1
|
Guan H, Wang M, Yu S, Wang C, Chen Q, Chen Y, Zhang W, Fan J. Candesartan Cilexetil Formulations in Mesoporous Silica: Preparation, Enhanced Dissolution In Vitro, and Oral Bioavailability In Vivo. J Pharm Sci 2024; 113:3045-3053. [PMID: 39094942 DOI: 10.1016/j.xphs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Candesartan cilexetil (CC) is one of well-tolerated antihypertensive drugs, while its poor solubility and low bioavailability limit its use. Herein, two mesoporous silica (Syloid XDP 3150 and Syloid AL-1 FP) and the corresponding amino-modified products (N-XDP 3150 and N-AL-1 FP) have been selected as the carriers of Candesartan cilexetil to prepare solid dispersion through solvent immersion, and characterized through using powder X-ray diffraction analysis, infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance spectroscopy, etc. The state of CC changed from crystalline to amorphous after loading onto the silica carriers, in which no interactions between CC and silica existed. Then, the dissolution behaviors in vitro were studied through using flow-through cell dissolution method. CC-XDP 3150 sample exhibited the most extensive dissolution, and the cumulative release of CC from it was 1.88-fold larger than that of CC. Moreover, the pharmacokinetic results in rats revealed that the relative bioavailability of CC-XDP 3150 and CC-N-XDP 3150 solid dispersions were estimated to be 326 % % and 238 % % in comparison with CC, respectively. Clearly, pore size, pore volume, and surface properties of silica carrier have remarkable effect on loading, dissolution and bioavailability of CC. In brief, this work will provide valuable information in construction of mesoporous silica-based delivery system toward poorly water-soluble drugs.
Collapse
Affiliation(s)
- Huijian Guan
- School of Chemistry, South China Normal University, Key Laboratory of Process Control and Quality Evaluation of Chiral Drugs, Guangdong Provincial Drug Administration, Guangzhou Key Laboratory of Biomedical Analytical Chemistry, Guangzhou 510006, China
| | - Miao Wang
- Department of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Key Laboratory of Quality Control and Evaluation of Pharmaceutical Excipients, State Drug Administration, Guangzhou 510663, China
| | - Shaowen Yu
- Department of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Key Laboratory of Quality Control and Evaluation of Pharmaceutical Excipients, State Drug Administration, Guangzhou 510663, China
| | - Caimei Wang
- Department of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Key Laboratory of Quality Control and Evaluation of Pharmaceutical Excipients, State Drug Administration, Guangzhou 510663, China
| | - Qi Chen
- Drug Safety Evaluation Center, Drug Safety Evaluation Center, Guangdong Institute for Drug Control, Guangzhou 510663, China
| | - Ying Chen
- Department of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Key Laboratory of Quality Control and Evaluation of Pharmaceutical Excipients, State Drug Administration, Guangzhou 510663, China.
| | - Weiguang Zhang
- School of Chemistry, South China Normal University, Key Laboratory of Process Control and Quality Evaluation of Chiral Drugs, Guangdong Provincial Drug Administration, Guangzhou Key Laboratory of Biomedical Analytical Chemistry, Guangzhou 510006, China
| | - Jun Fan
- School of Chemistry, South China Normal University, Key Laboratory of Process Control and Quality Evaluation of Chiral Drugs, Guangdong Provincial Drug Administration, Guangzhou Key Laboratory of Biomedical Analytical Chemistry, Guangzhou 510006, China.
| |
Collapse
|
2
|
Mazurkiewicz E, Lamch Ł, Wilk KA, Obłąk E. Anti-adhesive, anti-biofilm and fungicidal action of newly synthesized gemini quaternary ammonium salts. Sci Rep 2024; 14:14110. [PMID: 38898117 PMCID: PMC11187217 DOI: 10.1038/s41598-024-64859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Newly synthesized gemini quaternary ammonium salts (QAS) with different counterions (bromide, hydrogen chloride, methylcarbonate, acetate, lactate), chain lengths (C12, C14, C16) and methylene linker (3xCH2) were tested. Dihydrochlorides and dibromides with 12 carbon atoms in hydrophobic chains were characterized by the highest biological activity against planktonic forms of yeast and yeast-like fungi. The tested gemini surfactants also inhibited the production of filaments by C. albicans. Moreover, they reduced the adhesion of C. albicans cells to the surfaces of stainless steel, silicone and glass, and slightly to polystyrene. In particular, the gemini compounds with 16-carbon alkyl chains were most effective against biofilms. It was also found that the tested surfactants were not cytotoxic to yeast cells. Moreover, dimethylcarbonate (2xC12MeCO3G3) did not cause hemolysis of sheep erythrocytes. Dihydrochlorides, dilactate and diacetate showed no mutagenic potential.
