1
|
Trendafilova I, Popova M. Porous Silica Nanomaterials as Carriers of Biologically Active Natural Polyphenols: Effect of Structure and Surface Modification. Pharmaceutics 2024; 16:1004. [PMID: 39204349 PMCID: PMC11359489 DOI: 10.3390/pharmaceutics16081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
For centuries, humans have relied on natural products to prevent and treat numerous health issues. However, biologically active compounds from natural sources, such as polyphenols, face considerable challenges, due to their low solubility, rapid metabolism, and instability, which hinder their effectiveness. Advances in the nanotechnologies have provided solutions to overcoming these problems through the use of porous silica materials as polyphenol carriers. These materials possess unique properties, such as a high specific surface area, adjustable particle and pore sizes, and a surface that can be easily and selectively modified, which favor their application in delivery systems of polyphenols. In this review, we summarize and discuss findings on how the pore and particle size, structure, and surface modification of silica materials influence the preparation of efficient delivery systems for biologically active polyphenols from natural origins. The available data demonstrate how parameters such as adsorption capacity, release and antioxidant properties, bioavailability, solubility, stability, etc., of the studied delivery systems could be affected by the structural and chemical characteristics of the porous silica carriers. Results in the literature confirm that by regulating the structure and selecting the appropriate surface modifications, the health benefits of the loaded bioactive molecules can be significantly improved.
Collapse
Affiliation(s)
- Ivalina Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, BG-1000 Sofia, Bulgaria;
| | | |
Collapse
|
2
|
Matadamas-Ortiz A, Pérez-Robles JF, Reynoso-Camacho R, Amaya-Llano SL, Amaro-Reyes A, Di Pierro P, Regalado-González C. Effect of Amine, Carboxyl, or Thiol Functionalization of Mesoporous Silica Particles on Their Efficiency as a Quercetin Delivery System in Simulated Gastrointestinal Conditions. Foods 2024; 13:1208. [PMID: 38672881 PMCID: PMC11048906 DOI: 10.3390/foods13081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Quercetin (Q) dietary supplements exhibit poor oral bioavailability because of degradation throughout gastrointestinal digestion (GD), which may be overcome using mesoporous silica particles (MSPs) as an oral delivery system (ODS). This study aimed to elucidate the effect of the functionalization of MSPs with amine-(A-MSP), carboxyl-(C-MSP), or thiol-(T-MSP) groups on their efficiency as a quercetin ODS (QODS). The type and degree of functionalization (DF) were used as factors in an experimental design. The Q-loaded F-MSP (F-MSP/Q) was characterized by gas physisorption analysis, loading capacity (LC), and dynamic light scattering and kinetics of Q release at gastric and intestinal pHs. Antioxidant capacity and Q concentration of media containing F-MSP/Q were evaluated after simulated GD. A-MSP showed the highest LC (19.79 ± 2.42%). C-MSP showed the lowest particle size at pH 1.5 or 7.4 (≈200 nm). T-MSP exhibited the maximum Q release at pH 7.4 (11.43%). High DF of A-MSP increased Q retention, regardless of pH. A-MSP preserved antioxidant capacity of Q-released gastric media (58.95 ± 3.34%). Nonetheless, MSP and F-MSP did not protect antioxidant properties of Q released in intestinal conditions. C-MSP and T-MSP showed essential features for cellular uptake and Q release within cells that need to be assessed.
