongfang Li
- School of Stomatology, Nanchang University, Nanchang 330006, China; (R.L.); (Z.B.); (P.W.); (Y.D.); (J.F.); (X.Z.); (X.X.); (Y.S.); (H.Y.)
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang 330006, China
| |
Collapse
|
6
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
7
|
Thakur CK, Karthikeyan C, Abou-Dahech MS, Altabakha MMAM, Al Shahwan MJS, Ashby CR, Tiwari AK, Babu RJ, Moorthy NSHN. Microwave-Assisted Functionalization of Multi-Walled Carbon Nanotubes for Biosensor and Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020335. [PMID: 36839659 PMCID: PMC9962829 DOI: 10.3390/pharmaceutics15020335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Microwave-assisted synthetic methods have emerged as a popular technique for surface modification and the functionalization of multi-walled carbon nanotubes (MWCNTs) for diverse drug delivery applications. Microwave-induced functionalization of MWCNTs provides a high functionalization and requires less time than conventional techniques. Microwave methods are simple, fast, and effective for the covalent and noncovalent conjugation of MWCNTs with various biomolecules and polymers. The present review focuses on the synthetic and drug delivery applications of microwave irradiation techniques (MITs) for the functionalization of MWCNTs, using amino acids and other molecular frameworks containing amino groups, vitamins, proteins, epoxy moieties, metal nanoparticles, and polymers.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, Madhya Pradesh, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, Madhya Pradesh, India
| | - Mariam Sami Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Moawia Mohd A. M. Altabakha
- Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moayad Jamal Saeed Al Shahwan
- Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, New York, NY 11431, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Correspondence: (R.J.B.); (N.S.H.N.M.)
| | - Narayana Subbiah Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, Madhya Pradesh, India
- Correspondence: (R.J.B.); (N.S.H.N.M.)
| |
Collapse
|
8
|
Pu Z, Wei Y, Sun Y, Wang Y, Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. Int J Nanomedicine 2022; 17:6157-6180. [PMID: 36523423 PMCID: PMC9744892 DOI: 10.2147/ijn.s384592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/23/2022] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a global burden leading to millions of deaths worldwide every year. Nanomedicine refers to the use of materials at the nanoscale for drug delivery and subsequent therapeutic approaches in cancer. Carbon nanotubes (CNTs) are widely used as nanocarriers for therapeutic molecules such as plasmids, siRNAs, antisense agents, aptamers and molecules related to the immunotherapy for several cancers. They are usually functionalized and loaded with standard drug molecules to improve their therapeutic efficiency. Functionalization and drug loading possibly decrease the genotoxic and carcinogenic potential of CNTs. In addition, the targeted cytotoxic properties of the drug improve and undesired toxicity decreases after drug loading and/or conjugation with proteins, including antibodies. For intended drug delivery, a lysosomal pH of 5.5 is more suitable and effective for the slow and extended release of cytotoxic drugs than a physiological of pH 7.4. Remarkably, CNTs possess intrinsic antitumor properties and are usually internalized by endocytosis. After being internalized, several mechanisms are involved in the therapeutic and carcinogenic effects of CNTs. They are generally safe for therapy, and their toxicity profile remains dependent on their physicochemical properties. Moreover, the dose, route, duration of exposure, surface properties and degradative potential determine the toxicity outcomes of CNTs locally or systemically. In summary, the use of CNTs in drug delivery and NSCLC therapy, as well as their genotoxic and carcinogenic potential and the possible mechanisms, has been discussed in this review. The therapeutic index is generally high for NSCLC cells treated with drug-loaded CNTs; therefore, they are effective carriers in implementing targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yujia Wei
- School of Medicine, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Department of General Practice, Suzhou Wuzhong Hospital of Traditional Chinese Medicine, Suzhou, 215101, People’s Republic of China
| | - Yuanpeng Sun
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| |
Collapse
|
9
|
Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
11
|