Collapse
Affiliation(s)
- Edyta Mazurkiewicz
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ewa Obłąk
- Department of Physico-Chemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
3
|
Fan C, Wang X, Wang Y, Xi Z, Wang Y, Zhu S, Wang M, Xu L. Fabricating a PDA-Liposome Dual-Film Coated Hollow Mesoporous Silica Nanoplatform for Chemo-Photothermal Synergistic Antitumor Therapy. Pharmaceutics 2023; 15:pharmaceutics15041128. [PMID: 37111615 PMCID: PMC10144002 DOI: 10.3390/pharmaceutics15041128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, we synthesized hollow mesoporous silica nanoparticles (HMSNs) coated with polydopamine (PDA) and a D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-modified hybrid lipid membrane (denoted as HMSNs-PDA@liposome-TPGS) to load doxorubicin (DOX), which achieved the integration of chemotherapy and photothermal therapy (PTT). Dynamic light scattering (DLS), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier transform infrared spectrometry (FT-IR), and small-angle X-ray scattering (SAXS) were used to show the successful fabrication of the nanocarrier. Simultaneously, in vitro drug release experiments showed the pH/NIR-laser-triggered DOX release profiles, which could enhance the synergistic therapeutic anticancer effect. Hemolysis tests, non-specific protein adsorption tests, and in vivo pharmacokinetics studies exhibited that the HMSNs-PDA@liposome-TPGS had a prolonged blood circulation time and greater hemocompatibility compared with HMSNs-PDA. Cellular uptake experiments demonstrated that HMSNs-PDA@liposome-TPGS had a high cellular uptake efficiency. In vitro and in vivo antitumor efficiency evaluations showed that the HMSNs-PDA@liposome-TPGS + NIR group had a desirable inhibitory activity on tumor growth. In conclusion, HMSNs-PDA@liposome-TPGS successfully achieved the synergistic combination of chemotherapy and photothermal therapy, and is expected to become one of the candidates for the combination of photothermal therapy and chemotherapy antitumor strategies.
Collapse
Affiliation(s)
- Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiyu Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuwen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuxin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuang Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
4
|
Lai H, Chen S, Su X, Huang X, Zheng Q, Yang M, Shen B, Yue P. Sponge-liked Silica Nanoporous Particles for Sustaining Release and Long-Term Antibacterial Activity of Natural Essential Oil. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020594. [PMID: 36677650 PMCID: PMC9862449 DOI: 10.3390/molecules28020594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
To improve the sustained release and long-term antibacterial activity of Chimonanthus nitens Oliv. essential oil (CEO), novel sponge-liked nanoporous silica particles (SNP) were synthesized via the soft template method, which was employed as a biocompatible carrier to prepare spong-liked nanoporous silica particles loading with CEO (CEO-SNP) through physical adsorption. The structure and properties of the samples were characterized via N2 adsorption/desorption measurements, thermogravimetry (TGA), Fourier transform infrared, SEM and TEM. The result showed that the SNP exhibited an excellent loading capability of CEO up to 76.3%. The thermal stability and release behavior of the CEO were significantly improved via the physical adsorption of the SNP materials. The release profile of CEO was in accordance with the first-order kinetic model, which meant that the release mechanism was drug Fick's diffusion. The antibacterial evaluation results demonstrated that the CEO-SNP exhibited strong antibacterial activity against S. aureus, E. coli and P. aeruginosa. The antibacterial results have shown that the CEO-SNP could destroy the cell structure of bacteria, and result in the generation of oxidative stress and the release of nucleic acid. After storage of 30 d at 25 °C, the CEO-SNP still had the stronger antibacterial activity towards S. aureus, E. coli and P. aeruginosa in comparison with CEO. Therefore, the sponge-like silica nanoporous particles seemed to be a promising carrier for long-term stability and antibacterial delivery of CEO.