Collapse
Affiliation(s)
- Alexis Matadamas-Ortiz
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| | - Juan F. Pérez-Robles
- Unidad Querétaro, Centro de Investigación y Estudios Avanzados del IPN, CINVESTAV, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, Querétaro 76230, Qro., Mexico;
| | - Rosalía Reynoso-Camacho
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| | - Silvia L. Amaya-Llano
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| | - Aldo Amaro-Reyes
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| | - Prospero Di Pierro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
| | - Carlos Regalado-González
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| |
Collapse
|
3
|
Zhao Z, Wang J, Yuan H, Xu J, Gao H, Nie Y. Preparation of Antibacterial Biobased Fibers by Triaxial Microfluidic Spinning Technology Using Ionic Liquids as the Solvents. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18063-18074. [PMID: 38537174 DOI: 10.1021/acsami.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Bacterial infections have become a serious threat to public health. The utilization of antibacterial textiles offers an effective way to combat bacterial infections at the source, instead of relying solely on antibiotic consumption. Herein, efficient and durable antibacterial fibers based on quercetin and cellulose were prepared by a triaxial microfluidic spinning technology using ionic liquids (ILs) as the solvents. It was indicated that the structure and properties of the antibacterial fibers were affected by the type of IL and the flow rates during the triaxial microfluidic spinning process. Quercetin regenerated from [Emim]Ac underwent structural transformation and obtained an increased water solubility, while quercetin regenerated from [Emim]DEP remained unchanged, which was proven by FI-IR, XRD, and UV analyses. Furthermore, antibacterial fibers regenerated from [Emim]Ac exhibited the highest antibacterial activity of 96.9% against S. aureus, achieved by reducing the inner-to-outer flow rate ratio to 0 and concentrating quercetin at the center of fibers. On the other hand, when [Emim]DEP was used as the solvent, balancing the inner-to-outer flow rate ratio to concentrate quercetin in the middle layer of the fiber was optimal for achieving the best antibacterial activity of 93.3% because it promised both the higher encapsulation efficiency and release rate. Computational fluid dynamics (CFD) mathematically predicted the solvent exchange process during triaxial spinning, explaining the influence of IL types and flow rates on quercetin distribution and encapsulation efficiency. It was indicated that optimizing the distribution of antibacterial agents within the fibers can fully unleash its antibacterial potential while preserving the mechanical properties of the fiber. Therefore, the proposed simple triaxial spinning strategy provides valuable insights into the design of biomedical materials.
Collapse
Affiliation(s)
- Zhimin Zhao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanmeng Yuan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Xu
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Montiel Schneider MG, Martín MJ, Cuello N, Favatela MF, Gentili C, Elias V, Eimer G, Lassalle V. Morin loaded mesoporous molecular sieves as novel devices to the potential treatment of tumor pathologies. J Biomater Appl 2024; 38:1000-1009. [PMID: 38456269 DOI: 10.1177/08853282241238408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Morin is an antioxidant and anticancer flavonoid, extracted from natural sources, that may exert beneficial effects for several pathologies. Despite this, the administration of morin represents a challenge due to its low aqueous solubility. Mesoporous silica materials have emerged as biocompatible tools for drug delivery, as their pore size can be modulated for maximum surface area to volume ratio. In this contribution, we evaluate the ability of iron-modified mesoporous materials, for morin loading and controlled delivery. The SBA-15 and MCM-41 sieves were synthesized and modified with iron (metal content 4.02 and 6.27 % wt, respectivily). Characterization by transmission electron microscopy, XRD and UV-Vis revealed adequate pore size and agglomerates of very small metallic nanospecies (nanoclusters), without larger iron oxide nanoparticles. FT-IR spectra confirmed the presence of silanol groups in the solid hosts, which can interact with different groups present in morin molecules. SBA-15 materials were more efficient in terms of morin loading capacity (LC) due to their larger pore diameter. LC was more than 35% for SBA-15 materials when adsorptions studies were carried out with 9 mg of drug. Antioxidant activity were assayed by using DPPH test. Free iron materials presented a significate improvement as antioxidants after morin incorporation, reaching a scavenging activity of almost a 90%. On the other hand, in iron modified mesoporous materials, the presence of morin did not affect the scavenging activity. The results could be related with the formation of a complex between the flavonoid and the iron. Finally, biosafety studies using normal epithelial cells revealed that neither the loaded nor the unloaded materials exerted toxicity, even at doses of 1 mg/ml. These findings expand knowledge about mesoporous materials as suitable carriers of flavonoids with the aim of improving therapies for a wide range of pathologies.
