1
|
Mecca M, Sichetti M, Giuseffi M, Giglio E, Sabato C, Sanseverino F, Marino G. Synergic Role of Dietary Bioactive Compounds in Breast Cancer Chemoprevention and Combination Therapies. Nutrients 2024; 16:1883. [PMID: 38931238 PMCID: PMC11206589 DOI: 10.3390/nu16121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the most common tumor in women. Chemotherapy is the gold standard for cancer treatment; however, severe side effects and tumor resistance are the major obstacles to chemotherapy success. Numerous dietary components and phytochemicals have been found to inhibit the molecular and signaling pathways associated with different stages of breast cancer development. In particular, this review is focused on the antitumor effects of PUFAs, dietary enzymes, and glucosinolates against breast cancer. The major databases were consulted to search in vitro and preclinical studies; only those with solid scientific evidence and reporting protective effects on breast cancer treatment were included. A consistent number of studies highlighted that dietary components and phytochemicals can have remarkable therapeutic effects as single agents or in combination with other anticancer agents, administered at different concentrations and via different routes of administration. These provide a natural strategy for chemoprevention, reduce the risk of breast cancer recurrence, impair cell proliferation and viability, and induce apoptosis. Some of these bioactive compounds of dietary origin, however, show poor solubility and low bioavailability; hence, encapsulation in nanoformulations are promising tools able to increase clinical efficiency.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Marzia Sichetti
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Martina Giuseffi
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Eugenia Giglio
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Claudia Sabato
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Francesca Sanseverino
- Unit of Gynecologic Oncology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy;
| | - Graziella Marino
- Unit of Breast Cancer, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy;
| |
Collapse
|
2
|
Vargas D, Segat H, Gehrcke M, Prado VC, Roversi K, Muller SG, do Nascimento PS, Nogueira CW, Burger ME, Elias F, Gruchouskei L, Cruz L, Muller DCDM. Indole-3-carbinol loaded-nanocapsules modulated inflammatory and oxidative damages and increase skin wound healing in rats. Free Radic Res 2024; 58:367-379. [PMID: 38962912 DOI: 10.1080/10715762.2024.2375200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study evaluated the effects of topically applied hydrogels (HG) containing nanoencapsulated indol-3-carbinol (I3C) and its free form in a rat model of skin wounds. Formulations were topically applied twice a day for five days to the wounds. On days 1, 3, and 6, the wound area was measured to verify the % of regression. On the sixth day, the animals were euthanized for the analysis of the inflammatory and oxidative profile in wounds. The nanocapsules (NC) exhibited physicochemical characteristics compatible with this kind of suspension. After five hours of exposure to ultraviolet C, more than 78% of I3C content in the suspensions was still observed. The NC-I3C did not modify the physicochemical characteristics of HG when compared to the HG base. In the in vivo study, an increase in the size of the wound was observed on the 3rd experimental day, which was lower in the treated groups (mainly in HG-NC-I3C) compared to the control. On the 6th day, HG-I3C, HG-NC-B, and HG-NC-I3C showed lower regression of the wound compared to the control. Additionally, HG-NC-I3C exhibited an anti-inflammatory effect (as observed by decreased levels of interleukin-1B and myeloperoxidase), reduced oxidative damage (by decreased reactive species, lipid peroxidation, and protein carbonylation levels), and increased antioxidant defense (by improved catalase activity and vitamin C levels) compared to the control. The current study showed more satisfactory results in the HG-NC-I3C group than in the free form of I3C in decreasing acute inflammation and oxidative damage in wounds.
Collapse
Affiliation(s)
- Daniel Vargas
- Veterinary Medicine Post-Graduation Program, Federal University of Santa Maria, Santa Maria City, Brazil
| | - Hecson Segat
- Campus Itaqui, Federal University of Pampa, Itaqui city, Brazil
| | - Mailine Gehrcke
- Pharmaceutical Sciences Post-Graduation Program, Federal University of Santa Maria, Santa Maria city, Brazil
| | - Vinicius Costa Prado
- Pharmaceutical Sciences Post-Graduation Program, Federal University of Santa Maria, Santa Maria city, Brazil
| | - Karine Roversi
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Sabrina Grendene Muller
- Biochemistry and Molecular Biology Post-Graduation Program, Federal University of Santa Maria, Santa Maria City, Brazil
| | | | - Cristina Wayne Nogueira
- Biochemistry and Molecular Biology Post-Graduation Program, Federal University of Santa Maria, Santa Maria City, Brazil
| | - Marilise Escobar Burger
- Pharmacology Post-Graduation Program, Federal University of Santa Maria, Santa Maria City, Brazil
| | - Fabiana Elias
- Faculty of Veterinary, Federal University of Fronteira Sul, Realeza City, Brazil
| | - Leonardo Gruchouskei
- Faculty of Veterinary, Federal University of Fronteira Sul, Realeza City, Brazil
| | - Letícia Cruz
- Pharmaceutical Sciences Post-Graduation Program, Federal University of Santa Maria, Santa Maria city, Brazil
| | | |
Collapse
|
3
|
Saini A, Kaur R, Kumar S, Saini RK, Kashyap B, Kumar V. New horizon of rosehip seed oil: Extraction, characterization for its potential applications as a functional ingredient. Food Chem 2024; 437:137568. [PMID: 37918157 DOI: 10.1016/j.foodchem.2023.137568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
In recent years, rosehip is gaining more attention due to its high nutritional and medicinal value. Rosehip seeds usually discarded as waste, contain oil with high bioactive potential. These nutritional properties recommend the use of rosehip seed oil (RSO) to develop innovative food, pharma, and cosmetic products. In this review, different conventional and novel technologies for the extraction of RSO in terms of optimized conditions for better extraction of oil are discussed. In the lateral section of the manuscript, the detailed composition and biological activities of RSO are reviewed. Finally, a glimpse of the recent applications in the food, pharmaceutical, and cosmetic industry are provided. This review could provide a comprehensive understanding of the value of RSO and promote its nutrition research and commercial product development.
Collapse
Affiliation(s)
- Aadisha Saini
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Ramandeep Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Satish Kumar
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan - 173 230 (HP), India
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Bharati Kashyap
- Department of Floriculture and Landscaping, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan - 173 230 (HP), India
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
4
|
Saccol CP, Cervi VF, Blume JC, Menezes ÁG, Apel MA, da Rosa LS, Tasca T, Cruz L. Xanthan-carrageenan film containing sesame seed oil: A nanocomposite pharmaceutical platform for trichomoniasis treatment. Int J Biol Macromol 2024; 257:128701. [PMID: 38072348 DOI: 10.1016/j.ijbiomac.2023.128701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Trichomoniasis is a common sexually transmitted infection that poses significant complications for women. Challenges in treatment include adverse effects and resistance to standard antimicrobial agents. Given this context, a sesame seed oil nanoemulsion (SONE) was developed and showed anti-Trichomonas vaginalis activity. To facilitate the local application of SONE, a polysaccharide film was developed using xanthan gum (XG) and κ-carrageenan gum (CG). A blend of XG and CG (at 2 %, ratio 1:3) plasticized with glycerol produced a more promising film (XCF) than using the gums individually. The film containing SONE (SONE-XCF) was successfully obtained by replacing the aqueous solvent with SONE via solvent evaporation technique. The hydrophilic SONE-XCF exhibited homogeneity and suitable mechanical properties for vaginal application. Furthermore, SONE-XCF demonstrated mucoadhesive properties and high absorption capacity for excessive vaginal fluids produced in vaginitis. It also had a disintegration time of over 8 h, indicating long retention at the intended site of action. Hemolysis and chorioallantoic membrane tests confirmed the safety of the film. Therefore, SONE-XCF is a biocompatible film with a natural composition and inherent activity against T. vaginalis, possessing exceptional characteristics that make it appropriate for vaginal application, offering an interesting alternative for trichomoniasis treatment.