Ye L, Chen W, Chen Y, Qiu Y, Yi J, Li X, Lin Q, Guo B. Functionalized multiwalled carbon nanotube-ethosomes for transdermal delivery of ketoprofen: Ex vivo and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Kearns O, Camisasca A, Giordani S. Hyaluronic Acid-Conjugated Carbon Nanomaterials for Enhanced Tumour Targeting Ability. Molecules 2021; 27:48. [PMID: 35011272 PMCID: PMC8746509 DOI: 10.3390/molecules27010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Hyaluronic acid (HA) has been implemented for chemo and photothermal therapy to target tumour cells overexpressing the CD44+ receptor. HA-targeting hybrid systems allows carbon nanomaterial (CNM) carriers to efficiently deliver anticancer drugs, such as doxorubicin and gemcitabine, to the tumour sites. Carbon nanotubes (CNTs), graphene, graphene oxide (GO), and graphene quantum dots (GQDs) are grouped for a detailed review of the novel nanocomposites for cancer therapy. Some CNMs proved to be more successful than others in terms of stability and effectiveness at removing relative tumour volume. While the literature has been focused primarily on the CNTs and GO, other CNMs such as carbon nano-onions (CNOs) proved quite promising for targeted drug delivery using HA. Near-infrared laser photoablation is also reviewed as a primary method of cancer therapy-it can be used alone or in conjunction with chemotherapy to achieve promising chemo-photothermal therapy protocols. This review aims to give a background into HA and why it is a successful cancer-targeting component of current CNM-based drug delivery systems.
Collapse
Affiliation(s)
| | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 E432 Dublin, Ireland; (O.K.); (A.C.)
| |
Collapse
|
13
|
Singh G, Kaur H, Sharma A, Singh J, Alajangi HK, Kumar S, Singla N, Kaur IP, Barnwal RP. Carbon Based Nanodots in Early Diagnosis of Cancer. Front Chem 2021; 9:669169. [PMID: 34109155 PMCID: PMC8181141 DOI: 10.3389/fchem.2021.669169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Detection of cancer at an early stage is one of the principal factors associated with successful treatment outcome. However, current diagnostic methods are not capable of making sensitive and robust cancer diagnosis. Nanotechnology based products exhibit unique physical, optical and electrical properties that can be useful in diagnosis. These nanotech-enabled diagnostic representatives have proved to be generally more capable and consistent; as they selectively accumulated in the tumor site due to their miniscule size. This article rotates around the conventional imaging techniques, the use of carbon based nanodots viz Carbon Quantum Dots (CQDs), Graphene Quantum Dots (GQDs), Nanodiamonds, Fullerene, and Carbon Nanotubes that have been synthesized in recent years, along with the discovery of a wide range of biomarkers to identify cancer at early stage. Early detection of cancer using nanoconstructs is anticipated to be a distinct reality in the coming years.
Collapse
Affiliation(s)
- Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Harinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Santosh Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
14
|
Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021; 16:1681-1706. [PMID: 33688185 PMCID: PMC7936533 DOI: 10.2147/ijn.s299448] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
The unique properties of carbon nanotubes (CNTs) (such as their high surface to volume ratios, enhanced conductivity and strength, biocompatibility, ease of functionalization, optical properties, etc.) have led to their consideration to serve as novel drug and gene delivery carriers. CNTs are effectively taken up by many different cell types through several mechanisms. CNTs have acted as carriers of anticancer molecules (including docetaxel (DTX), doxorubicin (DOX), methotrexate (MTX), paclitaxel (PTX), and gemcitabine (GEM)), anti-inflammatory drugs, osteogenic dexamethasone (DEX) steroids, etc. In addition, the unique optical properties of CNTs have led to their use in a number of platforms for improved photo-therapy. Further, the easy surface functionalization of CNTs has prompted their use to deliver different genes, such as plasmid DNA (PDNA), micro-RNA (miRNA), and small interfering RNA (siRNA) as gene delivery vectors for various diseases such as cancers. However, despite all of these promises, the most important continuous concerns raised by scientists reside in CNT nanotoxicology and the environmental effects of CNTs, mostly because of their non-biodegradable state. Despite a lack of widespread FDA approval, CNTs have been studied for decades and plenty of in vivo and in vitro reports have been published, which are reviewed here. Lastly, this review covers the future research necessary for the field of CNT medicine to grow even further.