Collapse
Affiliation(s)
| | - María Julia Martín
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Natalia Cuello
- Centro de Investigacion y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Cordoba, Maestro Lopez y Cruz Roja Argentina, Ciudad Universitaria, Córdoba, Argentina
| | - María Florencia Favatela
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Claudia Gentili
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Verónica Elias
- Centro de Investigacion y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Cordoba, Maestro Lopez y Cruz Roja Argentina, Ciudad Universitaria, Córdoba, Argentina
| | - Griselda Eimer
- Centro de Investigacion y Tecnología Química (CITeQ) (UTN-CONICET), Facultad Regional Cordoba, Maestro Lopez y Cruz Roja Argentina, Ciudad Universitaria, Córdoba, Argentina
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
5
|
Nakamura M, Urakawa D, He Z, Akagi I, Hou DX, Sakao K. Apoptosis Induction in HepG2 and HCT116 Cells by a Novel Quercetin-Zinc (II) Complex: Enhanced Absorption of Quercetin and Zinc (II). Int J Mol Sci 2023; 24:17457. [PMID: 38139286 PMCID: PMC10743889 DOI: 10.3390/ijms242417457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Quercetin forms complexes with various metals due to its structural attributes. It predominantly exhibits chelating activity at the 3-hydroxy/4-carbonyl group. Previously, coordination in synthetically obtained quercetin-zinc (II) complexes has been limited to this group. However, the expanded coordination observed in quercetin-iron complexes has opened avenues for diverse applications. Thus, synthesizing novel quercetin-zinc complexes with different coordination positions is a significant advance. In our study, we not only synthesized and comprehensively characterized a new quercetin-zinc (II) complex, Zn-Q, but also evaluated the structure and bioactivity of chelate complexes (Q+Zn) derived from co-treatment in cell culture mediums. The structure of the new compound Zn-Q was comprehensively characterized using 1D 1H and 2D correlation spectroscopy (COSY), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), electrospray ionization mass spectrometer (ESI-MS), and X-ray diffraction analysis (XRD) analysis. Subcellular localization and absorption of these zinc (II) complexes were determined using the ZnAF-2 DA zinc ion fluorescence probe. Throughout the experiments, both Zn-Q and Q+Zn exhibited significant antioxidant, cell growth inhibitory, and anticancer effects in HepG2 and HCT116 cells, with Zn-Q showing the highest potential for inducing apoptosis via the caspase pathway. Tracking intracellular zinc complex absorption using zinc fluorescent probes revealed zinc (II) localization around the cell nucleus. Interestingly, there was a proportional increase in intracellular quercetin absorption in conjunction with zinc (II) uptake. Our research highlights the advantages of quercetin complexation with zinc (II): enhanced anticancer efficacy compared to the parent compound and improved bioavailability of both quercetin and zinc (II). Notably, our findings, which include enhanced intracellular uptake of both quercetin and zinc (II) upon complex formation and its implications in apoptosis, contribute significantly to the understanding of metal-polyphenol complexes. Moving forward, comprehensive functional assessments and insights into its mechanism of action, supported by animal studies, are anticipated.
Collapse
Affiliation(s)
- Mizuki Nakamura
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
| | - Daigo Urakawa
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
| | - Ziyu He
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Isao Akagi
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - De-Xing Hou
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Kozue Sakao
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; (M.N.); (D.U.); (I.A.); (D.-X.H.)
- The United Graduate School of Agriculture Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| |
Collapse
|
6
|
Heng X, Pan Y, Chen X, Pu L, Lu J, Li K, Tang K. Long-Term and Stable Dental Therapies via an In Situ Spontaneous Medicine Delivery System. ACS OMEGA 2023; 8:23936-23944. [PMID: 37426210 PMCID: PMC10324093 DOI: 10.1021/acsomega.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Chronic oral diseases are boring, long-term, and discomfort intense diseases, which endanger the physical and mental health of patients constantly. Traditional therapeutic methods based on medicines (including swallowing drugs, applying ointment, or injection in situ) bring much inconvenience and discomfort. A new method possessing accurate, long-term, stable, convenient, and comfortable features is in great need. In this study, we demonstrated a development of one spontaneous administration for the prevention and therapy on a series of oral diseases. By uniting dental resin and medicine-loaded mesoporous molecular sieve, nanoporous medical composite resin (NMCR) was synthesized by a simple physical mixing and light curing method. Physicochemical investigations of XRD, SEM, TEM, UV-vis, N2 adsorption, and biochemical experiments of antibacterial and pharmacodynamic evaluation on periodontitis treatment of SD rats were carried on to characterize an NMCR spontaneous medicine delivery system. Compared to existing pharmacotherapy and in situ treatments, NMCR can keep a quite long time of stable in situ medicine release during the whole therapeutic period. Taking the periodontitis treatment as an instance, the probing pocket depth value in a half-treatment time of 0.69 from NMCR@MINO was much lower than that of 1.34 from the present commercial Periocline ointment, showing an over two times effect.
