1
|
Gross T, Dieterle MP, Vach K, Altenburger MJ, Hellwig E, Proksch S. Biomechanical Modulation of Dental Pulp Stem Cell (DPSC) Properties for Soft Tissue Engineering. Bioengineering (Basel) 2023; 10:bioengineering10030323. [PMID: 36978714 PMCID: PMC10045720 DOI: 10.3390/bioengineering10030323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were magnetically enriched and cultured on substrates with elasticities of 1.5, 15, and 28 kPa. The morphology of DPSCs was assessed visually. Proteins relevant in mechanobiology ACTB, ITGB1, FAK, p-FAK, TALIN, VINCULIN, PAXILLIN, ERK 1/2, and p-ERK 1/2 were detected by immunofluorescence imaging. Transcription of the pulp marker genes BMP2, BMP4, MMP2, MMP3, MMP13, FN1, and IGF2 as well as the cytokines ANGPT1, VEGF, CCL2, TGFB1, IL2, ANG, and CSF1 was determined using qPCR. A low stiffness, i.e., 1.5 kPa, resulted in a soft tissue-like phenotype and gene expression, whereas DPSCs on 28 kPa substrates exhibited a differentiation signature resembling hard tissues with a low cytokine expression. Conversely, the highest cytokine expression was observed in cells cultured on intermediate elasticity, i.e., 15 kPa, substrates possibly allowing the cells to act as “trophic mediators”. Our observations highlight the impact of biophysical cues for DPSC fate and enable the design of scaffold materials for clinical pulp regeneration that prevent hard tissue formation.
Collapse
Affiliation(s)
- Tara Gross
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
- Correspondence: ; Tel.: +49-(0)761-270-48850; Fax: +49-(0)761-270-47620
| | - Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs—University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Markus Joerg Altenburger
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
- Dental Clinic 1–Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstr. 11, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Vermeulen S, Van Puyvelde B, Bengtsson del Barrio L, Almey R, van der Veer BK, Deforce D, Dhaenens M, de Boer J. Micro-Topographies Induce Epigenetic Reprogramming and Quiescence in Human Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203880. [PMID: 36414384 PMCID: PMC9811462 DOI: 10.1002/advs.202203880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Biomaterials can control cell and nuclear morphology. Since the shape of the nucleus influences chromatin architecture, gene expression and cell identity, surface topography can control cell phenotype. This study provides fundamental insights into how surface topography influences nuclear morphology, histone modifications, and expression of histone-associated proteins through advanced histone mass spectrometry and microarray analysis. The authors find that nuclear confinement is associated with a loss of histone acetylation and nucleoli abundance, while pathway analysis reveals a substantial reduction in gene expression associated with chromosome organization. In light of previous observations where the authors found a decrease in proliferation and metabolism induced by micro-topographies, they connect these findings with a quiescent phenotype in mesenchymal stem cells, as further shown by a reduction of ribosomal proteins and the maintenance of multipotency on micro-topographies after long-term culture conditions. Also, this influence of micro-topographies on nuclear morphology and proliferation is reversible, as shown by a return of proliferation when re-cultured on a flat surface. The findings provide novel insights into how biophysical signaling influences the epigenetic landscape and subsequent cellular phenotype.
