1
|
Huang H, Liu X, Wang J, Suo M, Zhang J, Sun T, Wang H, Liu C, Li Z. Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials. J Mater Chem B 2024; 12:4533-4552. [PMID: 38477504 DOI: 10.1039/d3tb02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Polyetheretherketone (PEEK), as a high-performance polymer, is widely used for bone defect repair due to its homogeneous modulus of elasticity of human bone, good biocompatibility, excellent chemical stability and projectability. However, the highly hydrophobic surface of PEEK is biologically inert, which makes it difficult for cells and proteins to attach, and is accompanied by the development of infections that ultimately lead to failure of PEEK implants. In order to further enhance the potential of PEEK as an orthopedic implant, researchers have explored modification methods such as surface modification by physical and chemical means and the addition of bioactive substances to PEEK-based materials to enhance the mechanical properties, osteogenic activity and antimicrobial properties of PEEK. However, these current modification methods still have obvious shortcomings in terms of cost, maneuverability, stability and cytotoxicity, which still need to be explored by researchers. This paper reviews some of the modification methods that have been used to improve the performance of PEEK over the last three years in anticipation of the need for researchers to design PEEK orthopedic implants that better meet clinical needs.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chengde Liu
- Department of Polymer Science & Materials, Dalian University of Technology, Dalian, People's Republic of China.
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| |
Collapse
|
2
|
Xu Z, Hui J, Lv J, Wei D, Yan Z, Zhang H, Wang J. An investigation of methods to enhance adhesion of conductive layer and dielectric substrate for additive manufacturing of electronics. Sci Rep 2024; 14:10351. [PMID: 38710929 DOI: 10.1038/s41598-024-61327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Additive manufacturing of conductive layers on a dielectric substrate has garnered significant interest due to its promise to produce printed electronics efficiently and its capability to print on curved substrates. A considerable challenge encountered is the conductive layer's potential peeling due to inadequate adhesion with the dielectric substrate, which compromises the durability and functionality of the electronics. This study strives to facilitate the binding force through dielectric substrate surface modification using concentrated sulfuric acid and ultraviolet (UV) laser treatment. First, polyetheretherketone (PEEK) and nanoparticle silver ink were employed as the studied material. Second, the surface treatment of PEEK substrates was conducted across six levels of sulfuric acid exposure time and eight levels of UV laser scanning velocity. Then, responses such as surface morphology, roughness, elemental composition, chemical bonding characteristics, water contact angle, and surface free energy (SFE) were assessed to understand the effects of these treatments. Finally, the nanoparticle silver ink layer was deposited on the PEEK surface, and the adhesion force measured using a pull-off adhesion tester. Results unveiled a binding force of 0.37 MPa on unmodified surface, which escalated to 1.99 MPa with sulfuric acid treatment and 2.21 MPa with UV laser treatment. Additionally, cross-approach treatment investigations revealed that application sequence significantly impacts results, increasing binding force to 2.77 MPa. The analysis further delves into the influence mechanism of the surface modification on the binding force, elucidating that UV laser and sulfuric acid surface treatment methods hold substantial promise for enhancing the binding force between heterogeneous materials in the additive manufacturing of electronics.
Collapse
Affiliation(s)
- Zhiguang Xu
- Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, China
| | - Jizhuang Hui
- Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, China.
| | - Jingxiang Lv
- Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, China
| | - Dongjie Wei
- Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, China
| | - Zhiqiang Yan
- Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, China
| | - Hao Zhang
- Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, China
| | - Junjie Wang
- Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, China
| |
Collapse
|
3
|
Surface Treatments of PEEK for Osseointegration to Bone. Biomolecules 2023; 13:biom13030464. [PMID: 36979399 PMCID: PMC10046336 DOI: 10.3390/biom13030464] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Polymers, in general, and Poly (Ether-Ether-Ketone) (PEEK) have emerged as potential alternatives to conventional osseous implant biomaterials. Due to its distinct advantages over metallic implants, PEEK has been gaining increasing attention as a prime candidate for orthopaedic and dental implants. However, PEEK has a highly hydrophobic and bioinert surface that attenuates the differentiation and proliferation of osteoblasts and leads to implant failure. Several improvements have been made to the osseointegration potential of PEEK, which can be classified into three main categories: (1) surface functionalization with bioactive agents by physical or chemical means; (2) incorporation of bioactive materials either as surface coatings or as composites; and (3) construction of three-dimensionally porous structures on its surfaces. The physical treatments, such as plasma treatments of various elements, accelerated neutron beams, or conventional techniques like sandblasting and laser or ultraviolet radiation, change the micro-geometry of the implant surface. The chemical treatments change the surface composition of PEEK and should be titrated at the time of exposure. The implant surface can be incorporated with a bioactive material that should be selected following the desired use, loading condition, and antimicrobial load around the implant. For optimal results, a combination of the methods above is utilized to compensate for the limitations of individual methods. This review summarizes these methods and their combinations for optimizing the surface of PEEK for utilization as an implanted biomaterial.