Collapse
Affiliation(s)
- Xuan Heng
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yuhao Pan
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xinghui Chen
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liuyi Pu
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jiaping Lu
- Dental
Clinic of Xuhui District, Shanghai 200031, People’s
Republic of China
| | - Ka Li
- Institute
of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, People’s
Republic of China
| | - Kangjian Tang
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
7
|
Trendafilova I, Chimshirova R, Momekova D, Petkov H, Koseva N, Petrova P, Popova M. Curcumin and Capsaicin-Loaded Ag-Modified Mesoporous Silica Carriers: A New Alternative in Skin Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3075. [PMID: 36080112 PMCID: PMC9458240 DOI: 10.3390/nano12173075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Biologically active substances of natural origin offer a promising alternative in skin disease treatment in comparison to synthetic medications. The limiting factors for the efficient application of natural compounds, such as low water solubility and low bioavailability, can be easily overcome by the development of suitable delivery systems. In this study, the exchange with the template procedure was used for the preparation ofa spherical silver-modified mesoporous silica nanocarrier. The initial and drug-loaded formulations are fully characterized by different physico-chemical methods. The incipient wetness impregnation method used to load health-promoting agents, curcumin, and capsaicin in Ag-modified carriers separately or in combinationresulted in high loading efficiency (up to 33 wt.%). The interaction between drugs and carriers was studied by ATR-FTIR spectroscopy. The release experiments of both active substances from the developed formulations were studied in buffers with pH 5.5, and showed improved solubility. Radical scavenging activity and ferric-reducing antioxidant power assays were successfully used for the evaluation of the antiradical and antioxidant capacity of the curcumin or/and capsaicin loaded on mesoporous carriers. Formulations containing a mixture of curcumin and capsaicin were characterized bypotentiation of their antiproliferative effect against maligning cells, and it was confirmed that the system for simultaneous delivery of both drugs has lower IC50 values than the free substances.The antibacterial tests showed better activity of the obtained delivery systems in comparison with the pure curcumin and capsaicin. Considering the obtained results, it can be concluded that the obtained delivery systems are promising for potential dermal treatment.
Collapse
Affiliation(s)
- Ivalina Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ralitsa Chimshirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Hristo Petkov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Neli Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Carucci C, Sechi G, Piludu M, Monduzzi M, Salis A. A drug delivery system based on poly-L-lysine grafted mesoporous silica nanoparticles for quercetin release. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Production of Iso-octanoic Acid Via Efficiently Synergetic Catalysis of Zn-Modified ZSM-5/HMS. Catal Letters 2022. [DOI: 10.1007/s10562-021-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ziarani GM, Khademi M, Mohajer F, Badiei A. The Application of Modified SBA-15 as a Chemosensor. CURRENT NANOMATERIALS 2022; 7:4-24. [DOI: 10.2174/2405461506666210420132630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 06/17/2023]
Abstract
:
The Santa Barbara Amorphous (SBA-15), with a large surface area covered with abundant
Si-OH active groups on the walls of its pores, can be modified with various organic compounds
to build organic-inorganic hybrid materials, which can be used as a catalyst in organic reactions,
drug delivery systems, nano sorbent due to its high capacity for removing heavy metals in
waste water and as chemosensors for ions. Tunable and straight channels of SBA-15 facilitate the
entrance and diffusion of ions through the channels. This paper presents a review of the past five
years of literature covering the application of SBA-15 as an ions chemosensor in the liquid and
gaseous media.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Alireza Badiei
- School of