Collapse
Affiliation(s)
- Steven Vermeulen
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Laura Bengtsson del Barrio
- Department of Instructive Biomaterials EngineeringMERLN InstituteUniversity of MaastrichtMaastricht6229 ERThe Netherlands
| | - Ruben Almey
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU LeuvenLeuven3000Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical BiotechnologyDepartment of PharmaceuticsGhent UniversityGhent9000Belgium
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
3
|
Tian M, Morais CLM, Shen H, Pang W, Xu L, Huang Q, Martin FL. Direct identification and visualisation of real-world contaminating microplastics using Raman spectral mapping with multivariate curve resolution-alternating least squares. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126892. [PMID: 34425427 DOI: 10.1016/j.jhazmat.2021.126892] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) contamination is ubiquitous in environmental matrices worldwide. Moreover these pollutants can be ingested by organisms and transported to organs via the circulatory system. Although efficient methods for the analysis of MPs derived from environment matrices and organisms' tissue samples have been developed after special sample pre-treatment, there remains a need for an optimised approach allowing direct identification and visualisation these MPs in real environmental matrices and organismal samples. Herein, we firstly used a multivariate curve resolution-alternating least squares (MCR-ALS) analysis of Raman hyperspectral imaging data to direct identification and visualisation of MPs in a complex serum background. Four common MPs types including polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyethylene terephthalate (PET) were identified and visualised either individually or in mixtures within spiked samples at an 8-μm spatial resolution. Moreover, Raman imaging based on MCR-ALS was successfully applied in fish faeces biological samples and environmental sand samples for in situ MPs identification directly without washing or removal of organic matter. The current results demonstrate Raman imaging based on MCR-ALS as a novel imaging approach for direct identification and visualisation of MPs, through extraction of MPs' chemical spectra within a complicated biological or environmental background whilst eliminating overlapping Raman bands and fluorescence interference.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Weiyi Pang
- School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Li Xu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100095, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | |
Collapse
|
4
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
5
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
6
|
Vermeulen S, Roumans N, Honig F, Carlier A, Hebels DG, Eren AD, Dijke PT, Vasilevich A, de Boer J. Mechanotransduction is a context-dependent activator of TGF-β signaling in mesenchymal stem cells. Biomaterials 2020; 259:120331. [DOI: 10.1016/j.biomaterials.2020.120331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
|
7
|
Vassey MJ, Figueredo GP, Scurr DJ, Vasilevich AS, Vermeulen S, Carlier A, Luckett J, Beijer NRM, Williams P, Winkler DA, de Boer J, Ghaemmaghami AM, Alexander MR. Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903392. [PMID: 32537404 PMCID: PMC7284204 DOI: 10.1002/advs.201903392] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 05/18/2023]
Abstract
Macrophages play a central role in orchestrating immune responses to foreign materials, which are often responsible for the failure of implanted medical devices. Material topography is known to influence macrophage attachment and phenotype, providing opportunities for the rational design of "immune-instructive" topographies to modulate macrophage function and thus foreign body responses to biomaterials. However, no generalizable understanding of the inter-relationship between topography and cell response exists. A high throughput screening approach is therefore utilized to investigate the relationship between topography and human monocyte-derived macrophage attachment and phenotype, using a diverse library of 2176 micropatterns generated by an algorithm. This reveals that micropillars 5-10 µm in diameter play a dominant role in driving macrophage attachment compared to the many other topographies screened, an observation that aligns with studies of the interaction of macrophages with particles. Combining the pillar size with the micropillar density is found to be key in modulation of cell phenotype from pro to anti-inflammatory states. Machine learning is used to successfully build a model that correlates cell attachment and phenotype with a selection of descriptors, illustrating that materials can potentially be designed to modulate inflammatory responses for future applications in the fight against foreign body rejection of medical devices.
Collapse
Affiliation(s)
| | | | - David J. Scurr
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Aliaksei S. Vasilevich
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of Technology5600 EBEindhovenThe Netherlands
| | - Steven Vermeulen
- Department of Cell Biology Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University6229 ETMaastrichtThe Netherlands
| | - Aurélie Carlier
- Department of Cell Biology Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University6229 ETMaastrichtThe Netherlands
| | - Jeni Luckett
- University of Nottingham Biosdiscovery Institute and School of MedicineUniversity of NottinghamNottinghamNG7 2UHUK
| | - Nick R. M. Beijer
- Department of Cell Biology Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht University6229 ETMaastrichtThe Netherlands
| | - Paul Williams
- University of Nottingham Biodiscovery Institute and School of Life SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - David A. Winkler
- La Trobe Institute for Molecular ScienceLa Trobe UniversityBundoora3042Australia
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkville3052Australia
- CSIRO Data61Parkville4069Australia
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of Technology5600 EBEindhovenThe Netherlands
| | | | | |
Collapse
|
8
|
Colniță A, Marconi D, Brezeștean I, Pașca RD, Kacso I, Barbu-Tudoran L, Turcu I. High-Throughput Fabrication of Anti-Counterfeiting Nanopillar-Based Quick Response (QR) Codes Using Nanoimprint Lithography. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1769123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alia Colniță
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Daniel Marconi
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Ioana Brezeștean
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Roxana-Diana Pașca
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Irina Kacso
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ioan Turcu
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Vermeulen S, de Boer J. Screening as a strategy to drive regenerative medicine research. Methods 2020; 190:80-95. [PMID: 32278807 DOI: 10.1016/j.ymeth.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
In the field of regenerative medicine, optimization of the parameters leading to a desirable outcome remains a huge challenge. Examples include protocols for the guided differentiation of pluripotent cells towards specialized and functional cell types, phenotypic maintenance of primary cells in cell culture, or engineering of materials for improved tissue interaction with medical implants. This challenge originates from the enormous design space for biomaterials, chemical and biochemical compounds, and incomplete knowledge of the guiding biological principles. To tackle this challenge, high-throughput platforms allow screening of multiple perturbations in one experimental setup. In this review, we provide an overview of screening platforms that are used in regenerative medicine. We discuss their fabrication techniques, and in silico tools to analyze the extensive data sets typically generated by these platforms.