Collapse
|
5
|
Wang Y, Zhao K, Xie L, Li K, Zhang W, Xi Z, Wang X, Xia M, Xu L. Construction of calcium carbonate-liposome dual-film coated mesoporous silica as a delayed drug release system for antitumor therapy. Colloids Surf B Biointerfaces 2022; 212:112357. [PMID: 35101825 DOI: 10.1016/j.colsurfb.2022.112357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022]
Abstract
As is well known to all, delivering drug precisely to the tumor site is beneficial to improve antitumor effect. In this study, we reported mesoporous silica nanoparticles (MSNs) coated with dual-film of calcium carbonate (CaCO3) and lipid bilayer (denoted as MSNs@CaCO3@liposomes) innovatively which achieve sustained drug release anchored at tumor microenvironment and enhanced biocompatibility. The pH-sensitive CaCO3 film acted as a guide to cap the pore channels of MSNs allowed pH-triggered drug release when transporting into cancer cells. Furthermore, MSNs@CaCO3 was capsuled by lipid bilayer to improve cellular uptake efficiency and biocompatibility in blood circulation. Morphology of nanoparticles was characterized by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) to confirm that double films were coated successfully. Doxorubicin hydrochloride (DOX) was efficaciously loaded into mesoporous pores as a model drug with a high drug loading content of 28%, forming DOX-loaded MSNs@CaCO3@liposomes (DOX/MSNs@CaCO3@liposomes). Non-specific protein adsorption and hemolysis test revealed enhanced biocompatibility. Drug release study in vitro showed DOX/MSNs@CaCO3@liposomes could delay to release DOX at pH 5.0 and avoid releasing at pH 7.4. In vitro and in vivo antitumor efficiency evaluation showed that DOX/MSNs@CaCO3@liposomes have a desirable inhibitory activity on tumor growth. Therefore, dual-film coated MSNs could be a good candidate for an antitumor drug delivery system.
Collapse
Affiliation(s)
- Yuwen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Luyao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiyu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingyu Xia
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Golubeva OY, Alikina YA, Khamova TV, Vladimirova EV, Shamova OV. Aluminosilicate Nanosponges: Synthesis, Properties, and Application Prospects. Inorg Chem 2021; 60:17008-17018. [PMID: 34723488 DOI: 10.1021/acs.inorgchem.1c02122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple one-step method is presented for fabricating inorganic nanosponges with a kaolinite [Al2Si2O5(OH)4] structure. The nanosponges were synthesized by the hydrothermal treatment of aluminosilicate gels in an acidic medium (pH = 2.6) at 220 °C without using organic cross-linking agents, such as cyclodextrin or polymers. The formation of the nanosponge morphology was confirmed by scanning electron microscopy, and the assignment of the synthesized aluminosilicates to the kaolinite group was confirmed by X-ray diffraction and infrared spectroscopy. The effect of the synthesis conditions, in particular, the nature (HCl, HF, NaOH, and H2O) and pH of the reaction medium (2.6, 7, and 12), as well as the duration of the synthesis (3, 6, and 12 days), on the morphology of aluminosilicates of the kaolinite group was studied. The sorption capacity of aluminosilicate nanosponges with respect to cationic (e.g., methylene blue) and anionic (e.g., azorubine) dyes in aqueous solutions was studied. The pH sensitivity of the surface ζ potential of the synthesized nanosponges was demonstrated. The dependence of the hemolytic activity (the ability to destroy erythrocytes) of aluminosilicate nanoparticles on the particle morphology (platy, spherical, and nanosponge) has been identified for the first time. Aluminosilicate nanosponges were not found to exhibit hemolytic activity. The prospects of using aluminosilicate nanosponges to prepare innovative functional materials for ecology and medicine applications, in particular, as matrices for drug delivery systems, were identified.