Collapse
|
4
|
Ma T, Zhang J, Sun S, Meng W, Zhang Y, Wu J. Current treatment methods to improve the bioactivity and bonding strength of PEEK for dental application: A systematic review. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Pidhatika B, Widyaya VT, Nalam PC, Swasono YA, Ardhani R. Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers (Basel) 2022; 14:polym14245526. [PMID: 36559893 PMCID: PMC9787615 DOI: 10.3390/polym14245526] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
This comprehensive review focuses on polyetheretherketone (PEEK), a synthetic thermoplastic polymer, for applications in dentistry. As a high-performance polymer, PEEK is intrinsically robust yet biocompatible, making it an ideal substitute for titanium-the current gold standard in dentistry. PEEK, however, is also inert due to its low surface energy and brings challenges when employed in dentistry. Inert PEEK often falls short of achieving a few critical requirements of clinical dental materials, such as adhesiveness, osseoconductivity, antibacterial properties, and resistance to tribocorrosion. This study aims to review these properties and explore the various surface modification strategies that enhance the performance of PEEK. Literatures searches were conducted on Google Scholar, Research Gate, and PubMed databases using PEEK, polyetheretherketone, osseointegration of PEEK, PEEK in dentistry, tribology of PEEK, surface modifications, dental applications, bonding strength, surface topography, adhesive in dentistry, and dental implant as keywords. Literature on the topics of surface modification to increase adhesiveness, tribology, and osseointegration of PEEK were included in the review. The unavailability of full texts was considered when excluding literature. Surface modifications via chemical strategies (such as sulfonation, plasma treatment, UV treatment, surface coating, surface polymerization, etc.) and/or physical approaches (such as sandblasting, laser treatment, accelerated neutral atom beam, layer-by-layer assembly, particle leaching, etc.) discussed in the literature are summarized and compared. Further, approaches such as the incorporation of bioactive materials, e.g., osteogenic agents, antibacterial agents, etc., to enhance the abovementioned desired properties are explored. This review presents surface modification as a critical and essential approach to enhance the biological performance of PEEK in dentistry by retaining its mechanical robustness.
Collapse
Affiliation(s)
- Bidhari Pidhatika
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
- Collaborative Research Center for Biomedical Scaffolds, National Research and Innovation Agency of the Republic Indonesia and Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Vania Tanda Widyaya
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Prathima C. Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260-1900, USA
| | - Yogi Angga Swasono
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
- Correspondence:
| |
Collapse
|
6
|
Rendas P, Figueiredo L, Machado C, Mourão A, Vidal C, Soares B. Mechanical performance and bioactivation of 3D-printed PEEK for high-performance implant manufacture: a review. Prog Biomater 2022; 12:89-111. [PMID: 36496542 PMCID: PMC10154446 DOI: 10.1007/s40204-022-00214-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Polyetheretherketone (PEEK) has stood out as the leading high-performance thermoplastic for the replacement of metals in orthopaedic, trauma and spinal implant applications due to its high biocompatibility and mechanical properties. Despite its potential for custom-made medical devices, 3D-printed PEEK's mechanical performance depends on processing parameters and its bioinertness may hinder bone opposition to the implant. Concerning these challenges, this review focuses on the available literature addressing the improvement of the mechanical performance of PEEK processed through "fused filament fabrication" (FFF) along with literature on bioactivation of PEEK for improved osseointegration. The reviewed research suggests that improvements can be achieved in mechanical performance of 3D-printed PEEK with adequate FFF parametrization while different bioactivation techniques can be used to improve the bioperformance of 3D-printed PEEK. The adequate approaches towards these procedures can increase PEEK's potential for the manufacture of high-performance custom-made implantable devices that display improved bone-implant integration and prevent stress shielding of the treated bone.