Collapse
Affiliation(s)
- Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, the Netherlands; BioInterface Science Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands
| | - Jan de Boer
- BioInterface Science Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands.
| |
Collapse
|
10
|
Leferink A, Tibbe M, Bossink E, de Heus L, van Vossen H, van den Berg A, Moroni L, Truckenmüller R. Shape-defined solid micro-objects from poly(d,l-lactic acid) as cell-supportive counterparts in bottom-up tissue engineering. Mater Today Bio 2019; 4:100025. [PMID: 32159154 PMCID: PMC7061620 DOI: 10.1016/j.mtbio.2019.100025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023] Open
Abstract
In bottom-up tissue engineering, small modular units of cells and biomaterials are assembled toward larger and more complex ones. In conjunction with a new implementation of this approach, a novel method to fabricate microscale objects from biopolymers by thermal imprinting on water-soluble sacrificial layers is presented. By this means, geometrically well-defined objects could be obtained without involving toxic agents in the form of photoinitiators. The micro-objects were used as cell-adhesive substrates and cell spacers in engineered tissues created by cell-guided assembly of the objects. Such constructs can be applied both for in vitro studies and clinical treatments. Clinically relevantly sized aggregates comprised of cells and micro-objects retained their viability up to 2 weeks of culture. The aggregation behavior of cells and objects showed to depend on the type and number of cells applied. To demonstrate the micro-objects' potential for engineering vascularized tissues, small aggregates of human bone marrow stromal cells (hMSCs) and micro-objects were coated with a layer of human umbilical vein endothelial cells (HUVECs) and fused into larger tissue constructs, resulting in HUVEC-rich regions at the aggregates' interfaces. This three-dimensional network-type spatial cellular organization could foster the establishment of (premature) vascular structures as a vital prerequisite of, for example, bottom-up-engineered bone-like tissue.
Collapse
Affiliation(s)
- A.M. Leferink
- Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, 7500 AE, Enschede, the Netherlands
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - M.P. Tibbe
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - E.G.B.M. Bossink
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
| | - L.E. de Heus
- Applied Stem Cell Technologies Group, TechMed Centre, University of Twente, 7500 AE, Enschede, the Netherlands
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
| | - H. van Vossen
- MESA+ NanoLab, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A. van den Berg
- BIOS/Lab on a Chip Group, TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, the Netherlands
| | - L. Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - R.K. Truckenmüller
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
11
|
Beijer NRM, Nauryzgaliyeva ZM, Arteaga EM, Pieuchot L, Anselme K, van de Peppel J, Vasilevich AS, Groen N, Roumans N, Hebels DGAJ, Boer JD. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Sci Rep 2019; 9:9099. [PMID: 31235713 PMCID: PMC6591423 DOI: 10.1038/s41598-019-45284-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
Human mesenchymal stem (hMSCs) are defined as multi-potent colony-forming cells expressing a specific subset of plasma membrane markers when grown on flat tissue culture polystyrene. However, as soon as hMSCs are used for transplantation, they are exposed to a 3D environment, which can strongly impact cell physiology and influence proliferation, differentiation and metabolism. Strategies to control in vivo hMSC behavior, for instance in stem cell transplantation or cancer treatment, are skewed by the un-physiological flatness of the standard well plates. Even though it is common knowledge that cells behave differently in vitro compared to in vivo, only little is known about the underlying adaptation processes. Here, we used micrometer-scale defined surface topographies as a model to describe the phenotype of hMSCs during this adaptation to their new environment. We used well established techniques to compare hMSCs cultured on flat and topographically enhanced polystyreneand observed dramatically changed cell morphologies accompanied by shrinkage of cytoplasm and nucleus, a decreased overall cellular metabolism, and slower cell cycle progression resulting in a lower proliferation rate in cells exposed to surface topographies. We hypothesized that this reduction in proliferation rate effects their sensitivity to certain cancer drugs, which was confirmed by higher survival rate of hMSCs cultured on topographies exposed to paclitaxel. Thus, micro-topographies can be used as a model system to mimic the natural cell micro-environment, and be a powerful tool to optimize cell treatment in vitro.