Collapse
Affiliation(s)
- Hossein Zare
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Biomaterials Group, Materials Science and Engineering Department, Iran University of Science and Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - Mohammad Ghanbari
- School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, MA, Iran
| | - Thomas J Webster
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, MA, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ebrahim Mostafavi
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, MA, Iran
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Zhang J, Liu Z, Zhou S, Teng Y, Zhang X, Li J. Novel Span-PEG Multifunctional Ultrasound Contrast Agent Based on CNTs as a Magnetic Targeting Factor and a Drug Carrier. ACS OMEGA 2020; 5:31525-31534. [PMID: 33344804 PMCID: PMC7745219 DOI: 10.1021/acsomega.0c03325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 05/15/2023]
Abstract
Based on the targeting of ferroferric oxide (Fe3O4) and the drug-loading property of carbon nanotubes (CNTs), a novel Span-PEG-composited Fe3O4-CNTs-DOX multifunctional ultrasound contrast agent was designed and applied to tumor lesions. In situ liquid phase synthesis was employed to prepare the Fe3O4-CNTs magnetic targeting complex, and the physical method was used to obtain the Fe3O4-CNTs-DOX complex by loading doxorubicin (DOX) onto Fe3O4-CNTs. The targeted drug-loading complex Fe3O4-CNTs-DOX was combined with the membrane material of Span-PEG by the acoustic vibration cavitation method. The maximum tolerance for Span-PEG-composited Fe3O4-CNTs-DOX microbubbles was 450 times higher, which has good safety. The loading rate of DOX in the obtained composite microbubbles was 17.02%. The proliferation inhibition rate of Span-PEG-composited Fe3O4-CNTs-DOX microbubbles on liver cancer SMMC-7721 cells reached 48.3%. Span-PEG-composited Fe3O4-CNTs-DOX microbubbles could significantly enhance ultrasonic imaging and enrich at a specific location under an external magnetic field, and the extended imaging time could ensure the effective observation and diagnosis of lesions.
Collapse
Affiliation(s)
- Jie Zhang
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Zhongtao Liu
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Shujing Zhou
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Yang Teng
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Xiangyu Zhang
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| | - Jinjing Li
- Pharmacy College, Jiamusi university, Jiamusi 154007, China
| |
Collapse
|
16
|
Sheikhpour M, Naghinejad M, Kasaeian A, Lohrasbi A, Shahraeini SS, Zomorodbakhsh S. The Applications of Carbon Nanotubes in the Diagnosis and Treatment of Lung Cancer: A Critical Review. Int J Nanomedicine 2020; 15:7063-7078. [PMID: 33061368 PMCID: PMC7522408 DOI: 10.2147/ijn.s263238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The importance of timely diagnosis and the complete treatment of lung cancer for many people with this deadly disease daily increases due to its high mortality. Diagnosis and treatment with helping the nanoparticles are useful, although they have reasonable harms. This article points out that the side effects of using carbon nanotube (CNT) in this disease treatment process such as inflammation, fibrosis, and carcinogenesis are very problematic. Toxicity can reduce to some extent using the techniques such as functionalizing to proper dimensions as a longer length, more width, and greater curvature. The targeted CNT sensors can be connected to various modified vapors. In this regard, with helping this method, screening makes non-invasive diagnosis possible. Researchers have also found that nanoparticles such as CNTs could be used as carriers to direct drug delivery, especially with chemotherapy drugs. Most of these carriers were multi-wall carbon nanotubes (MWCNT) used for cancerous cell targeting. The results of laboratory and animal researches in the field of diagnosis and treatment became very desirable and hopeful. The collection of researches summarized has highlighted the requirement for a detailed assessment which includes CNT dose, duration, method of induction, etc., to achieve the most controlled conditions for animal and human studies. In the discussion section, 4 contradictory issues are discussed which are invited researchers to do more research to get clearer results.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Naghinejad