Collapse
Affiliation(s)
- Camila Parcianello Saccol
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Verônica Ferrari Cervi
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Júlia Carine Blume
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Ágata Giuseppe Menezes
- Grupo de Pesquisa em Tricomonas, GPTrico, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre CEP 90610-000, RS, Brazil
| | - Miriam Anders Apel
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre CEP 90610-000, RS, Brazil
| | - Lucas Saldanha da Rosa
- Núcleo de Desenvolvimento de Materiais Avançados, Programa de Pós-Graduação em Ciências Odontológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, GPTrico, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre CEP 90610-000, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
5
|
Dos Santos JC, Alves JEF, de Azevedo RDS, de Lima ML, de Oliveira Silva MR, da Silva JG, da Silva JM, de Carvalho Correia AC, do Carmo Alves de Lima M, de Oliveira JF, de Moura RO, de Almeida SMV. Study of nitrogen heterocycles as DNA/HSA binder, topoisomerase inhibitors and toxicological safety. Int J Biol Macromol 2024; 254:127651. [PMID: 37949265 DOI: 10.1016/j.ijbiomac.2023.127651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 μM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.
Collapse
Affiliation(s)
- Jéssica Celerino Dos Santos
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | | | - Maksuelly Libanio de Lima
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | | | - Josefa Gerlane da Silva
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | - Jamire Muriel da Silva
- Department of Pharmacy, Laboratory of Synthesis and Vectorization of Molecules, State University of Paraíba (UEPB), Campus Campina Grande, 58429-500, PB, Brazil
| | | | - Maria do Carmo Alves de Lima
- Chemistry and Therapeutic Innovation Laboratory (LQIT), Department of Antibiotics, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Ricardo Olímpio de Moura
- Department of Pharmacy, Laboratory of Synthesis and Vectorization of Molecules, State University of Paraíba (UEPB), Campus Campina Grande, 58429-500, PB, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Molecular Biology Laboratory, University of Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, PE, Brazil; Chemistry and Therapeutic Innovation Laboratory (LQIT), Department of Antibiotics, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
6
|
Singh AA, Jo SH, Kiddane AT, Niyonizigiye I, Kim GD. Indole-3-carbinol induces apoptosis in AGS cancer cells via mitochondrial pathway. Chem Biol Drug Des 2023; 101:1367-1381. [PMID: 36798994 DOI: 10.1111/cbdd.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
Indole-3-carbinol is produced from the cruciferous vegetables and broadly investigated for their various biological effects in in-vitro and in-vivo aspects. However, the anticancer activity of I3C and its molecular mechanisms have not been investigated in human adeno gastro carcinoma (AGS) cells. In our study of AGS cells, nuclear condensation was observed by 4',6-diamidino-2-phenylindole (DAPI) staining, cell death was confirmed by a cell viability assay, and fragmented DNA was observed at the IC50 dose by a DNA fragmentation assay. Apoptosis was evaluated by the qPCR technique. Treatment of the AGS cells with I3C at different concentrations has drastically decreased cell proliferation and differentiation. By releasing cytochrome-c from mitochondria in the intrinsic pathway, I3C prevents the multiplication of AGS cells and initiates apoptosis. The WST-1 assay result showed that I3C treatment against AGS cells had considerably reduced the viability of the cells. Furthermore, RT-qPCR showed the fold change among the expressed proteins compared with reference gene β-actin. Molecular docking revealed that I3C showed a strong binding affinity for the apoptotic protein 3DCY. The results show the caspase group of proteins contribute to the core of apoptotic machinery. I3C and its metabolites target a variety of components of cell-cycle control via distinct signaling pathways in light of the rapid development of tumors and oncogenesis. The translational significance of I3C and its metabolites in cancer is highlighted by their wide range of antitumor activity and low toxicity. Furthermore, the novel prodrug I3C, which has overlapping underlying mechanisms, could encourage new strategies to decrease oncogenesis.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Laboratory of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Korea
| | - Sung-Han Jo
- Department of Biomedical Engineering, College of Natural Science, Pukyong National University, Busan, Korea
| | - Anley Teferra Kiddane
- Laboratory of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Korea
| | - Irvine Niyonizigiye
- Laboratory of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Korea
| | - Gun-Do Kim
- Laboratory of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Korea
| |
Collapse
|
7
|
Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch: Preparation, characterization and storage stability properties. Food Chem 2022; 386:132846. [PMID: 35381538 DOI: 10.1016/j.foodchem.2022.132846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/27/2021] [Accepted: 03/27/2022] [Indexed: 11/24/2022]
Abstract
The stability of hydrophobic bioactive compound indole-3-carbinol (I3C) is a challenge for application. In this work, Pickering emulsions were prepared to encapsulate I3C. As the emulsifier, high amylose corn starch was pretreated by acid hydrolysis, afterwards modified by different concentrations of octenyl succinic anhydride (OSA), and their emulsions were evaluated. The XRD, SEM and FTIR results indicated the successful modification. ζ-potential, mean droplet size and emulsification index (EI) of the emulsions confirmed that modified starch with a higher degree of substitution (DS) was more effective for enhancing the storage stability. The results of encapsulation efficiency (EE) and retention degree of I3C after 14 d also proved the assumption. Moreover, the Pickering emulsions protected I3C against ultraviolet light and achieved controlled release in vitro. The food-grade Pickering emulsion loading I3C is promising to be used as a nutrient or dietary supplement for food applications.
Collapse
|
8
|
Macedo LB, Nogueira-Librelotto DR, Mathes D, de Vargas JM, da Rosa RM, Rodrigues OED, Vinardell MP, Mitjans M, Rolim CMB. Overcoming MDR by Associating Doxorubicin and pH-Sensitive PLGA Nanoparticles Containing a Novel Organoselenium Compound-An In Vitro Study. Pharmaceutics 2021; 14:80. [PMID: 35056975 PMCID: PMC8779681 DOI: 10.3390/pharmaceutics14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed PLGA nanoparticles (NPs) as an effective carrier for 5'-Se-(phenyl)-3-(amino)-thymidine (ACAT-Se), an organoselenium compound, nucleoside analogue that showed promising antitumor activity in vitro. The PLGA NPs were prepared by the nanoprecipitation method and modified with a pH-responsive lysine-based surfactant (77KL). The ACAT-Se-PLGA-77KL-NPs presented nanometric size (around 120 nm), polydispersity index values < 0.20 and negative zeta potential values. The nanoencapsulation of ACAT-Se increased its antioxidant (DPPH and ABTS assays) and antitumor activity in MCF-7 tumor cells. Hemolysis study indicated that ACAT-Se-PLGA-77KL-NPs are hemocompatible and that 77KL provided a pH-sensitive membranolytic behavior to the NPs. The NPs did not induce cytotoxic effects on the nontumor cell line 3T3, suggesting its selectivity for the tumor cells. Moreover, the in vitro antiproliferative activity of NPs was evaluated in association with the antitumor drug doxorubicin. This combination result in synergistic effect in sensitive (MCF-7) and resistant (NCI/ADR-RES) tumor cells, being especially able to successfully sensitize the MDR cells. The obtained results suggested that the proposed ACAT-Se-loaded NPs are a promising delivery system for cancer therapy, especially associated with doxorubicin.