Chemistry, Collage of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Alizadeh SR, Ebrahimzadeh MA. O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure-activity relationship for drug design, a review. Phytother Res 2021; 36:778-807. [PMID: 34964515 DOI: 10.1002/ptr.7352] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Quercetin as a valuable natural flavonoid has shown extensive biological activities, including anticancer, antioxidant, antibacterial, antiinflammatory, anti-Alzheimer, antifungal, antiviral, antithalassemia, iron chelation, antiobesity, antidiabetic, antihypertension, and antiphospholipase A2 (PLA2) activities, by the modulation of various targets and signaling pathways that have attracted much attention. However, the low solubility and poor bioavailability of quercetin have limited its applications; therefore, the researchers have tried to design and synthesize many new derivatives of quercetin through different strategies to modify quercetin restrictions and improve its biological activities. This review categorized the O-glycoside derivatives of Quercetin into two main classes, 3-O-glycoside and other O-glycoside derivatives. Also, it studied biological activities, structure-activity relationship (SAR), and the action mechanism of O-glycoside quercetin derivatives. Overall, we summarized past and present research for discovering new potent lead compounds.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Nematollahi E, Pourmadadi M, Yazdian F, Fatoorehchi H, Rashedi H, Nigjeh MN. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin. Int J Biol Macromol 2021; 183:600-613. [PMID: 33932424 DOI: 10.1016/j.ijbiomac.2021.04.160] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/04/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
pH-sensitive drug delivery systems based on amphiphilic copolymers constitute a promising strategy to overcome some challenges to cancer treatment. In the present study, quercetin-loaded chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite was fabricated through a double oil in water emulsification method for the first time. γ-Alumina was incorporated to improve the drug loading efficiency and release behavior of polyvinylpyrrolidone and chitosan copolymeric hydrogel. γ-Alumina nanoparticles were obtained by the sol-gel method with a nanoporous structure, high surface area, and hydroxyl-rich surface. Quercetin, a natural anticancer agent, was loaded into the nanocomposite as a drug model. XRD and FTIR analyses confirmed the crystalline properties and chemical bonding of the prepared nanocomposite. The size of drug-loaded nanocomposites was 141 nm with monodisperse particle distribution, having a spherical shape approved by DLS analysis and FE-SEM, respectively. Incorporating γ-Alumina nanoparticles improved the encapsulation efficiency up to 95%. Besides, swelling study and the quercetin release profile demonstrated that γ-Alumina ameliorated pH sensitivity of nanocomposite and a targeted controlled release was obtained. Various release kinetic models were applied to the experimental release data to study the mechanism of drug release. Through MTT assay and flow cytometry, the quercetin-loaded nanocomposite showed significant cytotoxicity on MCF-7 breast cancer cells. Also, the enhanced apoptotic cell death confirmed the anticancer activity of γ-Alumina. These results suggest that the chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite is a novel pH-sensitive drug delivery system for anticancer applications.
Collapse
Affiliation(s)
- Elnaz Nematollahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hooman Fatoorehchi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Zhang J, Cheng K, Li H, Yin F, Wang Q, Cui L, Yang S, Nie J, Zhou D, Zhu B. Efficient Synthesis of Structured Phospholipids Containing Short-Chain Fatty Acids over a Sulfonated Zn-SBA-15 Catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12444-12453. [PMID: 33079531 DOI: 10.1021/acs.jafc.0c05213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalytic production of structured phospholipids (SPLs) containing short-chain fatty acids (SCFAs) in an efficient heterogeneous manner is of great importance from the standpoint of food engineering. Herein, a bifunctionalized sulfonated Zn-SBA-15 catalyst was studied for SPL synthesis through interesterification of soybean lecithin with ethyl propionate or methyl butyrate. Various characterization techniques such as pyridine Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy were conducted to determine the physicochemical properties, so as to build the possible structure-reactivity relationship of the catalyst. In screening tests with commercial Amberlyst-15 or other SBA-15-type materials, the as-prepared sample showed promising catalytic performance probably owing to its mesoporous structure and cooperative role of Brönsted and Lewis acid sites. Notably, the sample was easily separated and recycled without obvious deactivation. In general, the investigated catalyst was regarded as one of the promising alternatives to otherwise expensive biocatalysts for SCFA-containing SPL production.