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Armaghan Lohrasbi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shahab Zomorodbakhsh
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| |
Collapse
|
17
|
Panigrahi BK, Nayak AK. Carbon Nanotubes: An Emerging Drug Delivery Carrier in Cancer Therapeutics. Curr Drug Deliv 2020; 17:558-576. [PMID: 32384030 DOI: 10.2174/1567201817999200508092821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/12/2019] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The scope of nanotechnology has been extended to almost every sphere of our daily life. As a result of this, nanocarriers like Carbon Nanotubes (CNTs) are gaining considerable attention for their use in various therapeutic and diagnostic applications. OBJECTIVE The objective of the current article is to review various important features of CNTs that make them as efficient carriers for anticancer drug delivery in cancer therapeutics. METHODS In this review article, different works of literature are reported on various prospective applications of CNTs in the targeting of multiple kinds of cancerous cells of different organs via; the loading of various anticancer agents. RESULTS Actually, CNTs are the 3rd allotropic type of the carbon-fullerenes that are a part of the cylindrical tubular architecture. CNTs possess some excellent physicochemical characteristics and unique structural features that provide an effective platform to deliver anticancer drugs to target specific sites for achieving a high level of therapeutic effectiveness even in cancer therapeutics. For better results, CNTs are functionalized and modified with different classes of therapeutically bioactive molecules via; the formation of stable covalent bonding or by the use of supramolecular assemblies based on the noncovalent interaction(s). In recent years, the applications of CNTs for the delivery of various kinds of anticancer drugs and targeting of tumor sites have been reported by various research groups. CONCLUSION CNTs represent an emerging nanocarrier material for the delivery and targeting of numerous anticancer drugs in cancer therapeutics.
Collapse
Affiliation(s)
- Biman Kumar Panigrahi
- Department of Pharmacology, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj-757086, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj-757086, Odisha, India
| |
Collapse
|
18
|
Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin Cancer Biol 2019; 69:109-128. [PMID: 31891780 DOI: 10.1016/j.semcancer.2019.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Collapse
|
19
|
|
20
|
Salas-Treviño D, Saucedo-Cárdenas O, Loera-Arias MDJ, Rodríguez-Rocha H, García-García A, Montes-de-Oca-Luna R, Piña-Mendoza EI, Contreras-Torres FF, García-Rivas G, Soto-Domínguez A. Hyaluronate Functionalized Multi-Wall Carbon Nanotubes Filled with Carboplatin as a Novel Drug Nanocarrier against Murine Lung Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1572. [PMID: 31698759 PMCID: PMC6915394 DOI: 10.3390/nano9111572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022]
Abstract
Carbon nanotubes (CNTs) have emerged in recent years as a potential option for drug delivery, due to their high functionalization capacity. Biocompatibility and selectivity using tissue-specific biomolecules can optimize the specificity, pharmacokinetics and stability of the drug. In this study, we design, develop and characterize a drug nanovector (oxCNTs-HA-CPT) conjugating oxidated multi-wall carbon nanotubes (oxCNTs) with hyaluronate (HA) and carboplatin (CPT) as a treatment in a lung cancer model in vitro. Subsequently, we exposed TC-1 and NIH/3T3 cell lines to the nanovectors and measured cell uptake, cell viability, and oxidative stress induction. The characterization of oxCNTs-HA-CPT reveals that on their surface, they have HA. On the other hand, oxCNTs-HA-CPT were endocytosed in greater proportion by tumor cells than by fibroblasts, and likewise, the cytotoxic effect was significantly higher in tumor cells. These results show the therapeutic potential that nanovectors possess; however, future studies should be carried out to determine the death pathways involved, as well as their effect on in vivo models.
Collapse
Affiliation(s)
- Daniel Salas-Treviño
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, Mexico; (D.S.-T.); (O.S.-C.); (M.d.J.L.-A.); (H.R.-R.); (A.G.-G.); (R.M.-d.-O.-L.); (E.I.P.-M.)
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, Mexico; (D.S.-T.); (O.S.-C.); (M.d.J.L.-A.); (H.R.-R.); (A.G.-G.); (R.M.-d.-O.-L.); (E.I.P.-M.)
- Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste (CIBIN) del IMSS, Monterrey C.P. 64720, Mexico
| | - María de Jesús Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, Mexico; (D.S.-T.); (O.S.-C.); (M.d.J.L.-A.); (H.R.-R.); (A.G.-G.); (R.M.-d.-O.-L.); (E.I.P.-M.)
| | - Humberto Rodríguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, Mexico; (D.S.-T.); (O.S.-C.); (M.d.J.L.-A.); (H.R.-R.); (A.G.-G.); (R.M.-d.-O.-L.); (E.I.P.-M.)
| | - Aracely García-García
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, Mexico; (D.S.-T.); (O.S.-C.); (M.d.J.L.-A.); (H.R.-R.); (A.G.-G.); (R.M.-d.-O.-L.); (E.I.P.-M.)
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, Mexico; (D.S.-T.); (O.S.-C.); (M.d.J.L.-A.); (H.R.-R.); (A.G.-G.); (R.M.-d.-O.-L.); (E.I.P.-M.)
| | - Edgar I. Piña-Mendoza
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, Mexico; (D.S.-T.); (O.S.-C.); (M.d.J.L.-A.); (H.R.-R.); (A.G.-G.); (R.M.-d.-O.-L.); (E.I.P.-M.)
| | | | | | - Adolfo Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey C.P. 64460, Mexico; (D.S.-T.); (O.S.-C.); (M.d.J.L.-A.); (H.R.-R.); (A.G.-G.); (R.M.-d.-O.-L.); (E.I.P.-M.)
| |
Collapse
|
21
|
Dlamini N, Mukaya HE, Van Zyl RL, Chen CT, Zeevaart RJ, Mbianda XY. Synthesis, characterization, kinetic drug release and anticancer activity of bisphosphonates multi-walled carbon nanotube conjugates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109967. [PMID: 31499981 DOI: 10.1016/j.msec.2019.109967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
The statistical proof that most forms of cancer metastasize to bone tissue has redirected research focus to the development of efficient secondary bone cancer treatment regimens. Bisphosphonates (BPs) have been earmarked as a drug of choice for bone metastasis. However, they have a shortcoming of being released before reaching targeted sites due to their low molecular weight. In haste to attain increased efficacy, there is a tendency for drug overdose to occur, resulting in systemic toxicity. One way to curb this is by employing drug delivery systems for targeted and controlled release of the drugs. Having been explored as versatile and innovative drug carriers, multi-walled carbon nanotubes (MWCNTs) have emerged as potential drug delivery systems. Hence, in the present study, alendronate, neridronate and pamidronate are three classes of bisphosphonates that were conjugated onto multi-walled carbon nanotubes. Conjugation was confirmed by characterization techniques including SEM, TEM, EDX, FTIR, Raman and TGA. Drug release studies were also conducted at pH 1.2, 5.5 and 7.4 to study the mechanism of release for neridronate. Results obtained were fitted into Zero order (42.6%), Higuchi (26%) and Korsmeyer-Peppas (22%). The best models describing the release of neridronate from MWCNTs were Zero order, Higuchi and Korsmeyer-Peppas at pH 1.2, 5.5 and 7.4, respectively. A tetrazolium cell viability assay was performed to assess the anticancer activity of the MWCNTs conjugated BPs.
Collapse
Affiliation(s)
- N Dlamini
- Department of Applied Chemistry; Faculty of Science; University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, South Africa
| | - H E Mukaya
- Department of Applied Chemistry; Faculty of Science; University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, South Africa
| | - R L Van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology; WITS Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - C T Chen
- Pharmacology Division, Department of Pharmacy and Pharmacology; WITS Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R J Zeevaart
- Radiochemistry, NECSA (South African Nuclear Energy Corporation Ltd.), Pretoria, South Africa
| | - X Y Mbianda
- Department of Applied Chemistry; Faculty of Science; University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, South Africa.