Collapse
Affiliation(s)
- Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Josiele Melo de Vargas
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| | - Raquel Mello da Rosa
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Oscar Endrigo Dorneles Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (R.M.d.R.); (O.E.D.R.)
| | - Maria Pilar Vinardell
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institute of Nanocience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 465, 08028 Barcelona, Spain
| | - Montserrat Mitjans
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institute of Nanocience and Nanotechnology (IN2UB), Universitat de Barcelona, Av. Diagonal 465, 08028 Barcelona, Spain
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil; (L.B.M.); (D.M.); (C.M.B.R.)
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
9
|
Rampelotto CR, Pereira VG, da Silva Silveira L, Rossato A, Machado AK, Sagrillo MR, Gündel A, Burger ME, Schaffazick SR, de Bona da Silva C. Ferulic acid-loaded nanocapsules: Evaluation of mucosal interaction, safety and antioxidant activity in human mononucleated cells. Toxicol In Vitro 2021; 78:105259. [PMID: 34666174 DOI: 10.1016/j.tiv.2021.105259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
Ferulic acid (FA) is a phenolic compound that has antioxidant, anti-inflammatory and anticarcinogenic properties besides presenting cytoprotective activity. It has limited oral bioavailability what is a challenge to its therapeutic application. In this way, this investigation aimed to develop FA-loaded nanocapsule suspensions (NC-FA) prepared with ethylcellulose and evaluate their in vitro release profile, mucoadhesion and irritation potential; scavenging capacity, cytotoxicity, cytoprotection and genoprotection against hydrogen peroxide-induced damage in hMNC (human Mononucleated Cells) culture. The nanocapsules presented physicochemical characteristics compatible with colloidal systems (NC-FA: 112 ± 3 nm; NC-B (without FA): 107 ± 3 nm; PdI < 0.2; Span<2.0 and negative zeta potential). In addition, the nanoparticulate system promoted the FA controlled release, increasing the half-life twice through the in vitro dialysis method. NC-FA and NC-B were able to interact with mucin, which is an indicative of mucoadhesive properties and the association of FA with nanocapsules showed decreased irritation by HET-CAM method. Besides, the NC-FA did not present cytotoxicity in hMNC and improved the ATBS radical scavenging capacity. Besides, it prevented, treated and reversed oxidative conditions in a H2O2-induced model in hMNC. Thus, this nanocarrier formulation is promising to perform more preclinical investigations focusing on diseases involving oxidative mechanisms.
Collapse
Affiliation(s)
- Camila Reck Rampelotto
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Viviane Gonçalves Pereira
- Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Aline Rossato
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brazil
| | | | - Michele Rorato Sagrillo
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brazil
| | | | - Marilise Escobar Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Scheila Rezende Schaffazick
- Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane de Bona da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
10
|
Melo MN, Pereira FM, Rocha MA, Ribeiro JG, Junges A, Monteiro WF, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Chitosan and chitosan/PEG nanoparticles loaded with indole-3-carbinol: Characterization, computational study and potential effect on human bladder cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112089. [PMID: 33947529 DOI: 10.1016/j.msec.2021.112089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022]
Abstract
Indole-3-carbinol (I3C) is a plant molecule known to be active against several types of cancer, but some chemical characteristics limit its clinical applications. In order to overcome these limitations, polymeric nanoparticles can be used as carrier systems for targeted delivery of I3C. In this study, chitosan and chitosan/polyethylene glycol nanoparticles (CS NP and CS/PEG NP, respectively) were prepared to encapsulate I3C by ionic gelation method. The polymeric nanoparticles were characterized by Dynamic Scattering Light (DLS), Zeta Potential (ZP), Fourier Transform Infrared (FTIR) spetroscopy, X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). I3C release testing was performed at an acidic media and the interactions between I3C and chitosan or PEG were evaluated by Density Functional Theory (DFT). Cytotoxicity of nanoparticles in bladder cancer T24 cell line was evaluated by the Methyl-thiazolyl-tetrazolium (MTT) colorimetric assay. The average size of the nanoparticles was observed to be in the range from 133.3 ± 3.7 nm to 180.4 ± 2.7 nm with a relatively homogeneous distribution. Samples had relatively high positive zeta potential values (between +20.3 ± 0.5 mV and + 24.3 ± 0.5 mV). Similar encapsulation efficiencies (about 80%) for both nanoparticles were obtained. Physicochemical and thermal characterizations pointed to the encapsulation of I3c. electron microscopy showed spherical particles with smooth or ragged surface characteristics, depending on the presence of PEG. The mathematical fitting of the release profile demonstrated that I3C-CS NP followed the Higuchi model whereas I3C-CS/PEG NP the Korsmeyer-Peppas model. Chemical differences between the nanoparticles as based on the I3C/CS or I3C/PEG interactions were demonstrate by computational characterization. The assessment of cell viability by the MTT test showed that the presence of both free I3C and I3C-loaded nanoparticles lead to statistically significant reduction in T24 cells viability in the concentrations from 500 to 2000 μM, when comparison to the control group after 24 h of exposure. Thus, CS and CS/PEG nanoparticles present as feasible I3C carrier systems for cancer therapy.
Collapse
Affiliation(s)
- Micael Nunes Melo
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Fernanda Menezes Pereira
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Matheus Alves Rocha
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Jesica Gonçalves Ribeiro
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Alexander Junges
- Department of Food Engineering, URI - Erechim Av. Sete de Setembro, 1621, 99709-910 Erechim, Rio Grande do Sul, Brazil
| | - Wesley Formentin Monteiro
- Chemistry Institute, Federal University of Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Life and Health Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil.
| |
Collapse
|
11
|
Rose Flowers-A Delicate Perfume or a Natural Healer? Biomolecules 2021; 11:biom11010127. [PMID: 33478154 PMCID: PMC7835869 DOI: 10.3390/biom11010127] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called “old roses” that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties—as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants—are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases.