Collapse
Affiliation(s)
- Olga Yu Golubeva
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Yulia A Alikina
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Tamara V Khamova
- Laboratory of the Nanostructures Research, Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Elizaveta V Vladimirova
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, Academic Pavlov Str., 12, St. Petersburg 197376, Russia
| | - Olga V Shamova
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, Academic Pavlov Str., 12, St. Petersburg 197376, Russia
| |
Collapse
|
7
|
Zheng B, Wu Q, Jiang Y, Hou M, Zhang P, Liu M, Zhang L, Li B, Zhang C. One-pot synthesis of 68Ga-doped ultrasmall gold nanoclusters for PET/CT imaging of tumors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112291. [PMID: 34474842 DOI: 10.1016/j.msec.2021.112291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Gold nanoclusters (AuNCs) have attracted much attention for tumor theranostics in recent years because of their ability of renal clearance and to escape the reticuloendothelial system (RES) sequestration. In this study, we presented a novel method to synthesize 68Ga-doped (labeled) AuNCs by simultaneous reduction of 68GaCl3 and HAuCl4 by glutathione. As synthesized 68Ga-doped, glutathione-coated AuNCs (68Ga-GSH@AuNCs) were ultrasmall in size (<2 nm), highly stable under physiological conditions and renally clearable, and had high efficiency for tumor targeting. To demonstrate the universality of this 68Ga labeling method and further enhance tumor targeting efficiency, arginine-glycine-aspartate (RGD)-containing peptide was introduced as co-reductant to synthesize RGD peptide and glutathione co-coated, 68Ga-labeled AuNCs (68Ga-RGD-GSH@AuNCs). Introduction of RGD peptide did not interfere the synthesis process but significantly enhanced the tumor targeting efficiency of the AuNCs. Our study demonstrated that it was feasible to label AuNCs with gallium-68 by direct reduction of the radioisotope and HAuCl4 with reductant peptides, holding a great potential for clinical translation for PET/CT detection of tumors.
Collapse
Affiliation(s)
- Benchao Zheng
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qinghe Wu
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yifei Jiang
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengfei Hou
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Pengli Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meirong Liu
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chunfu Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
8
|
Luo Y, Li S, Shen K, Song Y, Zhang J, Su W, Yang X. Study on the Hemostasis Characteristics of Biomaterial Frustules Obtained from Diatom Navicula australoshetlandica sp. MATERIALS 2021; 14:ma14133752. [PMID: 34279325 PMCID: PMC8269914 DOI: 10.3390/ma14133752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Diatoms, known as photosynthetic unicellular algae, can produce natural biosilica frustules that exhibit great biocompatibility, superhydrophilicity, and superhemophilicity. In our study, the diatom Navicula australoshetlandica sp. was isolated from aquaculture wastewater and pretreated to obtain frustules so as to explore their hemostasis characteristics. A special “porous web” (6–8 nm) substructure in the ordered nanopores (165–350 nm) of boat-shaped diatom frustule was observed in Navicula australoshetlandica sp. using SEM and TEM analysis. Moreover, X-ray, N2 adsorption–desorption isotherms, and BET analysis showed that the diatom frustule is a mesoporous material with a surface area of 401.45 m2 g−1 amorphous silica. FTIR analysis showed that Navicula australoshetlandica sp. frustules possessed abundant OH functional groups. A low hemolysis ratio was observed for 1–5 mg mL−1 diatom frustules that did not exceed 1.55 ± 0.06%, which indicates favorable hemocompatibility. The diatom frustules exhibited the shortest clotting time (134.99 ± 7.00 s) with a hemostasis material/blood (mg/μL) ratio of 1:100, which is 1.83 times (112.32 s) shorter than that of chitosan. The activated partial thromboplastin time (aPTT) of diatom frustule was also 44.53 s shorter than the control. Our results demonstrate the potential of Navicula australoshetlandica sp. diatom frustules to be used as medical hemostasis material.