| |
Collapse
|
22
|
Menezes BRCD, Rodrigues KF, Fonseca BCDS, Ribas RG, Montanheiro TLDA, Thim GP. Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B 2019; 7:1343-1360. [PMID: 32255006 DOI: 10.1039/c8tb02419g] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, thermal, electronic, and biological properties due to their particular atomic structure made of graphene sheets that are rolled into cylindrical tubes. Due to their outstanding properties, CNTs have been used in several technological fields. Currently, the most prominent research area of CNTs focuses on biomedical applications, using these materials to produce hybrid biosensors, drug delivery systems, and high performance composites for implants. Although a great number of research studies have already shown the advantages of CNT-based biomedical devices, their clinical use for in vivo application has not been consummated. Concerns related to their toxicity, biosafety, and biodegradation still remain. The effect of CNTs on the human body and the ecosystem is not well established, especially due to the lack of standardization of toxicological tests, which generate contradictions in the results. CNTs' toxicity must be clarified to enable the medical use of these exceptional materials in the near future. In this review, we summarize recent advances in developing biosensors, drug delivery systems, and implants using CNTs as smart biomaterials to identify pathogens, load/deliver drugs and enhance the mechanical and antimicrobial performance of implants.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Divisão de Ciências Fundamentais, Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228970, Brazil.
| | | | | | | | | | | |
Collapse
|
23
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
24
|
Jain K. Nanohybrids of Dendrimers and Carbon Nanotubes: A Benefaction or Forfeit in Drug Delivery? ACTA ACUST UNITED AC 2018. [DOI: 10.2174/2210681208666171204163622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Nanomaterials are emerging as a fascinating delivery systems being explored
for the delivery of different bioactives including drug, diagnostic agents and genetic materials
etc. Among these nanomaterials dendrimers and Carbon Nanotubes (CNTs) are being investigated
for various biomedical applications. Although both of these nanomaterials have shown great
potential in drug delivery yet their promising clinical applications are still suspected due to problems
like toxicity, dispersibility etc. Scientists have been investigating the potential of nanohybrids
comprising of dendrimers and nanotubes for biomedical applications. Few reports are also available
on the toxicological profile of CNTs and dendrimers nanohybrids.
Conclusion:
The results of these investigations suggest two possibilities, first, hybrids of CNTs
and dendrimers could suppress each other’s demerits while synergizing the potentials; second, prospective
toxicity of nanohybrids on which different reports have discrimination in results. Future
biomedical applications of CNTs-dendrimers nanohybrids require a thorough investigation on their
toxicity and biological interactions.
Collapse
Affiliation(s)
- Keerti Jain
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, U.P, India
| |
Collapse
|
25
|
Guo B, Liao C, Liu X, Yi J. Preliminary study on conjugation of formononetin with multiwalled carbon nanotubes for inducing apoptosis via ROS production in HeLa cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2815-2826. [PMID: 30233144 PMCID: PMC6135071 DOI: 10.2147/dddt.s169767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background The present work was conducted to prepare and evaluate multiwalled carbon nanotube–formononetin (MWCNT-FMN) composite for sustained delivery and inducing apop-tosis via reactive oxygen species (ROS) production in HeLa cells. Methods The composite was prepared by solution mixing with short carboxylic group-functionalized multiwalled carbon nanotubes (MWCNT-COOH). Then the composite was characterized by laser particle size analysis, Fourier transform infrared spectrometry, X-ray diffractometry, differential scanning calorimetry, and scanning electron microscopy. Drug release rates in vitro were determined by dialysis method. The in vitro cytotoxicity study was performed using water soluble tetrazolium assay. The cellular apoptosis assay, ROS, and mitochondrial membrane potential (MMP) of HeLa cells were investigated by acridine orange and ethidium bromide double dye, 2′,7′-dichlorodihydrofluorescein diacetate, and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide probe, respectively. Results The entrapment efficiency was 28.77%±0.15%, and the loading capacity was 12.05%±0.20%. The release of MWCNT-FMN was sustained, and the cumulative release rate of formononetin (FMN) from MWCNT-COOH was higher at pH 7.4 than at pH 5.3. The in vitro cytotoxicity assay demonstrated that FMN, MWCNT-COOH, and MWCNT-FMN had no significant effects on the proliferation and viability of mouse fibroblast 3T3 cells over 48 hours, while the cell growth inhibition of the three samples showed concentration-dependent for HeLa cells. Biological assay suggested FMN and MWCNT-FMN could induce apoptosis in HeLa cells, meanwhile the cells exhibited stronger ROS signal and more depolarized MMP than that of the control group. Conclusion These results preliminarily demonstrated that MWCNT-FMN exerted anticancer efficacy through cellular apoptosis induced by ROS-mediated mitochondrial dysfunctions in HeLa cells.