Collapse
Affiliation(s)
- Jianghua Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ke Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongyan Li
- Pharmaceutical College, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Fawen Yin
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Qiaoe Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Li Cui
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shasha Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinggang Nie
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
14
|
Quang Tran H, Bhave M, Yu A. Current Advances of Hollow Capsules as Controlled Drug Delivery Systems. ChemistrySelect 2020. [DOI: 10.1002/slct.201904598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huy Quang Tran
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| |
Collapse
|
15
|
Alban L, Monteiro WF, Diz FM, Miranda GM, Scheid CM, Zotti ER, Morrone FB, Ligabue R. New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110662. [PMID: 32204090 DOI: 10.1016/j.msec.2020.110662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Interest in nanostructures such as titanate nanotubes (TNT) has grown notably in recent years due to their biocompatibility and economic viability, making them promising for application in the biomedical field. Quercetin (Qc) has shown great potential as a chemopreventive agent and has been widely studied for the treatment of diseases such as bladder cancer. Motivated by the possibilities of developing a new hybrid nanostructure with potential in biomedical applications, this study aimed to investigate the incorporation of quercetin in sodium (NaTNT) and zinc (ZnTNT) titanate nanotubes, and characterize the nanostructures formed. Qc release testing was also performed and cytotoxicity in Vero and T24 cell lines evaluated by the MTT assay. The effect of TNTs on T24 bladder cancer cell radiosensitivity was also assessed, using cell proliferation and a clonogenic assay. The TNT nanostructures were synthesized and characterized by FESEM, EDS, TEM, FTIR, XRD and TGA. The results showed that the nanostructures have a tubular structure and that the exchange of Na+ ions for Zn2+ and incorporation of quercetin did not alter this morphology. In addition, interaction between Zn and Qc increased the thermal stability of the nanostructures. The release test showed that maximum Qc delivery occurred after 24 h and the presence of Zn controlled its release. Biological assays indicated that the NaTNTQc and ZnTNTQc nanostructures decreased the viability of T24 cells after 48 h at high concentrations. Furthermore, the clonogenic assay showed that NaTNT, NaTNTQc, ZnTNT and ZnTNTQc combined with 5 Gy reduced the formation of polyclonal colonies of T24 cells after 48 h. The results suggest that the nanostructures synthesized in this study interfere in cell proliferation and can therefore be a powerful tool in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Luisa Alban
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Wesley Formentin Monteiro
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Fernando Mendonça Diz
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Gabriela Messias Miranda
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Carolina Majolo Scheid
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Eduardo Rosa Zotti
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Fernanda Bueno Morrone
- School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil
| | - Rosane Ligabue
- Graduate Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil; School of Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Brazil.
| |
Collapse
|
16
|
Qiu S, Zhou H, Shen Z, Hao L, Chen H, Zhou X. Synthesis, characterization, and comparison of antibacterial effects and elucidating the mechanism of ZnO, CuO and CuZnO nanoparticles supported on mesoporous silica SBA-3. RSC Adv 2020; 10:2767-2785. [PMID: 35496109 PMCID: PMC9048980 DOI: 10.1039/c9ra09829a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/08/2020] [Indexed: 12/04/2022] Open
Abstract
Silanized iminodiacetic acid (GLYMO–IDA) modified mesoporous silica (G-SBA) was prepared following a co-condensation method. G-SBA/Cu2+, G–SBA/Zn2+ and G-SBA/Cu2+–Zn2+ were obtained through the impregnation method with coordination by GLYMO–IDA. SBA/CuO, SBA/ZnO, and SBA/CuZnO were generated after calcination of G-SBA/Cu2+, G-SBA/Zn2+ and G-SBA/Cu2+–Zn2+. After modification, the amount of metal ion was 6 to 70 times higher than that of the blank mesoporous silica. The diameter of nano-copper oxide particles in mesoporous silica was 4.8 nm. The bacteriostatic rates of SBA/CuO at a copper oxide concentration of 250 ppm against E. coli and S. aureus were 85.87% and 100%, respectively. SBA/CuO and SBA/CuZnO with {111} lattice planes exhibited better antibacterial effects compared to the commercial-grade nano-zinc oxide and nano-copper oxide. When exposed to ultraviolet light, SBA/CuZnO displayed the highest photocatalytic activity and optimal antimicrobial effect. Therefore, SBA/CuZnO can be an alternative to antibiotics because of its non-toxic nature and good antibacterial properties. Silanized iminodiacetic acid (GLYMO–IDA) modified mesoporous silica (G-SBA) was prepared following a co-condensation method.![]()
Collapse
Affiliation(s)
- Songfa Qiu
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution
- School of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- People's Republic of China