Collapse
|
7
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
8
|
Siraj N, Hashmi SAR, Verma S. State‐of‐the‐art review on the high‐performance poly (ether ether ketone) composites for mechanical, tribological and bioactive characteristics. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naved Siraj
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, India & CSIR‐Advanced Materials and Processes Research Institute (AMPRI) Bhopal India
- CIPET: Center for Skilling and Technical Support Bhopal India
| | - Syed Azhar Rashid Hashmi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, India & CSIR‐Advanced Materials and Processes Research Institute (AMPRI) Bhopal India
| | - Sarika Verma
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002, India & CSIR‐Advanced Materials and Processes Research Institute (AMPRI) Bhopal India
| |
Collapse
|
9
|
Yu D, Lei X, Zhu H. Modification of polyetheretherketone (PEEK) physical features to improve osteointegration. J Zhejiang Univ Sci B 2022; 23:189-203. [PMID: 35261215 DOI: 10.1631/jzus.b2100622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polyetheretherketone (PEEK) has been widely applied in orthopedics because of its excellent mechanical properties, radiolucency, and biocompatibility. However, the bioinertness and poor osteointegration of PEEK have greatly limited its further application. Growing evidence proves that physical factors of implants, including their architecture, surface morphology, stiffness, and mechanical stimulation, matter as much as the composition of their surface chemistry. This review focuses on the multiple strategies for the physical modification of PEEK implants through adjusting their architecture, surface morphology, and stiffness. Many research findings show that transforming the architecture and incorporating reinforcing fillers into PEEK can affect both its mechanical strength and cellular responses. Modified PEEK surfaces at the macro scale and micro/nano scale have positive effects on cell-substrate interactions. More investigations are necessary to reach consensus on the optimal design of PEEK implants and to explore the efficiency of various functional implant surfaces. Soft-tissue integration has been ignored, though evidence shows that physical modifications also improve the adhesion of soft tissue. In the future, ideal PEEK implants should have a desirable topological structure with better surface hydrophilicity and optimum surface chemistry.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyue Lei
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
10
|
Flejszar M, Chmielarz P, Gießl M, Wolski K, Smenda J, Zapotoczny S, Cölfen H. A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Surface Modification of Carbon Fiber-Polyetheretherketone Composite to Impart Bioactivity by Using Apatite Nuclei. MATERIALS 2021; 14:ma14216691. [PMID: 34772217 PMCID: PMC8587029 DOI: 10.3390/ma14216691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
The authors aimed to impart the apatite-forming ability to 50 wt% carbon fiber-polyetheretherketone composite (50C-PEEK), which has more suitable mechanical properties as artificial bone materials than pure PEEK. First, the 50C-PEEK was treated with sulfuric acid in a short time to form pores on the surface. Second, the surface of the 50C-PEEK was treated with oxygen plasma to improve the hydrophilicity. Finally, fine particles of calcium phosphate, which the authors refer to as “apatite nuclei”, were precipitated on the surface of the 50C-PEEK by soaking in an aqueous solution containing multiple inorganic ions such as phosphate and calcium (modified-SBF) at pH 8.20, 25 °C. The 50C-PEEK without the modified-SBF treatment did not show the formation of apatitic phase even after immersion in simulated body fluid (SBF) for 7 days. The 50C-PEEK treated with the modified-SBF showed the formation of apatitic phase on the entire surface within 1 day in the SBF. The apatite nuclei-precipitated 50C-PEEK will be expected as a new artificial bone material with high bioactivity that is obtained without complicated fabrication processes.
Collapse
|
12
|
Prochor P, Mierzejewska ŻA. Bioactivity of PEEK GRF30 and Ti6Al4V SLM in Simulated Body Fluid and Hank's Balanced Salt Solution. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2059. [PMID: 33921828 PMCID: PMC8073172 DOI: 10.3390/ma14082059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
In recent years, scientists have defined two main paths for orthopedic implant fabrication: searching for new materials with properties closest to natural bone in order to reduce the stress-shielding effect or creating individually adapted geometry of the implant with the use and Rapid Prototyping methods. Therefore, materials such as PEEK GRF30 and Ti6Al4V selective laser melting (SLM) are of interest. They are defined as materials suitable for implants, however, the knowledge of their bioactivity, a feature which is one of the most desirable properties of biomaterials, is still insufficient. Using Simulated Body Fluid and Hank's Balanced Salt Solution, the bioactivity of PEEK GRF30 and Ti6Al4V SLM was assessed, as well as commercial Ti6Al4V as a reference material. Ten cylindrical samples of each material were prepared and immersed in solutions per period from 2 to 28 days at 37 °C. Optical analysis of the changes on the examined surfaces suggested that right after 2-day crystals with different morphologies were formed on each material. Further analysis of the chemical composition of the altered surfaces confirmed the formation of a calcium phosphate layer on them, however, the Ca/P ratio was slightly different from 1.67. On the basis of the obtained results, it can be concluded that both PEEK GRF30 and Ti6Al4V SLM are characterized by appropriate-comparable to Ti6Al4V-bioactivity.