Collapse
Affiliation(s)
- Bohong Guo
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| | - Cancheng Liao
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| | - Xiaohong Liu
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| | - Jun Yi
- Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China,
| |
Collapse
|
26
|
Tan JM, Saifullah B, Kura AU, Fakurazi S, Hussein MZ. Incorporation of Levodopa into Biopolymer Coatings Based on Carboxylated Carbon Nanotubes for pH-Dependent Sustained Release Drug Delivery. NANOMATERIALS 2018; 8:nano8060389. [PMID: 29857532 PMCID: PMC6027427 DOI: 10.3390/nano8060389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Four drug delivery systems were formulated by non-covalent functionalization of carboxylated single walled carbon nanotubes using biocompatible polymers as coating agent (i.e., Tween 20, Tween 80, chitosan or polyethylene glycol) for the delivery of levodopa, a drug used in Parkinson’s disease. The chemical interaction between the coating agent and carbon nanotubes-levodopa conjugate was confirmed by Fourier transform infrared (FTIR) and Raman studies. The drug release profiles were revealed to be dependent upon the type of applied coating material and this could be further adjusted to a desired rate to meet different biomedical conditions. In vitro drug release experiments measured using UV-Vis spectrometry demonstrated that the coated conjugates yielded a more prolonged and sustained release pattern compared to the uncoated conjugate. Cytotoxicity of the formulated conjugates was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using normal mouse embryonic fibroblast 3T3 cell line. Compared to the non-coated conjugate, the MTT data indicated that the coating procedure improved the biocompatibility of all systems by 34–41% when the concentration used exceeded 100 μg/mL. In conclusion, the comprehensive results of this study suggest that carbon nanotubes-based drug carrier coated with a suitable biomaterial may possibly be a potential nanoparticle system that could facilitate drug delivery to the brain with tunable physicochemical properties.
Collapse
Affiliation(s)
- Julia Meihua Tan
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Aminu Umar Kura
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience (IBS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Sharida Fakurazi
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience (IBS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
27
|
Field LD, Walper SA, Susumu K, Lasarte-Aragones G, Oh E, Medintz IL, Delehanty JB. A Quantum Dot-Protein Bioconjugate That Provides for Extracellular Control of Intracellular Drug Release. Bioconjug Chem 2018; 29:2455-2467. [DOI: 10.1021/acs.bioconjchem.8b00357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lauren D. Field
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Guillermo Lasarte-Aragones
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- George Mason University, College of Sciences, Fairfax, Virginia 22030 United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
28
|
Rathee D, Lather V, Grewal AS, Dureja H. Targeting matrix metalloproteinases with novel diazepine substituted cinnamic acid derivatives: design, synthesis, in vitro and in silico studies. Chem Cent J 2018; 12:41. [PMID: 29679218 PMCID: PMC5910448 DOI: 10.1186/s13065-018-0411-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is the notable cause of cancer associated deaths worldwide. Recent studies revealed that the expression of matrix metalloproteinases (MMPs) is extremely high in lung tumors compared with non-malignant lung tissue. MMPs (-2 and -9) play an important part in tumor development and angiogenesis, which suggests that creating potent MMP-2 and -9 inhibitors, should be an important goal in lung cancer therapy. In the present study, an effort has been made to develop new anti-metastatic and anti-invasive agents, wherein a series of novel diazepine substituted cinnamic acid derivatives were designed, synthesized and assayed for their inhibitory activities on MMP-2 and MMP-9. These derivatives were prepared via microwave assisted reaction of tert-butyl (3-cinnamamidopropyl)carbamate derivatives mixed with 2,3-dibromopropanoic acid and potassium carbonate was added to obtain 4-(tert-butoxycarbonyl)-1-cinnamoyl-1,4-diazepane-2-carboxylic acid derivatives. The newly synthesized compounds were characterized by IR, NMR and mass spectroscopy. All the tested compounds showed good to excellent cytotoxic potential against A549 human lung cancer cells. The active compounds displaying good activity were further examined for the inhibitory activity against MMPs (-2 and -9). In addition, the structure and anticancer activity relationship were further supported by in silico docking studies of the active compounds against MMP-2 and MMP-9.![]()