Collapse
Affiliation(s)
- Nick R M Beijer
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Zarina M Nauryzgaliyeva
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Estela M Arteaga
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Laurent Pieuchot
- Institut de Sciences des Materiaux de Mulhouse, University of Haute-Alsace, CNRS UMR7361, Mulhouse, France
| | - Karine Anselme
- Institut de Sciences des Materiaux de Mulhouse, University of Haute-Alsace, CNRS UMR7361, Mulhouse, France
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aliaksei S Vasilevich
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nathalie Groen
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nadia Roumans
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dennie G A J Hebels
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jan de Boer
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
- Materiomics b.v., Maastricht, The Netherlands.
- BioInterface Science lab, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Shauly O, Gould DJ, Patel KM. Microtexture and the Cell/Biomaterial Interface: A Systematic Review and Meta-Analysis of Capsular Contracture and Prosthetic Breast Implants. Aesthet Surg J 2019; 39:603-614. [PMID: 30124780 DOI: 10.1093/asj/sjy178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The use of textured breast implants over smooth implants has been widely shown to have a lower incidence of capsular contracture. However, the impact of micropatterning techniques on the incidence of postoperative patient morbidity has not been comprehensively investigated. OBJECTIVES The authors sought to examine the incidence of capsular contracture, seroma, and implant rippling among the 3 major micropatterning techniques applied in the manufacturing of textured breast implants. METHODS Literature searches of PubMed/Medline and Embase between 1995 and 2017 were performed, and 19 studies were selected for analysis. Data from each study were extracted into a form including mean age, study design, population size, mean follow-up, number of capsular contracture cases, number of seroma cases, and number of rippling cases. Meta-analysis was performed separately for studies that included capsular contracture rates for foam textured implants, imprinted textured implants, and salt-loss textured implants. RESULTS The pooled rate of capsular contracture rates in primary augmentation patients was 3.80% (95% CI, 2.19-5.40) for imprinted textured implants, 4.90% (95% CI, 3.16-6.64) for foam textured implants, 5.27% (95% CI, 3.22-7.31) for salt-loss textured implants, and 15.56% (95% CI, 13.31-18.16) for smooth implants. The results of each meta-analysis were summarized on a forest plot depicting the distribution of capsular contracture rates from each study. CONCLUSIONS Micropatterning of prosthetic implants could drastically reduce postoperative patient morbidity given the advent of recent technologies that allow for more detailed texturing of implant surfaces. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Orr Shauly
- University of Southern California, Los Angeles, CA
| | | | | |
Collapse
|
13
|
Zijl S, Vasilevich AS, Viswanathan P, Helling AL, Beijer NRM, Walko G, Chiappini C, de Boer J, Watt FM. Micro-scaled topographies direct differentiation of human epidermal stem cells. Acta Biomater 2019; 84:133-145. [PMID: 30528608 PMCID: PMC6336537 DOI: 10.1016/j.actbio.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/25/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023]
Abstract
Human epidermal stem cells initiate terminal differentiation when spreading is restricted on ECM-coated micropatterned islands, soft hydrogels or hydrogel-nanoparticle composites with high nanoparticle spacing. The effect of substrate topography, however, is incompletely understood. To explore this, primary human keratinocytes enriched for stem cells were seeded on a topographical library with over 2000 different topographies in the micrometre range. Twenty-four hours later the proportion of cells expressing the differentiation marker transglutaminase-1 was determined by high content imaging. As predicted, topographies that prevented spreading promoted differentiation. However, we also identified topographies that supported differentiation of highly spread cells. Topographies supporting differentiation of spread cells were more irregular than those supporting differentiation of round cells. Low topography coverage promoted differentiation of spread cells, whereas high coverage promoted differentiation of round cells. Based on these observations we fabricated a topography in 6-well plate format that supported differentiation of spread cells, enabling us to examine cell responses at higher resolution. We found that differentiated spread cells did not assemble significant numbers of hemidesmosomes, focal adhesions, adherens junctions, desmosomes or tight junctions. They did, however, organise the actin cytoskeleton in response to the topographies. Rho kinase inhibition and blebbistatin treatment blocked the differentiation of spread cells, whereas SRF inhibition did not. These observations suggest a potential role for actin polymerization and actomyosin contraction in the topography-induced differentiation of spread cells. STATEMENT OF SIGNIFICANCE: The epidermis is the outer covering of the skin. It is formed by layers of cells called keratinocytes. The basal cell layer contains stem cells, which divide to replace cells in the outermost layers that are lost through a process known as differentiation. In this manuscript we have developed surfaces that promote the differentiation of epidermal stem cells in order to understand the signals that control differentiation. The experimental tools we have developed have the potential to help us to devise new treatments that control diseases such as psoriasis and eczema in which epidermal stem cell proliferation and differentiation are disturbed.