Collapse
Affiliation(s)
| | - Żaneta Anna Mierzejewska
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, 15-351 Białystok, Poland;
| |
Collapse
|
13
|
Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration-Resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 2021; 109:1909-1923. [PMID: 33871951 DOI: 10.1002/jbm.b.34835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
As life expectancy and the age of the general population increases so does the need for improved implants. A major contributor to the failure of implants is poor osseointegration, which is typically described as the direct connection between bone and implant. This leads to unnecessary complications and an increased burden on the patient population. Modification of the implant surfaces through novel techniques, such as varying topography and/or applying coatings, has become a popular method to enhance the osseointegration capability of implants. Recent research has shown that particular surface features influence how bone cells interact with a material; however, it is unknown which exact features achieve optimal bone integration. In this review, current methods of modifying surfaces will be highlighted, and the resulting surface characteristics and biological responses are discussed. Review of the current strategies of surface modifications found that many coating types are more advantageous when used in combination; however, finding a surface modification that utilizes the mutual beneficial effects of important surface characteristics while still maintaining commercial viability is where future challenges exist.
Collapse
Affiliation(s)
- Kadie P Nobles
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Randall S Williamson
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
14
|
Ma H, Suonan A, Zhou J, Yuan Q, Liu L, Zhao X, Lou X, Yang C, Li D, Zhang YG. PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102977] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Gu X, Sun X, Sun Y, Wang J, Liu Y, Yu K, Wang Y, Zhou Y. Bioinspired Modifications of PEEK Implants for Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 8:631616. [PMID: 33511108 PMCID: PMC7835420 DOI: 10.3389/fbioe.2020.631616] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, polyetheretherketone (PEEK) has been increasingly employed as an implant material in clinical applications. Although PEEK is biocompatible, chemically stable, and radiolucent and has an elastic modulus similar to that of natural bone, it suffers from poor integration with surrounding bone tissue after implantation. To improve the bioactivity of PEEK, numerous strategies for functionalizing the PEEK surface and changing the PEEK structure have been proposed. Inspired by the components, structure, and function of bone tissue, this review discusses strategies to enhance the biocompatibility of PEEK implants and provides direction for fabricating multifunctional implants in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
16
|
Ma J, Liang Q, Qin W, Lartey PO, Li Y, Feng X. Bioactivity of nitric acid and calcium chloride treated carbon-fibers reinforced polyetheretherketone for dental implant. J Mech Behav Biomed Mater 2020; 102:103497. [DOI: 10.1016/j.jmbbm.2019.103497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/26/2022]
|
17
|
Li Y, Wang D, Qin W, Jia H, Wu Y, Ma J, Tang B. Mechanical properties, hemocompatibility, cytotoxicity and systemic toxicity of carbon fibers/poly(ether-ether-ketone) composites with different fiber lengths as orthopedic implants. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1709-1724. [PMID: 31464157 DOI: 10.1080/09205063.2019.1659711] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Poly(ether-ether-ketone) (PEEK) has attracted more and more attention due to its chemical resistance, biocompatibility and other properties. Furthermore, carbon fibers-PEEK composite (CF-PEEK) has been considered as a novel implant because of its high mechanical strength and elastic modulus that matching with human bones. However, the length of CF has a great influence on mechanical strength and elastic modulus of the randomly distributed chopped CF-PEEK composites. In this work, CF-PEEK composites with more than 10 times length difference of fibers (length of short CF: 150-200 μm and length of long CF: 2-3 mm) were studied. As the results shown, the mechanical strength (including tensile strength, bending strength and compressive strength) of long CF-PEEK composites were more than two times of that of short CF-PEEK composites. Meanwhile, tensile modulus and bending modulus of the two kinds of composites matched well with the modulus of human cortical bone. In addition, according to the results of cytotoxicity test and hemocompatibility assessment, it indicated that the two kinds of CF-PEEK composites showed mild toxicity and no hemolytic reaction. And the histopathological section of systemic toxicity test showed that the CF-PEEK composites had no obvious acute toxicity to organisms.