Collapse
|
12
|
Ferreira LM, Sari MHM, Cervi VF, Prado VC, Nadal JM, Azambuja JH, da Silveira EF, Nogueira CW, Farago PV, Braganhol E, Cruz L. Design of Pegylated-Nanocapsules to Diphenyl Diselenide Administration: In Vitro Evidence of Hemocompatible and Selective Antiglioma Formulation. AAPS PharmSciTech 2020; 21:307. [PMID: 33151442 DOI: 10.1208/s12249-020-01845-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Diphenyl diselenide [(PhSe)2] is a pleiotropic pharmacological agent, but it has low aqueous solubility. The nanoencapsulation of (PhSe)2 allowed the preparation of an aqueous formulation as well as potentiated its in vitro antitumor effect and the effectiveness in a preclinical model of glioblastoma when administered by the intragastric route. Thus, aiming at maximizing the therapeutic potential of (PhSe)2, the present study designed a pegylated-formulation intending to intravenous administration of the (PhSe)2 as a new approach for glioma therapy. The poly(Ɛ-caprolactone) nanocapsules containing (PhSe)2 were physically coated with polyethyleneglycol (PEG) using the preformed polymer interfacial deposition technique and evaluated through physicochemical, morphological, spectroscopic, and thermal characteristics. Hemocompatibility was determined by the in vitro hemolysis test and cytotoxicity assays were performed in astrocytes and glioma C6 cells (10-100 μM). The pegylated-nanocapsules had an average diameter of 218 ± 25 nm, polydispersity index of 0.164 ± 0.046, zeta potential of - 8.1 ± 1.6 mV, pH 6.0 ± 0.09, (PhSe)2 content of 102.00 ± 3.57%, and encapsulation efficiency around 98%. Besides, the (PhSe)2 pegylated-nanocapsules were spherical, presented absence of chemical interaction among the constituents, and showed higher thermal stability than the non-encapsulated materials. PEG-coated nanocapsules did not cause hemolytic effect while formulations without PEG induced a hemolysis rate above 10%. Moreover, pegylated-nanocapsules had superior in vitro antiglioma effect in comparison to free compound (IC50: 24.10 μM and 74.83 μM, respectively). Therefore, the (PhSe)2-loaded pegylated-nanocapsule suspensions can be considered a hemocompatible formulation for the glioma treatment by the intravenous route.
Collapse
|
13
|
Gellan gum-based hydrogel containing nanocapsules for vaginal indole-3-carbinol delivery in trichomoniasis treatment. Eur J Pharm Sci 2020; 151:105379. [PMID: 32473199 DOI: 10.1016/j.ejps.2020.105379] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
Abstract
Trichomonas vaginalis infection is the STI most common worldwide. Indole-3-carbinol (I3C) is a phytochemical presenting promising biological activities. In this study, design, formulation, and evaluation of a vaginal hydrogel containing I3C-loaded nanocapsules for the treatment of trichomoniasis have been investigated. Nanocapsules of Eudragit® RS100 and rosehip oil containing I3C (NC-I3C) were prepared by interfacial deposition of preformed polymer method. In vitro evaluations showed that free I3C (IC50 = 3.36 µg/mL) was able to reduce the trophozoites viability at higher concentrations (3.13 and 6.25 µg/mL), while nanoencapsulation (IC50 = 2.09 µg/mL) reduced the viability at all concentrations evaluated. Comparing free and nanoencapsulated I3C, we observe that nanoencapsulation improved anti-T. vaginalis activity. In order to obtain a formulation for vaginal administration, hydrogels (HG-NC-I3C) were prepared by thickening the NC-I3C with gellan gum. HG-NC-I3C presented particle size below 195 nm, low polydispersity index (<0.2), I3C content = 0.50 ± 0.01 mg/g, pH = 7.05, non-Newtonian pseudoplastic flow behavior and exhibited mucoadhesion to cow's vaginal mucosa. Evaluation of irritation potential by chorioallantoic membrane method indicated that the formulations are considered non-irritating. Besides that, permeation through the cow's vaginal mucosa showed that nanoencapsulation promoted I3C controlled release. This way, the developed HG-NC-I3C can be considered a promising approach for trichomoniasis treatment through vaginal administration.
Collapse
|
14
|
Azambuja JH, Schuh RS, Michels LR, Gelsleichter NE, Beckenkamp LR, Lenz GS, de Oliveira FH, Wink MR, Stefani MA, Battastini AMO, Teixeira HF, Braganhol E. CD73 as a target to improve temozolomide chemotherapy effect in glioblastoma preclinical model. Cancer Chemother Pharmacol 2020; 85:1177-1182. [PMID: 32417936 DOI: 10.1007/s00280-020-04077-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
Glioblastoma is the most devastating primary brain tumor and effective therapies are not available. Treatment is based on surgery followed by radio and chemotherapy with temozolomide (TMZ), but TMZ increases patient survival only by 2 months. CD73, an enzyme responsible for adenosine production, emerges as a target for glioblastoma treatment. Indeed, adenosine causes tumor-promoting actions and CD73 inhibition increases sensitivity to TMZ in vitro. Here, a cationic nanoemulsion to nasal delivery of siRNA CD73 (NE-siRNA CD73) aiming glioblastoma treatment was employed alone or in combination with TMZ. In vitro, two glioblastoma cell lines (C6 and U138MG) with a chemo-resistant profile were used. Treatment alone with NE-siRNA CD73 reduced C6 and U138MG glioma cell viability by 70% and 25%, respectively. On the other hand, when NE-siRNA + TMZ combined treatment was employed, a reduction of 85% and 33% of cell viability was observed. Notably, treatment with NE-siRNA CD73 of glioma-bearing Wistar rats reduced tumor size by 80%, 60% more than the standard chemotherapy with TMZ, but no synergistic or additive effect was observed in vivo. Additionally, NE-siRNA CD73, TMZ or combined therapy decreased adenosine levels in liquor confirming the importance of this nucleoside on in vivo GB growth. Finally, no hemolytic potential was observed. These results suggest that nasal administration of NE-siRNA CD73 exhibits higher antiglioma effect when compared to TMZ. However, no synergistic or additive in vivo was promoted by the therapeutic regimen employed in this study.
Collapse
Affiliation(s)
- J H Azambuja
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245-Prédio Principal, Porto Alegre, RS, 90050-170, Brazil.
