1
|
Sass JO, Sellin ML, Kauertz E, Johannsen J, Weinmann M, Stenzel M, Frank M, Vogel D, Bader R, Jonitz-Heincke A. Advanced Ti-Nb-Ta Alloys for Bone Implants with Improved Functionality. J Funct Biomater 2024; 15:46. [PMID: 38391899 PMCID: PMC10889793 DOI: 10.3390/jfb15020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
The additive manufacturing of titanium-niobium-tantalum alloys with nominal chemical compositions Ti-xNb-6Ta (x = 20, 27, 35) by means of laser beam powder bed fusion is reported, and their potential as implant materials is elaborated by mechanical and biological characterization. The properties of dense specimens manufactured in different build orientations and of open porous Ti-20Nb-6Ta specimens are evaluated. Compression tests indicate that strength and elasticity are influenced by the chemical composition and build orientation. The minimum elasticity is always observed in the 90° orientation. It is lowest for Ti-20Nb-6Ta (43.2 ± 2.7 GPa) and can be further reduced to 8.1 ± 1.0 GPa for open porous specimens (p < 0.001). Furthermore, human osteoblasts are cultivated for 7 and 14 days on as-printed specimens and their biological response is compared to that of Ti-6Al-4V. Build orientation and cultivation time significantly affect the gene expression profile of osteogenic differentiation markers. Incomplete cell spreading is observed in specimens manufactured in 0° build orientation, whereas widely stretched cells are observed in 90° build orientation, i.e., parallel to the build direction. Compared to Ti-6Al-4V, Ti-Nb-Ta specimens promote improved osteogenesis and reduce the induction of inflammation. Accordingly, Ti-xNb-6Ta alloys have favorable mechanical and biological properties with great potential for application in orthopedic implants.
Collapse
Affiliation(s)
- Jan-Oliver Sass
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| | - Marie-Luise Sellin
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| | - Elisa Kauertz
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| | - Jan Johannsen
- Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT, Am Schleusengraben 14, 21029 Hamburg, Germany
| | | | | | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Strempelstraße 14, 18057 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Danny Vogel
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057 Rostock, Germany
| |
Collapse
|
2
|
Arias-González F, Rodríguez-Contreras A, Punset M, Manero JM, Barro Ó, Fernández-Arias M, Lusquiños F, Gil J, Pou J. Laser-Deposited Beta Type Ti-42Nb Alloy with Anisotropic Mechanical Properties for Pioneering Biomedical Implants with a Very Low Elastic Modulus. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7172. [PMID: 36295241 PMCID: PMC9607472 DOI: 10.3390/ma15207172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Present commercial titanium alloy implants have an elastic modulus higher than 100 GPa, whereas that of the cortical bone is much smaller (17−28 GPa). This elastic modulus mismatch produces a stress shielding effect and the resorption of the bone surrounding the implant. In the present work, a <100> fiber texture is developed in β type Ti-42Nb (wt%) alloy ingots generated by laser-directed energy deposition (LDED) in order to achieve anisotropic mechanical properties. In addition, we demonstrate that laser-deposited β type Ti-42Nb alloy ingots with an intense <100> fiber texture exhibit a very low elastic modulus in the building direction (Ez < 50 GPa) and high yield (σ0.2z > 700 MPa) and tensile (UTSz > 700 MPa) strengths. Laser-deposited Ti-42Nb alloy enhances the osteoinductive effect, promoting the adhesion, proliferation, and spreading of human osteoblast-like cells. Hence, we propose that laser-deposited β type Ti-42Nb alloy is a potentially promising candidate for the manufacturing of pioneering biomedical implants with a very low elastic modulus that can suppress stress shielding.
Collapse
Affiliation(s)
- Felipe Arias-González
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
| | - Alejandra Rodríguez-Contreras
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08034 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08034 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
- UPC Innovation and Technology Center (CIT-UPC), Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08034 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
| | - Óscar Barro
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
| | - Mónica Fernández-Arias
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
| | - Fernando Lusquiños
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Javier Gil
- School of Dentistry, Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain
| | - Juan Pou
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
3
|
Khare D, Majumdar S, Krishnamurthy S, Dubey AK. An in vivo toxicity assessment of piezoelectric sodium potassium niobate [Na xK 1-xNbO 3 (x = 0.2-0.8)] nanoparticulates towards bone tissue engineering approach. BIOMATERIALS ADVANCES 2022; 140:213080. [PMID: 35985067 DOI: 10.1016/j.bioadv.2022.213080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
One of the recent challenges in the design/development of prosthetic orthopedic implants is to address the concern of local/systemic toxicity of debris particles, released due to wear or degradation. Such debris particles often lead to inflammation at the implanted site or aseptic loosening of the prosthesis which results in failure of the implant during long run. Several in vitro studies demonstrated the potentiality of piezoelectric sodium potassium niobate [NaxK1-xNbO3 (x = 0.2, 0.5, 0.8), NKN] as an emerging next-generation polarizable orthopedic implant. In this perspective, we performed an in vivo study to examine the local and systemic toxicity of NKN nanoparticulates, as a first report. In the present study, male Wistar rats were intra-articularly injected to the knee joint with 100 μl of NKN nanoparticulates (25 mg/ml in normal saline). After 7 days of exposure, the histopathological analyses demonstrate the absence of any inflammation or dissemination of nanoparticulates in vital organs such as heart, liver, kidney and spleen. The anti-inflammatory cytokines (IL-4 and IL-10) profile analyses suggest the increased anti-inflammatory response in the treated rats as compared to non-injected (control) rats, preferably for the sodium and potassium rich NKN i.e., Na0.8K0.2NbO3 and Na0.2K0.8NbO3. The biochemical analyses revealed no pathological changes in the liver and kidney of particulate treated rats. The present study is the first proof to confirm the non-toxic nature of NKN nanoparticulates which provides a step forward towards the development of prosthetic orthopedic implants using biocompatible piezoelectric NKN ceramics.