Collapse
Affiliation(s)
- Ying Li
- Changhai Hospital, The Second Military Medical University , Yangpu Qu , China.,Dental Medicine MDT Center, The First Hospital of Shanxi Medical University , Taiyuan , China
| | - Dalin Wang
- Department of Stomatology, Changhai Hospital, The Second Military Medical University , Yangpu Qu , China
| | - Wen Qin
- Institute of New Carbon Materials, Taiyuan University of Technology , Taiyuan , China
| | - Hui Jia
- Department of Stomatology, Shanxi Medical University , Taiyuan , China
| | - Yang Wu
- Department of Stomatology, Shanxi Medical University , Taiyuan , China
| | - Jing Ma
- Institute of New Carbon Materials, Taiyuan University of Technology , Taiyuan , China
| | - Bin Tang
- Institute of New Carbon Materials, Taiyuan University of Technology , Taiyuan , China
| |
Collapse
|
18
|
Jung HD, Jang TS, Lee JE, Park SJ, Son Y, Park SH. Enhanced bioactivity of titanium-coated polyetheretherketone implants created by a high-temperature 3D printing process. Biofabrication 2019; 11:045014. [PMID: 31365916 DOI: 10.1088/1758-5090/ab376b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyetheretherketone (PEEK), one of the potential alternatives to metallic materials for implants, necessarily involves high temperature process conditions to be three-dimensionally (3D) printed. We developed a 3D printing setup equipped with thermally stabilized modules of the printing nozzle and building chamber, by which the PEEK implants could be successfully manufactured. Under optimized printing conditions, the maximal mechanical strength of the 3D printed sample attained over 80% of the original bulk property of PEEK. To enhance the interfacial biocompatibility, the as-printed implants were postprocessed with titanium (Ti) sputtering. The Ti-coated surfaces were evaluated through characterization studies of x-ray diffraction spectra, microscopic topographies, and wetting properties. For the in vitro tests, preosteoblasts were cultured on the developed PEEK-Ti structures and evaluated in terms of cell adhesion, proliferation, and osteogenic differentiation. In addition, the bone regeneration capability of the PEEK-Ti implants was confirmed by animal experiments using a rabbit tibia defect model for a period of 12 weeks. In the overall in vitro and in vivo tests, we confirmed the superior bioactivities of the Ti-modified and 3D printed interface by comparisons between the samples of machined and printed samples with or without Ti coating. Taken together, the comprehensive manufacturing approaches that involve 3D printing and biocompatible postprocessing are expected to have universal applicability in a wide range of bone tissue engineering.
Collapse
Affiliation(s)
- Hyun-Do Jung
- Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Masamoto K, Fujibayashi S, Yabutsuka T, Hiruta T, Otsuki B, Okuzu Y, Goto K, Shimizu T, Shimizu Y, Ishizaki C, Fukushima K, Kawai T, Hayashi M, Morizane K, Kawata T, Imamura M, Matsuda S. In vivo and in vitro bioactivity of a "precursor of apatite" treatment on polyetheretherketone. Acta Biomater 2019; 91:48-59. [PMID: 31009758 DOI: 10.1016/j.actbio.2019.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
We recently developed a surface treatment, "precursor of apatite" (PrA), for polyetheretherketone (PrA-PEEK) via a simple, low-temperature process aiming to achieve stronger and faster adhesion to bone. The treatment involves three steps: H2SO4 immersion, exposure to O2 plasma discharge, and alkaline simulated body fluid (alkaline SBF) treatment. This method produces homogeneous fine particles of amorphous calcium phosphate on the PEEK, and we confirmed that PrA-PEEK had excellent apatite formation ability in an SBF immersion test. In the present study using PEEK implants in rabbit tibia, mechanical tests, and histological and radiological analyses revealed that PrA provided the PEEK substrate with excellent bone-bonding properties and osteo-conductivity at early stages (4 and 8 weeks), extending to 16 weeks. In vitro study using MC3T3-E1 cells revealed via XTT assay that PrA on the PEEK substrate resulted in no cytotoxicity, though PrA treatment seemed to suppress gene expression of integrin β-1 and Alp after 7-day incubation as shown by real-time PCR. On the whole, PrA treatment succeeded in giving in vivo bone-bonding properties to the PEEK substrate, and the treatment is a safe and promising method that can be applied in clinical settings. There was an inconsistency between in vivo and in vitro bioactivity, and this discrepancy indicated that apatite formation does not always need activation of osteoblasts at very early stage and that optimal conditions at cell and organism level may be different. STATEMENT OF SIGNIFICANCE: Polyetheretherketone (PEEK) is an attractive engineering polymer used for spine and dental surgery. To further improve clinical outcome of PEEK-based materials, we developed "Precursor of apatite" (PrA) treatment on the PEEK surface to confer bone-bonding properties. The advantages of this treatment are that it does not require high-temperature processing or special chemicals, and it is inexpensive. The present study clarified excellent in vivo bone-bonding property of PrA treatment. In addition, the results revealed important insights indicating that optimal conditions, especially wettability and crystallinity in calcium phosphate, differ at cell and organism levels. Moreover, our results indicated that prediction of in vivo bioactivity should be done in combination with multiple in vitro tests.