| | - R S Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - L R Michels
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - N E Gelsleichter
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245-Prédio Principal, Porto Alegre, RS, 90050-170, Brazil
| | - L R Beckenkamp
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245-Prédio Principal, Porto Alegre, RS, 90050-170, Brazil
| | - G S Lenz
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245-Prédio Principal, Porto Alegre, RS, 90050-170, Brazil
| | | | - M R Wink
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245-Prédio Principal, Porto Alegre, RS, 90050-170, Brazil
| | - M A Stefani
- Departamento de Morfologia, UFRGS, Porto Alegre, RS, Brazil
| | | | - H F Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - E Braganhol
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245-Prédio Principal, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
15
|
Jurić S, Jurić M, Siddique MAB, Fathi M. Vegetable Oils Rich in Polyunsaturated Fatty Acids: Nanoencapsulation Methods and Stability Enhancement. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Slaven Jurić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Department of Food Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Md Abu Bakar Siddique
- Department of Agriculture and Food Science, University College Dublin (UCD) Belfield, Dublin, Ireland
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
16
|
Michels LR, Maciel TR, Nakama KA, Teixeira FEG, de Carvalho FB, Gundel A, de Araujo BV, Haas SE. Effects of Surface Characteristics of Polymeric Nanocapsules on the Pharmacokinetics and Efficacy of Antimalarial Quinine. Int J Nanomedicine 2019; 14:10165-10178. [PMID: 32021159 PMCID: PMC6942527 DOI: 10.2147/ijn.s227914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/25/2019] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The surface charge of nanoparticles, such as nanospheres (NS) and nanocapsules (NC), has been studied with the purpose of improving the in vivo performance of drugs. The aim of this study was to develop, characterize, and evaluate the in vitro antimalarial efficacy of NCP80 and NSP80 (polysorbate coated) or NCEUD and NSEUD (prepared with Eudragit RS 100) loading quinine (QN). METHODS Formulations were prepared by the nanoprecipitation method, followed by wide physicochemical characterization. Antimalarial activity in Plasmodium berghei-infected mice and populational pharmacokinetics (PopPK) in rats were evaluated. RESULTS The formulations showed a nanometric range (between 138 ± 3.8 to 201 ± 23.0 nm), zeta potential (mV) of -33.1 ± 0.7 (NCP80), -30.5 ± 1 (UNCP80), -25.5 ± 1 (NSP80), -20 ± 0.3 (UNSP80), 4.61 ± 1 (NCEUD), 14.1 ± 0.9 (UNCEUD), 2.86 ± 0.3 (NSEUD) and 2.84 ± 0.6 (UNSEUD), content close to 100%, and good QN protection against UVA light. There was a twofold increase in the penetration of QN into infected erythrocytes with NC compared to that with NS. There was a significant increase in t1/2 for all NC evaluated compared to that of Free-QN, due to changes in Vdss. PopPK analysis showed that NCP80 acted as a covariate to Q (intercompartmental clearance) and V2 (volume of distribution in the peripheral compartment). For NCEUD, V1 and Q were modified after QN nanoencapsulation. Regarding in vivo efficacy, NCEUD increased the survival of mice unlike Free-QN. CONCLUSION Cationic nanocapsules modified the pharmacology of QN, presenting a potential alternative for malaria treatment.
Collapse
Affiliation(s)
- Luana Roberta Michels
- Pharmaceutical Sciences Post Graduate Program, Pharmacy Course, Federal University of Pampa, UNIPAMPA, Uruguaiana, RS, Brazil
| | - Tamara Ramos Maciel
- Pharmaceutical Sciences Post Graduate Program, Pharmacy Course, Federal University of Pampa, UNIPAMPA, Uruguaiana, RS, Brazil
| | - Kelly Ayumi Nakama
- Pharmaceutical Sciences Post Graduate Program, Pharmacy Course, Federal University of Pampa, UNIPAMPA, Uruguaiana, RS, Brazil
| | | | - Felipe Barbosa de Carvalho
- Pharmaceutical Sciences Post Graduate Program, Pharmacy Course, Federal University of Pampa, UNIPAMPA, Uruguaiana, RS, Brazil
| | - André Gundel
- Campus Bagé, Federal University of Pampa, UNIPAMPA, Bagé, RS1650, Brazil
| | - Bibiana Verlindo de Araujo
- Pharmaceutical Sciences Post Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS2752, Brazil
| | - Sandra Elisa Haas
- Pharmaceutical Sciences Post Graduate Program, Pharmacy Course, Federal University of Pampa, UNIPAMPA, Uruguaiana, RS, Brazil
| |
Collapse
|
17
|
Ferreira LM, Azambuja JH, da Silveira EF, Marcondes Sari MH, da Cruz Weber Fulco B, Costa Prado V, Gelsleichter NE, Beckenkamp LR, da Cruz Fernandes M, Spanevello RM, Wink MR, de Cassia Sant Anna Alves R, Nogueira CW, Braganhol E, Cruz L. Antitumor action of diphenyl diselenide nanocapsules: In vitro assessments and preclinical evidence in an animal model of glioblastoma multiforme. J Trace Elem Med Biol 2019; 55:180-189. [PMID: 31345356 DOI: 10.1016/j.jtemb.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/09/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Gliomas are the most aggressive malignant tumors of the central nervous system. The diphenyl diselenide [(PhSe)2] is an organoselenium compound that has multiple pharmacological properties. Previous reports showed that (PhSe)2 nanoencapsulation potentiates its in vitro antitumoral action and reduces its toxicity. OBJECTIVE In this sense, the current study was designed to further evaluate the (PhSe)2 antitumoral effect by a set of in vitro techniques using a glioma cell line as well as by an animal model of gliobastoma. METHODS For the in vitro tests, the cell viability, propidium iodide uptake and nitrite levels of rat glioma C6 cells were determined after incubation with free (PhSe)2 or (PhSe)2-loaded nanocapsules (NC). The glioblastoma model was induced by implantation of C6 glioma cells in the right striatum of rats. Following, animals were submitted to a repeated intragastric administration treatment with (PhSe)2 or NC (PhSe)2 (1 mg/kg/day for 15 days) to assess the possible antitumor effect. MAIN FINDINGS Both compound forms decreased the C6 glioma cells viability without causing any effect in astrocytes cells (healthy control). Importantly, the NC (PhSe)2 had superior cytotoxic effect than its free form and increased the nitrite content. Independent of the (PhSe)2 forms, the intragastric treatment reduced brain tumor size and caused neither alteration in the plasma renal and hepatic markers of function nor in the parameters of oxidative balance in brain, liver and kidneys. PRINCIPAL CONCLUSIONS The (PhSe)2 nanoencapsulation improved its cytotoxic effect against C6 glioma cells and both compound forms attenuated the tumor development.
Collapse
Affiliation(s)
- Luana Mota Ferreira
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Juliana Hofstatter Azambuja
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde, Porto Alegre, RS, Brazil
| | - Elita Ferreira da Silveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bruna da Cruz Weber Fulco
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vinicius Costa Prado
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Liziane Raquel Beckenkamp
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde, Porto Alegre, RS, Brazil
| | - Marilda da Cruz Fernandes
- Laboratório de Patologia, Departamento de Patologia e de Medicina Legal, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rosélia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcia Rosângela Wink
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde, Porto Alegre, RS, Brazil
| | - Rita de Cassia Sant Anna Alves
- Laboratório de Patologia, Departamento de Patologia e de Medicina Legal, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
18
|
Rosa P, Friedrich ML, Dos Santos J, Librelotto DRN, Maurer LH, Emanuelli T, da Silva CDB, Adams AIH. Desonide nanoencapsulation with açai oil as oil core: Physicochemical characterization, photostability study and in vitro phototoxicity evaluation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111606. [PMID: 31522112 DOI: 10.1016/j.jphotobiol.2019.111606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/16/2019] [Accepted: 08/24/2019] [Indexed: 11/30/2022]
Abstract
This study aimed to develop Eudragit® RL 100 nanocapsules loaded with desonide (DES) using açai oil (AO) or medium chain triglycerides (MCT) as oil core. Pre-formulation study showed that AO and MCT are suitable for nanocapsules preparation. The nanocapsules prepared with AO and MCT presented mean particle size around 165 and 131 nm, respectively; polydispersity index values <0.20, positive zeta potential values, drug content close to the theoretical value (0.25 mg mL-1), and DES encapsulation efficiency around 81%, regardless of the oil core (AO or MCT). Considering the photoinstability reported to DES, photodegradation studies were performed. The UV-A (365 nm) and UV-C (254 nm) photodegradation studies revealed less DES degradation when associated to the nanocapsules containing AO in comparison to those with MCT. The in vitro release study showed a biphasic release profile for both nanocapsule suspensions: an initial burst effect followed by a prolonged DES release. In addition, the formulations were considered non-phototoxic at 0.5 mg mL-1 when tested on 3 T3 murine fibroblasts and HaCaT human keratinocytes using the MTT and NRU viability assays. The irritant potential of the prepared nanocapsules and DES in free form were evaluated by HET-CAM method. All formulations were classified as slightly irritant, including the non-associate DES. In conclusion, the nanocapsule formulations developed in this study may be promising for therapeutic applications.