Collapse
Affiliation(s)
- Sebastiaan Zijl
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Aliaksei S Vasilevich
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Priyalakshmi Viswanathan
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Ayelen Luna Helling
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Nick R M Beijer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gernot Walko
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom; Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, 27th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Jan de Boer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Materiomics bv, Maastricht, The Netherlands
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.
| |
Collapse
|
14
|
Vermeulen S, Vasilevich A, Tsiapalis D, Roumans N, Vroemen P, Beijer NRM, Dede Eren A, Zeugolis D, de Boer J. Identification of topographical architectures supporting the phenotype of rat tenocytes. Acta Biomater 2019; 83:277-290. [PMID: 30394345 DOI: 10.1016/j.actbio.2018.10.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/22/2018] [Accepted: 10/25/2018] [Indexed: 01/01/2023]
Abstract
Tenocytes, the main cell type of the tendon, require mechanical stimuli for their proper function. When the tenocyte environment changes due to tissue damage or by transferring tenocytes from their native environment into cell culture, the signals from the tenocyte niche are lost, leading towards a decline of phenotypic markers. It is known that micro-topographies can influence cell fate by the physical cues they provide. To identify the optimal topography-induced biomechanical niche in vitro, we seeded tenocytes on the TopoChip, a micro-topographical screening platform, and measured expression of the tendon transcription factor Scleraxis. Through machine learning algorithms, we associated elevated Scleraxis levels with topological design parameters. Fabricating micro-topographies with optimal surface characteristics on larger surfaces allowed finding an improved expression of multiple tenogenic markers. However, long-term confluent culture conditions coincided with osteogenic marker expression and the loss of morphological characteristics. In contrast, passaging tenocytes which migrated from the tendon directly on the topography resulted in prolonged elongated morphology and elevated Scleraxis levels. This research provides new insights into how micro-topographies influence tenocyte cell fate, and supports the notion that micro-topographical design can be implemented in a new generation of tissue culture platforms for supporting the phenotype of tenocytes. STATEMENT OF SIGNIFICANCE: The challenge in controlling in vitro cell behavior lies in controlling the complex culture environment. Here, we present for the first time the use of micro-topographies as a biomechanical niche to support the phenotype of tenocytes. For this, we applied the TopoChip platform, a screening tool with 2176 unique micro-topographies for identifying feature characteristics associated with elevated Scleraxis expression, a tendon related marker. Large area fabrication of micro-topographies with favorable characteristics allowed us to find a beneficial influence on other tenogenic markers as well. Furthermore, passaging cells is more beneficial for Scleraxis marker expression and tenocyte morphology compared to confluent conditions. This study presents important insights for the understanding of tenocyte behavior in vitro, a necessary step towards tendon engineering.