Collapse
|
20
|
Kunomura S, Iwasaki Y. Immobilization of polyphosphoesters on poly(ether ether ketone) (PEEK) for facilitating mineral coating. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:861-876. [PMID: 31013199 DOI: 10.1080/09205063.2019.1595305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poly(ether ether ketone) (PEEK) is an alternative material to metals for orthopedic applications. However, the compatibility of PEEK with hard tissues needs to be improved. To address this issue, this study proposes a novel technique for PEEK surface modifications. A polyphosphodiester macromonomer (PEPMA·Na) was synthesized via the demethylation of polyphosphotriester macromonomer obtained via the ring-opening polymerization of cyclic phosphoesters using 2-hydroxypropyl methacrylamide as the initiator. The surface modification of PEEK was performed via photoinduced and self-initiated graft polymerization of PEPMA·Na without using any photoinitiators. The amount of phosphorus due to poly(PEPMA·Na) immobilized on PEEK increased with an increase in the photoirradiation time. The PEEK surface turned hydrophilic due to poly(PEPMA·Na) grafting, with almost similar advancing and receding contact angles, implying that the modified PEEK surface (PEEK-g-poly(PEPMA·Na)) was homogeneous. Specimens were mineral coated by simple static soaking in ×1.5 simulated body fluid (1.5SBF) and by an alternative process that included additional soaking steps in 200 mM CaCl2 aq. and 200 mM K2HPO4 aq. before static soaking in 1.5SBF. Specimens were immersed in 1.5SBF for 28 days in simple static soaking, after which the PEEK-g-poly(PEPMA·Na) surface was completely covered with spherical cauliflower-like mineral deposits that resembled octacalcium phosphate (OCP). Their structural similarities were confirmed via X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), and X-ray fluorescence (XRF) analyses. However, these mineral deposits were not observed on the bare PEEK surface. Due to the additional soaking steps (alternative soaking) undertaken before the static soaking of the specimens in 1.5SBF, the mineral coating on the PEEK-g-poly(PEPMA·Na) was dramatically accelerated and the surface was fully covered with mineral deposits in only one day of soaking. The mineral deposits resulting from both the soaking processes had similar structures. Compared with bare PEEK, osteoblastic MC3T3-E1 cells proliferated more actively on mineral-coated PEEK-g-poly(PEPMA·Na). Thus, the surface immobilization of poly(PEPMA·Na) on a PEEK surface is effective for mineral coating and may be useful to provide hard-tissue compatibility on PEEK.
Collapse
Affiliation(s)
- Shun Kunomura
- a Department of Chemistry and Materials Engineering , Faculty of Chemistry, Materials and Bioengineering, Kansai University , Osaka , Japan
| | - Yasuhiko Iwasaki
- a Department of Chemistry and Materials Engineering , Faculty of Chemistry, Materials and Bioengineering, Kansai University , Osaka , Japan
| |
Collapse
|
21
|
Wei T, Wang J, Yu X, Wang Y, Wu Q, Chen C. Mechanical and thermal properties and cytotoxicity of Al2O3 nano particle-reinforced poly(ether-ether-ketone) for bone implants. RSC Adv 2019; 9:34642-34651. [PMID: 35529981 PMCID: PMC9074165 DOI: 10.1039/c9ra05258e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022] Open
Abstract
A novel preparation method for a PEEK/Al2O3 composite biomaterial for human bone implantation was proposed.