Collapse
Affiliation(s)
- Priscila Rosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Mariane Lago Friedrich
- Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juliana Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Luana Haselein Maurer
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tatiana Emanuelli
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristiane de Bona da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil; Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Andréa Inês Horn Adams
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Santa Maria, Brazil; Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
19
|
Lorenzoni R, Cordenonsi LM, Davies S, Antonow MB, Medina Diedrich AS, Santos CG, Vitalis GS, Garrastazu G, Buttini F, Sonvico F, Gomes P, Raffin RP. Lipid-core nanocapsules are an alternative to the pulmonary delivery and to increase the stability of statins. J Microencapsul 2019; 36:317-326. [PMID: 31159613 DOI: 10.1080/02652048.2019.1624849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aims: Lipid-core nanocapsules (LNCs) loaded with simvastatin (SV, SV-LNC) or lovastatin (LV, LV-LNC) were formulated for pulmonary administration. Methods: The LNC suspensions were characterized physicochemically, their stability was evaluated, and drug delivery by the pulmonary route was tested in vitro. Results: The loaded LNCs had a particle size close to 200 nm, a low polydispersity index, and a zeta potential around -20 mV. The encapsulation efficiency was high for SV (99.21 ± 0.7%) but low for LV (20.34 ± 1.2%). SV release from nanocapsules was slower than it was from SV in solution, with a monoexponential release profile, and the drug emitted and aerosol output rate was higher for SV-LNCs (1.58 µg/s) than for SV in suspension (0.54 µg/s). Conclusions: SV-LNCs had a median aerodynamic diameter of 3.51 µm and a highly respirable fraction (61.9%), indicating that nanoparticles are a suitable system for efficient delivery of simvastatin to the lung.
Collapse
Affiliation(s)
- Ricardo Lorenzoni
- a Nanoscience Post-Graduation Program , Franciscan University , Santa Maria , Rio Grande do Sul , Brazil
| | - Leticia Malgarim Cordenonsi
- a Nanoscience Post-Graduation Program , Franciscan University , Santa Maria , Rio Grande do Sul , Brazil.,b Pharmaceutical Sciences Post-Graduation Program , Federal University of Rio Grande do Sul State , Porto Alegre , Brazil
| | - Samuel Davies
- a Nanoscience Post-Graduation Program , Franciscan University , Santa Maria , Rio Grande do Sul , Brazil.,b Pharmaceutical Sciences Post-Graduation Program , Federal University of Rio Grande do Sul State , Porto Alegre , Brazil
| | - Michelli Barcelos Antonow
- a Nanoscience Post-Graduation Program , Franciscan University , Santa Maria , Rio Grande do Sul , Brazil.,c Pharmaceutical Nanotechnology Post-Graduation Program , Federal University of Rio Grande do Sul State , Porto Alegre , Brazil
| | | | - Cayane Genro Santos
- a Nanoscience Post-Graduation Program , Franciscan University , Santa Maria , Rio Grande do Sul , Brazil
| | - Graciela Schneider Vitalis
- a Nanoscience Post-Graduation Program , Franciscan University , Santa Maria , Rio Grande do Sul , Brazil
| | | | - Francesca Buttini
- d Faculty of Pharmacy , Universitá degli Studi di Parma , Parma , Italy
| | - Fabio Sonvico
- d Faculty of Pharmacy , Universitá degli Studi di Parma , Parma , Italy
| | - Patrícia Gomes
- a Nanoscience Post-Graduation Program , Franciscan University , Santa Maria , Rio Grande do Sul , Brazil
| | - Renata Platcheck Raffin
- a Nanoscience Post-Graduation Program , Franciscan University , Santa Maria , Rio Grande do Sul , Brazil
| |
Collapse
|
20
|
Ramos PT, Pedra NS, Soares MSP, da Silveira EF, Oliveira PS, Grecco FB, da Silva LMC, Ferreira LM, Ribas DA, Gehrcke M, Felix AOC, Stefanello FM, Spanevello RM, Cruz L, Braganhol E. Ketoprofen-loaded rose hip oil nanocapsules attenuate chronic inflammatory response in a pre-clinical trial in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109742. [PMID: 31349429 DOI: 10.1016/j.msec.2019.109742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 04/03/2019] [Accepted: 05/11/2019] [Indexed: 12/13/2022]
Abstract
This study aimed to develop nanocapsules containing ketoprofen using rose hip oil (Keto-NC) as oil core, and to evaluate their anti-inflammatory activity in acute and chronic ear edema models in mice. Physicochemical characterization, drug release, photostability and cytotoxicity assays were performed for the developed Keto-NC formulations and compared to ketoprofen-loaded nanocapsules using medium chain triglycerides as oil core (Keto-MCT-NC). Anti-inflammatory activity of orally delivered KP (Ketoprofen-free; 10 mg.kg-1) or Keto-NC (2.5; 5; 10 mg.kg-1) was assessed in mouse acute and chronic ear edema induced by croton oil (CO). Edema histological characteristics were determined by H&E stain, and redox parameters were analyzed in blood plasma and erythrocytes. Keto-MCT-NC and Keto-NC did not exhibit differences regarding physicochemical parameters, including size diameters, polydispersity index, pH, Ketoprofen content, and encapsulation efficiency. However, Keto-NC, which contains rose hip oil as lipid core, decreased drug photodegradation under UVC radiation when compared to Keto-MCT-NC. KP or Keto-NC were not cytotoxic to keratinocyte cultures and produced equal edema inhibition in the acute protocol. Conversely, in the chronic protocol, Keto-NC was more effective in reducing edema (~60-70% on 7-9th days of treatment) when compared to KP (~40% on 8-9th days of treatment). This result was confirmed by histological analysis, which indicated reduction of edema and inflammatory infiltrate. A sub-therapeutic dose of Keto-NC (5 mg.kg-1) significantly reduced edema when compared to control. Finally, KP and Keto-NC exhibited similar effects on redox parameters, suggesting that the advantages associated with Ketoprofen nanoencapsulation did not involve oxidative stress pathways. The results showed that Keto-NC was more efficient than KP in reducing chronic inflammation. These data may be important for the development of strategies aiming treatment of chronic inflammatory diseases with fewer adverse effects.