Collapse
Affiliation(s)
- Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aliaksei Vasilevich
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland; Science Foundation Ireland, Centre for Research in Medical Device, National University of Ireland Galway, Galway, Ireland
| | - Nadia Roumans
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Pascal Vroemen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands; University Eye Clinic Maastricht UMC+, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nick R M Beijer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aysegul Dede Eren
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland; Science Foundation Ireland, Centre for Research in Medical Device, National University of Ireland Galway, Galway, Ireland
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands; Dept. of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
15
|
Vasilevich AS, Mourcin F, Mentink A, Hulshof F, Beijer N, Zhao Y, Levers M, Papenburg B, Singh S, Carpenter AE, Stamatialis D, van Blitterswijk C, Tarte K, de Boer J. Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells. Front Bioeng Biotechnol 2018; 6:87. [PMID: 30003080 PMCID: PMC6031747 DOI: 10.3389/fbioe.2018.00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Fibroblastic reticular cells (FRCs), the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs). Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols.
Collapse
Affiliation(s)
- Aliaksei S Vasilevich
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Frédéric Mourcin
- Institut National de la Santé et de la Recherche Médicale, U917, Equipe Labelisée Ligue Contre le Cancer, Université Rennes, I'Etablissement Français du Sang Bretagne, Rennes, France
| | - Anouk Mentink
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Frits Hulshof
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Nick Beijer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | | | | | | | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Karin Tarte
- Institut National de la Santé et de la Recherche Médicale, U917, Equipe Labelisée Ligue Contre le Cancer, Université Rennes, I'Etablissement Français du Sang Bretagne, Rennes, France
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Leuning DG, Beijer NRM, du Fossé NA, Vermeulen S, Lievers E, van Kooten C, Rabelink TJ, Boer JD. The cytokine secretion profile of mesenchymal stromal cells is determined by surface structure of the microenvironment. Sci Rep 2018; 8:7716. [PMID: 29769543 PMCID: PMC5956003 DOI: 10.1038/s41598-018-25700-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/09/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSC) secrete factors that contribute to organ homeostasis and repair in a tissue specific manner. For instance, kidney perivascular mesenchymal stromal cells (kPSCs) can facilitate renal epithelial repair through secretion of hepatocyte growth factor (HGF) while the secretome of bone marrow MSCs gives rise to immunosuppression. Stromal cells function in a complex 3-dimensional (3D) connective tissue architecture that induces conformational adaptation. Here we tested the hypothesis that surface topography and associated cell adaptations dictate stromal cell function through tuning of the cytokines released. To this end, we cultured human bone marrow and kidney perivascular stromal cells in the TopoWell plate, a custom-fabricated multi-well plate containing 76 unique bioactive surface topographies. Using fluorescent imaging, we observed profound changes in cell shape, accompanied by major quantitative changes in the secretory capacity of the MSCs. The cytokine secretion profile was closely related to cell morphology and was stromal cell type specific. Our data demonstrate that stromal cell function is determined by microenvironment structure and can be manipulated in an engineered setting. Our data also have implications for the clinical manufacturing of mesenchymal stromal cell therapy, where surface topography during bioreactor expansion should be taken into account to preserve therapeutic properties.
Collapse
Affiliation(s)
- Daniëlle G Leuning
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nick R M Beijer
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nadia A du Fossé
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Steven Vermeulen
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Ellen Lievers
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan de Boer
- Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Beijer NRM, Vasilevich AS, Pilavci B, Truckenmüller RK, Zhao Y, Singh S, Papenburg BJ, de Boer J. TopoWellPlate: A Well-Plate-Based Screening Platform to Study Cell-Surface Topography Interactions. ACTA ACUST UNITED AC 2017; 1:e1700002. [DOI: 10.1002/adbi.201700002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/08/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Nick R. M. Beijer
- Department of Cell Biology Inspired Tissue Engineering; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| | - Aliaksei S. Vasilevich
- Department of Cell Biology Inspired Tissue Engineering; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| | - Bayram Pilavci
- Department of Cell Biology Inspired Tissue Engineering; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| | - Roman K. Truckenmüller
- Department of Complex Tissue Regeneration; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| | - Yiping Zhao
- Materiomics BV; Oxfordlaan 70, Maastricht 6229 EV The Netherlands
| | - Shantanu Singh
- Imaging Platform; Broad institute of MIT and Harvard; 415 Main street, Cambridge MA 02142 USA
| | | | - Jan de Boer
- Department of Cell Biology Inspired Tissue Engineering; MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; Universiteitssingel 40, Maastricht 6229 ER The Netherlands
| |
Collapse
|