Collapse
Affiliation(s)
- Tianyue Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Jin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xunzhi Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- Biomedical Materials and Engineering Research Center of Hubei Province
| | - Chang Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
22
|
Sarkar C, Sahu SK, Sinha A, Chakraborty J, Garai S. Facile synthesis of carbon fiber reinforced polymer-hydroxyapatite ternary composite: A mechanically strong bioactive bone graft. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:388-396. [PMID: 30678924 DOI: 10.1016/j.msec.2018.12.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/02/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022]
Abstract
Carbon fiber reinforced carboxymethyl cellulose-hydroxyapatite ternary composites have been synthesized by a simple wet precipitation method for weight bearing orthopedic application. Composites were synthesized with the incorporation of chemically functionalized carbon fibers. The functional groups onto the surface of fibers induced the formation of hydroxyapatite at the bridging position through which fibers were effectively bound with matrix. Consequently, the flexural strength and compressive strength of composite have reached to 140 MPa and 118 MPa, respectively. The flexural modulus of the composite is in the range of 9-22 GPa. In-vitro cell study showed that the composite possesses excellent cell proliferation and differentiation ability. With these excellent mechanical and biological properties, synthesized composite exhibits potential to be used as a mechanically compatible bioactive bone graft.
Collapse
Affiliation(s)
- Chandrani Sarkar
- Advanced Materials and Processes Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India; Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India; Department of Chemistry, Mahila College, Kolhan University, Chaibasa 833201, Jharkhand, India.
| | - Sumanta Kumar Sahu
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Arvind Sinha
- Advanced Materials and Processes Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India
| | - Jui Chakraborty
- CSIR-Central Glass & Ceramic Research Institute, 196, Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Subhadra Garai
- Advanced Materials and Processes Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831007, India.
| |
Collapse
|
23
|
Fukuda N, Kanazawa M, Tsuru K, Tsuchiya A, Sunarso, Toita R, Mori Y, Nakashima Y, Ishikawa K. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia. Sci Rep 2018; 8:16887. [PMID: 30442906 PMCID: PMC6237893 DOI: 10.1038/s41598-018-35313-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/02/2018] [Indexed: 01/04/2023] Open
Abstract
This study was aimed to investigate the osseointegration ability of poly(ether ether ketone) (PEEK) implants with modified surface roughness and/or surface chemistry. The roughened surface was prepared by a sandblast method, and the phosphate groups on the substrates were modified by a two-step chemical reaction. The in vitro osteogenic activity of rat mesenchymal stem cells (MSCs) on the developed substrates was assessed by measuring cell proliferation, alkaline phosphatase activity, osteocalcin expression, and bone-like nodule formation. Surface roughening alone did not improve MSC responses. However, phosphorylation of smooth substrates increased cell responses, which were further elevated in combination with surface roughening. Moreover, in a rabbit tibia implantation model, this combined surface modification significantly enhanced the bone-to-implant contact ratio and corresponding bone-to-implant bonding strength at 4 and 8 weeks post-implantation, whereas modification of surface roughness or surface chemistry alone did not. This study demonstrates that combination of surface roughness and chemical modification on PEEK significantly promotes cell responses and osseointegration ability in a synergistic manner both in vitro and in vivo. Therefore, this is a simple and promising technique for improving the poor osseointegration ability of PEEK-based orthopedic/dental implants.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Masayuki Kanazawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka, 814-0193, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Sunarso
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Dental Materials, Faculty of Dentistry, University of Indonesia, Jalan Salemba Raya No. 4, Jakarta, Pusat, 10430, Indonesia
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| |
Collapse
|
24
|
Oyane A, Nakamura M, Sakamaki I, Shimizu Y, Miyata S, Miyaji H. Laser-assisted wet coating of calcium phosphate for surface-functionalization of PEEK. PLoS One 2018; 13:e0206524. [PMID: 30379904 PMCID: PMC6209325 DOI: 10.1371/journal.pone.0206524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/15/2018] [Indexed: 01/23/2023] Open
Abstract
Calcium phosphate (CaP) coating is an effective method for surface-functionalization of bioinert materials and for production of osteoconductive implants. Recently, we developed a laser-assisted biomimetic process (LAB process) for facile and area-specific CaP coating. In this study, the LAB process was applied to chemically stable and mechanically durable poly(etheretherketone) (PEEK), which has become widely used as an orthopedic and dental implant material. The LAB process was carried out by irradiating pulsed Nd:YAG laser light (355 nm) onto a PEEK substrate that was immersed in supersaturated CaP solution. The CaP coating applicability depended on laser fluence, i.e., CaP successfully formed on PEEK surface after the LAB process at 2 W/cm2. Further increase in laser fluence did not result in the successful formation. At the optimal fluence of 2 W/cm2, the laser-irradiated PEEK surface was modified and heated to induce heterogeneous CaP precipitation within 10 min in CaP solution, followed by further CaP growth over the irradiation time (tested up to 30 min). The LAB process improved the cytocompatibility of PEEK surface with osteoblastic MC3T3-E1 cells. Furthermore, the LAB-processed CaP-coated PEEK substrate formed a dense hydroxyapatite layer on its surface in the simulated body fluid, suggesting the osteoconductivity of this material. The present LAB process can be a useful new tool to produce osteoconductive PEEK-based implants.