Collapse
Affiliation(s)
- Deepak Khare
- Department of Ceramic Engineering, Indian Institute of Technology (BHU) Varanasi, 221005, India
| | - Shreyasi Majumdar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (BHU) Varanasi, 221005, India.
| |
Collapse
|
4
|
Khimich MA, Prosolov KA, Mishurova T, Evsevleev S, Monforte X, Teuschl AH, Slezak P, Ibragimov EA, Saprykin AA, Kovalevskaya ZG, Dmitriev AI, Bruno G, Sharkeev YP. Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1159. [PMID: 33946726 PMCID: PMC8145374 DOI: 10.3390/nano11051159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies.
Collapse
Affiliation(s)
- Margarita A. Khimich
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
- Physics Technical Faculty, Tomsk Material Science Common Use Center, National Research Tomsk State University, 36, Lenina pr., 634050 Tomsk, Russia
| | - Konstantin A. Prosolov
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
| | - Tatiana Mishurova
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
| | - Sergei Evsevleev
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
| | - Xavier Monforte
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtpl. 6, 1200 Vienna, Austria; (X.M.); (A.H.T.)
| | - Andreas H. Teuschl
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtpl. 6, 1200 Vienna, Austria; (X.M.); (A.H.T.)
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria;
| | - Egor A. Ibragimov
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Alexander A. Saprykin
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Zhanna G. Kovalevskaya
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| | - Andrey I. Dmitriev
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
| | - Giovanni Bruno
- Department of Non-Destructive Testing, Division 8.5 Micro NDE, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (T.M.); (S.E.); (G.B.)
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Yurii P. Sharkeev
- Laboratory of Nanobioengineering, Laboratory of Nanostructured Biocomposites, Laboratory of Computer-Aided Design of Materials, Institute of Strength Physics and Materials Science of SB RAS, 2/4, Akademicheskii pr., 634055 Tomsk, Russia; (M.A.K.); (K.A.P.); (Y.P.S.)
- Material Science Department, Research School of Physics of High Energy Processes, National Research Tomsk Polytechnic University, Yurga Technical University TPU Affiliate, 30, Lenina pr., 634050 Tomsk, Russia; (E.A.I.); (A.A.S.); (Z.G.K.)
| |
Collapse
|
5
|
Xiong L, Liu Y, Zhu F, Lin J, Wen D, Wang Z, Bai J, Ge G, Xu C, Gu Y, Xu Y, Zhou J, Geng D. Acetyl-11-keto-β-boswellic acid attenuates titanium particle-induced osteogenic inhibition via activation of the GSK-3β/β-catenin signaling pathway. Theranostics 2019; 9:7140-7155. [PMID: 31695758 PMCID: PMC6831297 DOI: 10.7150/thno.35988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peri-prosthetic osteolysis (PPO) is mainly induced by wear particles and represents the leading cause of implant failure and revision surgery. Previous studies have identified mitigation of wear particle-induced inflammation and bone resorption as the main approaches to treat PPO. Recently, wear particle-induced reduction of bone formation around the prosthesis was identified as a major factor in the development of PPO. Acetyl-11-keto-β-boswellic acid (AKBA), a derivative of frankincense, has been shown to play a potential role in bone metabolism. However, whether AKBA enhances bone formation in wear particle-induced osteolysis remains unknown. In this study, we examined whether AKBA attenuates titanium particle-induced osteogenic reduction. Methods: Titanium particles were used to induce osteolysis in murine calvaria, and micro-CT and histological analyses were used to evaluate the results. Mouse osteoblast cells, MC3T3-E1 were co-cultured with titanium particles to determine their effect on osteoblast formation in vitro. Results: We demonstrated that AKBA treatment significantly inhibited titanium particle-induced osteogenic inhibition by enhancing osteogenesis both in vivo and in vitro. AKBA treatment also enhanced the phosphorylation of GSK-3β, decreased the degradation of β-catenin, and increased the translocation of β-catenin from the cytoplasm to the nucleus. Taken together, these results showed that AKBA treatment attenuated titanium-induced osteogenic inhibition by activating the GSK-3β/β-catenin signaling pathway. Conclusion: These findings suggest that AKBA is a promising new target in the prevention and treatment of PPO.
Collapse
|
6
|
Schulze C, Weinmann M, Schweigel C, Keßler O, Bader R. Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb. MATERIALS 2018; 11:ma11010124. [PMID: 29342864 PMCID: PMC5793622 DOI: 10.3390/ma11010124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.
Collapse
Affiliation(s)
- Christian Schulze
- Biomechanics and Implant Technology Research Laboratory (FORBIOMIT), Department of Orthopaedics, University Medicine Rostock, Doberaner Straße 142, 18057 Rostock, Germany.
| | - Markus Weinmann
- H.C. Starck Tantalum and Niobium GmbH, Im Schleeke 78-91, 38642 Goslar, Germany.
| | - Christoph Schweigel
- Chair of Material Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert- Einstein- Str. 2, 18059 Rostock, Germany.
| | - Olaf Keßler
- Chair of Material Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert- Einstein- Str. 2, 18059 Rostock, Germany.
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory (FORBIOMIT), Department of Orthopaedics, University Medicine Rostock, Doberaner Straße 142, 18057 Rostock, Germany.
| |
Collapse
|