Collapse
Affiliation(s)
- P T Ramos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - N S Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - M S P Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - E F da Silveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - P S Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - F B Grecco
- Departamento de Patologia Animal, Faculdade de Veterinária, UFPel, Pelotas, RS, Brazil
| | - L M C da Silva
- Departamento de Patologia Animal, Faculdade de Veterinária, UFPel, Pelotas, RS, Brazil
| | - L M Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - D A Ribas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - M Gehrcke
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - A O C Felix
- Biotério Central, UFPel, Pelotas, RS, Brazil
| | - F M Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - R M Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - L Cruz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - E Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Ferreira LM, da Rosa LVC, Müller TE, de Menezes CC, Marcondes Sari MH, Loro VL, Nogueira CW, Rosemberg DB, Cruz L. Zebrafish exposure to diphenyl diselenide-loaded polymeric nanocapsules caused no behavioral impairments and brain oxidative stress. J Trace Elem Med Biol 2019; 53:62-68. [PMID: 30910208 DOI: 10.1016/j.jtemb.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/09/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
Previous findings showed that the nanoencapsulation of diphenyl diselenide [(PhSe)2], an organoselenium compound, provided superior biological effects and lower toxicological potential than its free form in vitro. However, few studies reported the behavioral and biochemical effects of this nanocapsules formulation in vivo. Zebrafish (Danio rerio) has emerged as a useful animal model to determine the pharmacological and toxicological effects of nanoparticles. Here, we evaluated the behavioral and brain oxidative effects after zebrafish exposure to (PhSe)2-loaded nanocapsules. Formulations were prepared by interfacial deposition of preformed polymer method and later tested at concentrations ranging from 0.1 to 2.0 μM. Both locomotor and exploratory activities were assessed in the novel tank diving test. Moreover, brain oxidative status was determined by measuring thiobarbituric acid-reactive substance levels, glutathione peroxidase, glutathione redutase and glutathione S-transferase activities. (PhSe)2-loaded nanocapsules showed no alteration on travelled distance, immobility, and erratic swimming, suggesting the absence of behavioral impairments. Interestingly, the higher concentration tested had anxiolytic-like effects, since animals spent more time in the top area and showed a decreased thigmotaxis behavior. Biochemical analysis demonstrated that the concentrations used in this study did not affect oxidative stress-related parameters in brain samples, reinforcing the low toxicological potential of the formulation. In conclusion, the exposure to (PhSe)2-loaded nanocapsules caused no locomotor impairments as well as did not modify the oxidative status of zebrafish brain, indicating that this formulation is probably non-toxic and promising for future pharmacological studies.
Collapse
Affiliation(s)
- Luana Mota Ferreira
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Vinícius Costa da Rosa
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Talise Ellwanger Müller
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Charlene Cavalheiro de Menezes
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vania Lucia Loro
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina Wayne Nogueira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Denis Broock Rosemberg
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
22
|
|
23
|
Mattiazzi J, Sari MHM, Lautenchleger R, Dal Prá M, Braganhol E, Cruz L. Incorporation of 3,3'-Diindolylmethane into Nanocapsules Improves Its Photostability, Radical Scavenging Capacity, and Cytotoxicity Against Glioma Cells. AAPS PharmSciTech 2019; 20:49. [PMID: 30617655 DOI: 10.1208/s12249-018-1240-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023] Open
Abstract
3,3'-Diindolylmethane (DIM) is a phytochemical that presents health benefits (antitumor, antioxidant, and anti-inflammatory effects). However, it is water insoluble and thermo- and photolabile, restraining its pharmaceutical applications. As a strategy to overcome such limitations, this study aimed the development and characterization of DIM-loaded nanocapsules (NCs) prepared with different compositions as well as the in vitro assessment of scavenging activity and cytotoxicity. The formulations were obtained using the interfacial deposition of preformed polymer method and were composed by Eudragit® RS100 or ethylcellulose as polymeric wall and primula or apricot oil as the core. All the formulations had adequate physicochemical characteristics: nanometric size (around 190 nm), low polydispersity index (< 0.2), pH value at acid range, high values of zeta potential, drug content, and encapsulation efficiency (~ 100%). Besides, nanoencapsulation protected DIM against UVC-induced degradation and increased the scavenging activity assessed by the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) and 1-1-diphenyl-2-picrylhydrazyl methods. The developed DIM-loaded nanocapsules were further evaluated regarding the in vitro release profile and cytotoxicity against a human glioblastoma cell line (U87 cells). The results demonstrated that the nanoencapsulation promoted a sustained release of the bioactive compound (in the range of 58-78% after 84 h) in comparison to its free form (86% after 12 h), as well as provided a superior cytotoxic effect against the U87 cells in the highest concentrations. Therefore, our results suggest that nanoencapsulation could be a promising approach to overcome the DIM physicochemical limitations and potentialize its biological properties.
Collapse
|
24
|
González-Aramundiz JV, Peleteiro M, González-Fernández Á, Alonso MJ, Csaba NS. Protamine Nanocapsules for the Development of Thermostable Adjuvanted Nanovaccines. Mol Pharm 2018; 15:5653-5664. [PMID: 30375877 DOI: 10.1021/acs.molpharmaceut.8b00852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the main challenges in the development of vaccine has been to improve their stability at room temperature and eliminate the limitations associated with the cold chain storage. In this paper, we describe the development and optimization of thermostable nanocarriers consisting of an oily core with immunostimulating activity, containing squalene or α tocopherol surrounded by a protamine shell. The results showed that these nanocapsules can efficiently associate the recombinant hepatitis B surface antigen (rHBsAg) without compromising its antigenicity. Furthermore, the freeze-dried protamine nanocapsules were able to preserve the integrity and bioactivity of the associated antigen upon storage for at least 12 months at room temperature. In vitro studies evidenced the high internalization of the nanocapsules by immunocompetent cells, followed by cytokine secretion and complement activation. In vivo studies showed the capacity of rHBsAg-loaded nanocapsules to elicit protective levels upon intramuscular or intranasal administration to mice. Overall, our data indicate that protamine nanocapsules are an innovative thermostable nanovaccine platform for improved antigen delivery.
Collapse
Affiliation(s)
- José Vicente González-Aramundiz
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain.,Departamento de Farmacia, Facultad de Química , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Mercedes Peleteiro
- Inmunologı́a, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia) , Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo , Vigo , Spain
| | - África González-Fernández
- Inmunologı́a, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia) , Instituto de Investigación Sanitaria Galicia Sur, Universidade de Vigo , Vigo , Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Noemi Stefánia Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| |
Collapse
|
25
|
Mishra J, Mishra AK. Effect of Indole-3-Carbinol on Dimyristoylphosphatidylcholine Multilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11886-11897. [PMID: 30189729 DOI: 10.1021/acs.langmuir.8b02769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study reports the interaction of indole-3-carbinol (I3C), which is a chemopreventive reagent, with an artificial model membrane {(dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLVs)}, using the intrinsic fluorescence properties of I3C, extrinsic fluorescence properties of Nile Red (NR), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and confocal microscopy. The intrinsic fluorescence of I3C helps to provide information about its location, partitioning ability, and sensitivity toward the phase-transition temperature of liposomes, confirmed by cetylpyridinium chloride (CPC) quenching study, partition coefficient values {(4.60 ± 0.1) × 105 (solid gel phase) and (7.29 ± 0.1) × 105 M-1 (liquid crystalline phase)} and temperature-dependent emission behavior of I3C. I3C perturbs the DMPC MLVs above 15 mol %, as observed using the fluorescence properties of NR, DSC, and DLS data. This perturbation occurs as a consequence of interfacial hydration of the DMPC MLVs, which was clearly indicated by the fluorescence properties (emission intensity, fluorescence lifetime, and nonextensive distribution analysis) of NR.