Collapse
Affiliation(s)
- Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ikuko Sakamaki
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yoshiki Shimizu
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
25
|
Hamai R, Shirosaki Y, Miyazaki T. Structural Effects of Sulfur-Containing Functional Groups on Apatite Formation on Ca 2+-Modified Copolymers in a Simulated Body Environment. ACS OMEGA 2018; 3:5627-5633. [PMID: 30023925 PMCID: PMC6045416 DOI: 10.1021/acsomega.8b00694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Chemical modification with specific functional groups has been the conventional method to develop bone-bonding bioactive organic-inorganic hybrids. These materials are attractive as bone substitutes because they are flexible and have a Young's modulus similar to natural bone. Immobilization of sulfonic acid groups (-SO3H) onto the polymer chain is expected to produce such hybrids because these groups induce apatite formation in a simulated body fluid (SBF) and enhance the activity of osteoblast-like cells. Sulfinic acid groups (-SO2H), which are derivatives of -SO3H, can also induce apatite nucleation. However, the structural effects of such sulfur-containing functional groups on apatite formation have not been elucidated. In the present study, apatite formation on Ca2+-modified copolymers containing -SO2H or -SO3H was investigated in a simulated body environment. The copolymer containing Ca2+ and -SO3H promoted Ca2+ release into the SBF and formed apatite faster (1 day) than the copolymer containing Ca2+ and -SO2H (14 days). In contrast, when they were not modified with Ca2+, the copolymer containing only -SO2H deposited the apatite faster (7 days) than that containing only -SO3H (>7 days) in the solution with Ca2+ concentration 1.5 times that of SBF. The former adsorbed larger amounts of Ca2+ than the latter. The measured stability constant of the complex indicated that the interaction of -SO2-···Ca2+ was more stable than that of -SO3-···Ca2+. It was found that both the release and adsorption of Ca2+ governed by the stability played an important role in induction of the apatite formation and that the apatite-forming ability of sulfur-containing functional groups drastically changed by the coexistence of Ca2+.
Collapse
Affiliation(s)
- Ryo Hamai
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Yuki Shirosaki
- Faculty
of Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Toshiki Miyazaki
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| |
Collapse
|
26
|
Chu L, Jiang G, Hu XL, James TD, He XP, Li Y, Tang T. Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects. J Mater Chem B 2018; 6:4197-4204. [DOI: 10.1039/c8tb00766g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a segmental radial bone defect model used to evaluate the osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold with nano-crystal surface microstructures that can release bioactive ions.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Guoqiang Jiang
- Department of Orthopaedic Surgery
- Affiliated Hospital of School of Medicine
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yaping Li
- Department of Orthopaedic Surgery
- Affiliated Hospital of School of Medicine
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|
27
|
Yabutsuka T, Fukushima K, Hiruta T, Takai S, Yao T. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:349-358. [DOI: 10.1016/j.msec.2017.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/08/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022]
|
28
|
Yabutsuka T, Fukushima K, Hiruta T, Takai S, Yao T. Fabrication of Bioactive Fiber-reinforced PEEK and MXD6 by Incorporation of Precursor of Apatite. J Biomed Mater Res B Appl Biomater 2017; 106:2254-2265. [DOI: 10.1002/jbm.b.34025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Takeshi Yabutsuka
- Department of Fundamental Energy Science, Graduate School of Energy Science; Kyoto University, Yoshida-Honmachi; Sakyo-ku Kyoto 606-8501 Japan
| | - Keito Fukushima
- Department of Fundamental Energy Science, Graduate School of Energy Science; Kyoto University, Yoshida-Honmachi; Sakyo-ku Kyoto 606-8501 Japan
| | - Tomoko Hiruta
- Department of Fundamental Energy Science, Graduate School of Energy Science; Kyoto University, Yoshida-Honmachi; Sakyo-ku Kyoto 606-8501 Japan
| | - Shigeomi Takai
- Department of Fundamental Energy Science, Graduate School of Energy Science; Kyoto University, Yoshida-Honmachi; Sakyo-ku Kyoto 606-8501 Japan
| | - Takeshi Yao
- National Institute of Technology, Kagawa College, 355, Chokushi-cho; Takamatsu Kagawa 761-8058 Japan
| |
Collapse
|