Collapse
Affiliation(s)
- Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Kun Shen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Jiangtao Zhang
- Shenzhen Jawkai Bioengineering R & D Center Co., Ltd., Shenzhen 518120, China;
| | - Wen Su
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen 518055, China;
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
- Correspondence: ; Tel.: +86-185-65693989
| |
Collapse
|
9
|
Wang K, Li X, Wang H, Lu H, Di D, Zhao Q, Wang S. Evaluation on redox-triggered degradation of thioether-bridged hybrid mesoporous organosilica nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Liang X, Fan J, Zhao Y, Jin R. Core–Shell Structured NaYF4:Yb,Er Nanoparticles with Excellent Upconversion Luminescent for Targeted Drug Delivery. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01929-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Song B, Wang J, Lu S, Shan L. Andrographolide solid dispersions formulated by Soluplus to enhance interface wetting, dissolution, and absorption. J Appl Polym Sci 2020. [DOI: 10.1002/app.48354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bing Song
- Department of EndocrinologyThe First Affiliated Hospital of Jinzhou Medical University Jinzhou 121001 China
| | - Jian Wang
- Key Laboratory of Structure‐Based Drug Design and DiscoveryShenyang Pharmaceutical University Shenyang 110016 China
| | - Si‐Jing Lu
- Department of RespiratoryThe First Affiliated Hospital of Jinzhou Medical University Jinzhou 121001 China
| | - Li‐Na Shan
- Department of RespiratoryThe First Affiliated Hospital of Jinzhou Medical University Jinzhou 121001 China
| |
Collapse
|
12
|
Surface Tracking of Curcumin Amorphous Solid Dispersions Formulated by Binary Polymers. J Pharm Sci 2020; 109:1068-1078. [DOI: 10.1016/j.xphs.2019.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022]
|
13
|
Li H, Wu X, Yang B, Li J, Xu L, Liu H, Li S, Xu J, Yang M, Wei M. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: Structure, wettability, degradation, biocompatibility and brain distribution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:453-464. [DOI: 10.1016/j.msec.2018.09.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/28/2018] [Accepted: 09/20/2018] [Indexed: 01/16/2023]
|
14
|
Zhou J, Zhu F, Li J, Wang Y. Concealed body mesoporous silica nanoparticles for orally delivering indometacin with chiral recognition function. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:314-324. [DOI: 10.1016/j.msec.2018.04.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022]
|
15
|
Ju RJ, Cheng L, Qiu X, Liu S, Song XL, Peng XM, Wang T, Li CQ, Li XT. Hyaluronic acid modified daunorubicin plus honokiol cationic liposomes for the treatment of breast cancer along with the elimination vasculogenic mimicry channels. J Drug Target 2018; 26:793-805. [DOI: 10.1080/1061186x.2018.1428809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao Qiu
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Shuang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Li Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Ming Peng
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Teng Wang
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Cui-Qing Li
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
16
|
Xie X, Cong W, Zhao F, Li H, Xin W, Hou G, Wang C. Synthesis, physiochemical property and antimicrobial activity of novel quaternary ammonium salts. J Enzyme Inhib Med Chem 2017; 33:98-105. [PMID: 29148294 PMCID: PMC6010013 DOI: 10.1080/14756366.2017.1396456] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Twenty-four novel 5-phenyl-1,3,4-oxadiazole-2-thiol (POT) analogues, benzo[d]oxazole-2-thiol, benzo[d]thiazole-2-thiol and 5-methyl-1,3,4-thiadiazole-2-thiol-substituted N,N-bis(2-hydroxyethyl) quaternary ammonium salts (QAS) (5a-d, 6a-d, 7a-d, 10a-d, 13a-d, 16a-d) were prepared and characterised by FTIR, NMR and elemental analysis. Part of target compounds (5d, 6d, 7d, 10d, 13d, 16d) displayed potent antimicrobial effect against ten common pathogens (S. aureus, α-H-tococcus, β-H-tococcus, E. coli, P. aeruginosa, Proteus vulgaris, Canidia Albicans, Cytospora mandshurica, Physalospora piricola, Aspergillus niger) and had relatively low cytotoxity against two human cell lines (HaCat and LO2). TEM and SEM images of E. coli and S. aureus morphologies treated with 7d showed that the antibacterial mechanism might be the QAS fixing on cell wall surfaces and puncturing to result in the release of bacterial cytoplasm. This study provides new information of QAS, which could be used to design novel antimicrobial agents applied in clinic or agriculture.
Collapse
Affiliation(s)
- Xianrui Xie
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Wei Cong
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Feng Zhao
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Hongjuan Li
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Wenyu Xin
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Guige Hou
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Chunhua Wang
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| |
Collapse
|
17
|
Rangaraj S, Venkatachalam R. In vitro and in vivo characteristics of biogenic high surface silica nanoparticles in A549 lung cancer cell lines and Danio rerio model systems for inorganic biomaterials development. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1415-1424. [DOI: 10.1080/21691401.2017.1369427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Suriyaprabha Rangaraj
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
| | - Rajendran Venkatachalam
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, India
| |
Collapse
|
18
|
Li J, Wang X, Li C, Fan N, Wang J, He Z, Sun J. Viewing Molecular and Interface Interactions of Curcumin Amorphous Solid Dispersions for Comprehending Dissolution Mechanisms. Mol Pharm 2017; 14:2781-2792. [DOI: 10.1021/acs.molpharmaceut.7b00319] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Wang
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chang Li
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Fan
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key
Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Wenhua Road, No. 103, Shenyang 110016, China
| | - Zhonggui He
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|