| | - Hongjun Zhou
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution
- School of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- People's Republic of China
| | - Zhichuan Shen
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution
- School of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- People's Republic of China
| | - Li Hao
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution
- School of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- People's Republic of China
| | - Huayao Chen
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution
- School of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- People's Republic of China
| | - Xinhua Zhou
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution
- School of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- People's Republic of China
| |
Collapse
|
17
|
Xu L, Li HL, Wang LP. PH-Sensitive, Polymer Functionalized, Nonporous Silica Nanoparticles for Quercetin Controlled Release. Polymers (Basel) 2019; 11:E2026. [PMID: 31817771 PMCID: PMC6960605 DOI: 10.3390/polym11122026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Some pH-sensitive, poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) grafted silica nanoparticles (SNPs) (SNPs-g-PDEAEMA) were designed and synthesized via surface initiated, metal-free, photoinduced atom transfer radical polymerization (ATRP). The structures of the polymers formed in solution were determined by 1H NMR. The modified nanoparticles were characterized by FT-IR spectroscopy, XPS, GPC, TEM and TGA. The analytical results show that α-bromoisobutyryl bromide (BIBB) (ATRP initiator) had been successfully anchored onto SNPs' surfaces, and was followed by surface-initiated, metal-free ATRP of 2-(diethylamino)ethyl methacrylate (DEAEMA). The resultant SNPs-g-PDEAEMA were uniform spherical nanoparticles with the particles size of about 22-25 nm, and the graft density of PDEAEMA on SNPs' surfaces obtained by TGA was 19.98 μmol/m2. Owing to the covalent grafting of pH-sensitive PDEAEMA, SNPs-g-PDEAEMA can dispersed well in acidic aqueous solution, but poorly in neutral and alkaline aqueous solutions, which is conducive to being employed as drug carriers to construct a pH-sensitive controlled drug delivery system. In vitro cytotoxicity evaluation results showed that the cytotoxicity of SNPs-g-PDEAEMA to the L929 cells had completely disappeared on the 3rd day. The loading of quercetin on SNPs-g-PDEAEMA was performed using adsorption process from ethanol solutions, and the dialysis release rate increased sharply when the pH value of phosphate-buffered saline (PBS) decreased from 7.4 to 5.5. All these results indicated that the pH-responsive microcapsules could serve as potential anti-cancer drug carriers.
Collapse
Affiliation(s)
- Lin Xu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Hong-Liang Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Li-Ping Wang
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
18
|
Lutoshkin MA, Petrov AI, Kazachenko AS, Kuznetsov BN, Levdansky VA. Complexation of rare earth metals by quercetin and quercetin-5’-sulfonic acid in acidic aqueous solution. MAIN GROUP CHEMISTRY 2018. [DOI: 10.3233/mgc-180253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Maxim A. Lutoshkin
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, Villeurbanne, France
| | - Alexander I. Petrov
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
- Institute of Non-Ferrous Metals and Materials Science, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - Alexandr S. Kazachenko
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
| | - Boris N. Kuznetsov
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
- Institute of Non-Ferrous Metals and Materials Science, Siberian Federal University, Krasnoyarsk, Russian Federation
| | - Vladimir A. Levdansky
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
| |
Collapse
|
19
|
Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int J Pharm 2018; 541:224-233. [DOI: 10.1016/j.ijpharm.2018.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
|
20
|
Preparation and Characterization of Thermoresponsive Poly(N-isopropylacrylamide-co-acrylic acid)-Grafted Hollow Fe₃O₄/SiO₂ Microspheres with Surface Holes for BSA Release. MATERIALS 2017; 10:ma10040411. [PMID: 28772770 PMCID: PMC5506986 DOI: 10.3390/ma10040411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 02/03/2023]
Abstract
Thermoresponsive P(NIPAM-AA)/Fe₃O₄/SiO₂ microspheres with surface holes serving as carriers were prepared using p-Fe₃O₄/SiO₂ microspheres with a thermoresponsive copolymer. The p-Fe₃O₄/SiO₂ microspheres was obtained using a modified Pickering method and chemical etching. The surface pore size of p-Fe₃O₄/SiO₂ microspheres was in the range of 18.3 nm~37.2 nm and the cavity size was approximately 60 nm, which are suitable for loading and transporting biological macromolecules. P(NIPAM-AA) was synthesized inside and outside of the p-Fe₃O₄/SiO₂ microspheres via atom transfer radical polymerization of NIPAM, MBA and AA. The volume phase transition temperature (VPTT) of the specifically designed P(NIPAM-AA)/Fe₃O₄/SiO₂ microspheres was 42.5 °C. The saturation magnetization of P(NIPAM-AA)/Fe₃O₄/SiO₂ microspheres was 72.7 emu/g. The P(NIPAM-AA)/Fe₃O₄/SiO₂ microspheres were used as carriers to study the loading and release behavior of BSA. This microsphere system shows potential for the loading of proteins as a drug delivery platform.
Collapse
|