Collapse
Affiliation(s)
- Dharmender Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Viney Lather
- Department of Pharmaceutical Chemistry, JCDM College of Pharmacy, Sirsa, Haryana, 125055, India
| | - Ajmer Singh Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, 140401, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
29
|
Microparticles prepared with 50–190 kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydr Polym 2017; 174:421-431. [DOI: 10.1016/j.carbpol.2017.06.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
|
30
|
Nikfar Z, Shariatinia Z. Phosphate functionalized (4,4)-armchair CNTs as novel drug delivery systems for alendronate and etidronate anti-osteoporosis drugs. J Mol Graph Model 2017; 76:86-105. [DOI: 10.1016/j.jmgm.2017.06.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 11/26/2022]
|
31
|
Kong F, Zhang R, Zhao X, Zheng G, Wang Z, Wang P. Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:465-474. [PMID: 28883751 PMCID: PMC5587597 DOI: 10.4196/kjpp.2017.21.5.465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/09/2016] [Accepted: 02/26/2017] [Indexed: 12/24/2022]
Abstract
The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The 10 µg/ml of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or 10 µg/ml of PA also had no effect on MRC-5 normal cells. PA-L (5 µg/ml) and PA-H (10 µg/ml) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res (5 µg/ml)+PA-H (10 µg/ml) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, NF-κB, Bcl-2, Bcl-xL, procollagen I, collagen I, collagen III and CTGF, TNF-α, IL-1β, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, IκB-α, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA.
Collapse
Affiliation(s)
- Fanhua Kong
- School of Medicine, Shandong University, Jinan 250000, Shandong, China.,Department of Thoracic Surgery, Taian City Central Hospital, Taian 271000, Shandong, China.,Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250000, Shandong, China
| | - Runqi Zhang
- Department of Thoracic Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Xudong Zhao
- Department of Gynaecology and Obstetrics, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Guanlin Zheng
- Taian Vocational College of Nursing, Taian 271000, Shandong, China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250000, Shandong, China
| | - Peng Wang
- Department of Thoracic Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| |
Collapse
|
32
|
Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1289-1304. [DOI: 10.1016/j.msec.2017.02.132] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/18/2016] [Accepted: 02/24/2017] [Indexed: 12/25/2022]
|
33
|
Bio-synthesis of peppermint leaf extract polyphenols capped nano-platinum and their in-vitro cytotoxicity towards colon cancer cell lines (HCT 116). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1012-1016. [PMID: 28531972 DOI: 10.1016/j.msec.2017.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
Bio-synthesis of Platinum nanoparticles (Pt NPs) was achieved using Mentha piperita (Peppermint) aqueous leaf extract. Further the ecofriendly synthesized Pt NPs were subjected for various characterization techniques. The characterization results inferred that the green synthesized Pt NPs were said to be in average particle size of 54.3nm. The particles are in spherical shape and it has been entrapped with secondary metabolites (Polyphenols). The polyphenols capped Pt NPs were screened for cytotoxicity against human colon cancer cell line (HCT 116). The results inferred that the ecofriendly synthesized Pt NPs decrease the viability of cancer cells at lower concentrations with IC50 value of 20μg/mL.
Collapse
|
34
|
Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017; 5:901-952. [DOI: 10.1039/c7bm00008a] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with four different types of carbon allotrope based nanosystems and summarizes the results of recent studies that are likely to have applications in cancer theranostics. We discuss the applications of these nanosystems for cancer imaging, drug delivery, hyperthermia, and PDT/TA/PA.
Collapse
Affiliation(s)
- Shine Augustine
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology
- Delhi Technological University
- Delhi 110042
- India
| | - Manish Srivastava
- Department of Physics & Astrophysics
- University of Delhi
- Delhi 110007
- India
| | - Monica Sharma
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Asmita Das
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Bansi D. Malhotra
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| |
Collapse
|