Collapse
Affiliation(s)
- Jhili Mishra
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Ashok Kumar Mishra
- Department of Chemistry , Indian Institute of Technology Madras , Chennai 600 036 , India
| |
Collapse
|
26
|
Ferreira LM, Cervi VF, Sari MHM, Barbieri AV, Ramos AP, Copetti PM, de Brum GF, Nascimento K, Nadal JM, Farago PV, Sagrillo MR, Nogueira CW, Cruz L. Diphenyl diselenide loaded poly(ε-caprolactone) nanocapsules with selective antimelanoma activity: Development and cytotoxic evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:1-9. [DOI: 10.1016/j.msec.2018.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/10/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
|
27
|
Danne AB, Choudhari AS, Chakraborty S, Sarkar D, Khedkar VM, Shingate BB. Triazole-diindolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation, and molecular docking. MEDCHEMCOMM 2018; 9:1114-1130. [PMID: 30108999 DOI: 10.1039/c8md00055g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022]
Abstract
We describe the synthesis of novel triazole-incorporated diindolylmethanes (DIMs) using a molecular hybridization approach. The in vitro antitubercular activity of the DIMs against Mycobacterium tuberculosis H37Ra (ATCC 25177) was tested in the active and dormant state. Among all the synthesized conjugates, the compounds 6b, 6f, 6l, 6n, 6q, 6r, and 6s displayed good antitubercular activity against both the active and dormant Mtb H37Ra strain. The compound 6l exhibited good antitubercular activity against dormant Mtb H37Ra with an IC50 value of 1 μg mL-1 and IC90 (MIC) value of 3 μg mL-1. The compounds 6b, 6l, and 6r displayed good antitubercular activity against active Mtb H37Ra with IC50 values of 2.19, 1.52, and 0.22 μg mL-1, respectively. The compounds 6b, 6h, 6l, and 6s displayed more than 70% inhibition against the Gram-positive Bacillus subtilus strain at 3 μg mL-1. The molecular docking study showed the binding modes of the titled compounds in the active site of the DprE1 enzyme and assisted with elucidating a structural basis for the inhibition of Mycobacteria.
Collapse
Affiliation(s)
- Ashruba B Danne
- Department of Chemistry , Dr. Babasaheb Ambedkar Marathwada University , Aurangabad 431 004 , India . ; ; Tel: +(91) 240 2403312
| | - Amit S Choudhari
- Combi-Chem Bio-Resource Center , Organic Chemistry Division , CSIR-National Chemical Laboratory , Pune 411 008 , India
| | - Shakti Chakraborty
- Combi-Chem Bio-Resource Center , Organic Chemistry Division , CSIR-National Chemical Laboratory , Pune 411 008 , India
| | - Dhiman Sarkar
- Combi-Chem Bio-Resource Center , Organic Chemistry Division , CSIR-National Chemical Laboratory , Pune 411 008 , India
| | - Vijay M Khedkar
- Department of Pharmaceutical Chemistry , Shri Vile Parle Kelavani Mandal's Institute of Pharmacy , Dhule , Maharashtra 424 001 , India
| | - Bapurao B Shingate
- Department of Chemistry , Dr. Babasaheb Ambedkar Marathwada University , Aurangabad 431 004 , India . ; ; Tel: +(91) 240 2403312
| |
Collapse
|
28
|
Li Q, Sun X, Gu G, Guo Z. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity. Mar Drugs 2018; 16:md16040107. [PMID: 29597269 PMCID: PMC5923394 DOI: 10.3390/md16040107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- Graduate School of Chinese Academy of Sciences, Beijing 100039, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard Malvern, PA 19355, USA.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| |
Collapse
|
29
|
Kim JK, Park SU. Current results on the biological and pharmacological activities of Indole-3-carbinol. EXCLI JOURNAL 2018; 17:181-185. [PMID: 29743856 PMCID: PMC5938534 DOI: 10.17179/excli2017-1028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
30
|
Jovtchev G, Stankov A, Georgieva A, Dobreva A, Bakalova R, Aoki I, Mileva M. Cytotoxic and genotoxic potential of Bulgarian Rosa alba L. essential oil – in vitro model study. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1423245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Gabrielle Jovtchev
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexander Stankov
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Almira Georgieva
- Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Dobreva
- Department of technology, Institute for Roses and Aromatic Plants, Kazanlak, Bulgaria
| | - Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST/NIRS, Inage-ku, Chiba, Japan
- Department of Physics, Biophysics and Roentgenology, Medical Faculty, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST/NIRS, Inage-ku, Chiba, Japan
| | - Milka Mileva
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
31
|
Gehrcke M, Sari MHM, Ferreira LM, Barbieri AV, Giuliani LM, Prado VC, Nadal JM, Farago PV, Nogueira CW, Cruz L. Nanocapsules improve indole-3-carbinol photostability and prolong its antinociceptive action in acute pain animal models. Eur J Pharm Sci 2018; 111:133-141. [DOI: 10.1016/j.ejps.2017.09.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
32
|
Marchiori MCL, Rigon C, Copetti PM, Sagrillo MR, Cruz L. Nanoencapsulation Improves Scavenging Capacity and Decreases Cytotoxicity of Silibinin and Pomegranate Oil Association. AAPS PharmSciTech 2017; 18:3236-3246. [PMID: 28577126 DOI: 10.1208/s12249-017-0810-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/11/2017] [Indexed: 01/27/2023] Open
Abstract
Silibinin (SB) and pomegranate oil (PO) present therapeutic potential due to antioxidant activity, but the biological performance of both bioactives is limited by their low aqueous solubility. To overcome this issue, the aim of the present investigation was to develop nanocapsule suspensions with PO as oil core for SB encapsulation, as well as assess their toxicity in vitro and radical scavenging activity. The nanocapsule suspensions were prepared by interfacial deposition of preformed polymer method. SB-loaded PO-based nanocapsules (SBNC) showed an average diameter of 157 ± 3 nm, homogenous size distribution, zeta potential of -14.1 ± 1.7 mV, pH of 5.6 ± 0.4 and SB content close to 100%. Similar results were obtained for the unloaded formulation (PONC). The nanocapsules controlled SB release at least 10 times as compared with free SB in methanolic solution. The SBNC scavenging capacity in vitro was statistically higher than free SB (p < 0.05). Cell viability in monocytes and lymphocytes was kept around 100% in the treatments with SBNC and PONC, while the SB and the PO caused a decrease around 30% at 50 μM (SB) and 724 μg/mL (PO). Protein carbonyls and DNA damage were minimized by SB and PO nanoencapsulation. Lipid peroxidation occurred in nanocapsule treatments regardless of the SB presence, which may be attributed to PO acting as substrate in reaction. The free compounds also caused lipid peroxidation. The results show that SBNC and PONC presented adequate physicochemical characteristics and low toxicity against human blood cells. Thereby, this novel nanocarrier may be a promising formulation for therapeutic applications.
Collapse
|
33
|
Novel indole derivatives as potential anticancer agents: Design, synthesis and biological screening. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2065-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|