1
|
Ma Z, Zhang Y, Zhu Y, Cui M, Liu Y, Duan YY, Fan L, Zhang L. Construction of a Tumor-Targeting Nanobubble with Multiple Scattering Interfaces and its Enhancement of Ultrasound Imaging. Int J Nanomedicine 2024; 19:4651-4665. [PMID: 38799698 PMCID: PMC11128256 DOI: 10.2147/ijn.s462917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Recently, nanobubbles (NBs) have gained significant traction in the field of tumor diagnosis and treatment owing to their distinctive advantages. However, the application of NBs is limited due to their restricted size and singular reflection section, resulting in low ultrasonic reflection. Methods We synthesized a nano-scale ultrasound contrast agent (IR783-SiO2NPs@NB) by encapsulating SiO2 nanoparticles in an IR783-labeled lipid shell using an improved film hydration method. We characterized its physicochemical properties, examined its microscopic morphology, evaluated its stability and cytotoxicity, and assessed its contrast-enhanced ultrasound imaging capability both in vitro and in vivo. Results The results show that IR783-SiO2NPs@NB had a "donut-type" composite microstructure, exhibited uniform particle size distribution (637.2 ± 86.4 nm), demonstrated excellent stability (30 min), high biocompatibility, remarkable tumor specific binding efficiency (99.78%), and an exceptional contrast-enhanced ultrasound imaging capability. Conclusion Our newly developed multiple scattering NBs with tumor targeting capacity have excellent contrast-enhanced imaging capability, and they show relatively long contrast enhancement duration in solid tumors, thus providing a new approach to the structural design of NBs.
Collapse
Affiliation(s)
- Zhengjun Ma
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yanmei Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yupu Zhu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Minxuan Cui
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yutao Liu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yun-You Duan
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, People’s Republic of China
| | - Li Zhang
- Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
2
|
Neysi M, Elhamifar D. Amine-containing yolk-shell structured magnetic organosilica nanocomposite as a highly efficient catalyst for the Knoevenagel reaction. Front Chem 2024; 12:1336855. [PMID: 38380398 PMCID: PMC10877015 DOI: 10.3389/fchem.2024.1336855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
The yolk-shell structured silica nanocomposites have been considered by many researchers due to their specific physical and chemical properties. These materials have been widely used in adsorption and catalysis processes. Especially, the void space of yolk-shell nanostructures can provide a unique environment for storage, compartmentation, and confinement in host-guest interactions. In this paper, for the first time, the preparation, characterization, and catalytic application of a novel amine-containing magnetic methylene-based periodic mesoporous organosilica with yolk-shell structure (YS-MPMO/pr-NH2) are developed. The magnetic periodic mesoporous organosilica nanocomposite was synthesized through surfactant-directed co-condensation of bis(triethoxysilyl)methane (BTEM) and tetraethoxysilane around Fe3O4 nanoparticles. After Soxhlet extraction, the surface of YS-MPMO nanocomposite was modified with 3-aminopropyl trimethoxysilane to deliver YS-MPMO-pr-NH2 nanocatalyst. This catalyst was characterized by using EDX, FT-IR, VSM, TGA, XRD, nitrogen-sorption, and SEM analyses. The catalytic activity of YS-MPMO/pr-NH2 was studied in the Knoevenagel reaction giving the corresponding products in a high yield and selectivity. The YS-MPMO/pr-NH2 nanocatalyst was recovered and reused at least four times without a significant decrease in efficiency and activity. A leaching test was performed to study the nature of the catalyst during reaction conditions Also, the catalytic performance of our designed nanocomposite was compared with some of the previous catalysts used in the Knoevenagel reaction.
Collapse
|
3
|
Zhang C, Wang M, Zhang J, Zou B, Wang Y. Self-template synthesis of mesoporous and biodegradable Fe 3O 4 nanospheres as multifunctional nanoplatform for cancer therapy. Colloids Surf B Biointerfaces 2023; 229:113467. [PMID: 37515962 DOI: 10.1016/j.colsurfb.2023.113467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Superparamagnetic Fe3O4 nanospheres have demonstrated great potential as important components in nanomedicine for cancer imaging and therapy. One of the major obstacles that impedes their application is the slow degradation of ingested Fe3O4 nanospheres, which potentially causes long-term health risks. To tackle this issue, we proposed to fabricate Fe3O4 nanospheres with mesoporous structure via a simple self-template etching method. The mesoporous Fe3O4 nanospheres not only offered large specific surface area and weak-acidic responsive degradability, but also exhibited T2-weighted magnetic resonance contrast enhancement and magnetic targeting, which made them possible to serve as excellent cancer therapeutic nanoplatform. Both inorganic photothermal therapeutic Au nanoparticles and organic chemotherapeutic doxorubicin hydrochloride were demonstrated to be successfully loaded onto such kind of nanoplatform, and the hybrid nanomedicine demonstrated synergistic photothermal and chemotherapeutic activity for tumor elimination under near infrared irradiation and improved biodegradability in weak acidic tumor microenvironment. We believe that this study paved a simple way for designing multifunctional Fe3O4-based biodegradable nanomedicine.
Collapse
Affiliation(s)
- Chuanbin Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Meijian Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Jianan Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Bingfang Zou
- School of Physics and Electronics, Henan University, Kaifeng 475004, PR China.
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
4
|
Wang K, Zhao K, Meng Q, Bai Q, Li X, Hu H, Jiao H, Tang Y. Hollow silica-coated porous carbon with embedded iron oxide particles for effective methylene blue degradation. RSC Adv 2022; 12:35452-35460. [PMID: 36540246 PMCID: PMC9742857 DOI: 10.1039/d2ra06411a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 09/10/2024] Open
Abstract
A novel catalyst, consisting of hollow silica-coated porous carbon with embedded iron oxide particles (FeO x @C/SiO2), was synthesized by the extended Stöber method. Iron ions were incorporated in a resorcinol-formaldehyde resin in the presence of citric acid to form a template, which was then coated with a silica layer. The iron oxide-embedded porous carbon and hollow silica were simultaneously formed during calcination under N2 atmosphere. Through this process, silica endowed the iron oxide with low crystallinity and small size, resulting in a higher catalytic activity in the heterogeneous Fenton system for the decolorization of a methylene blue (MB) solution within 25 min. Moreover, the sample maintained 78.71% of its catalytic activity after three cycles.
Collapse
Affiliation(s)
- Kai Wang
- Department of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 PR China
| | - Kang Zhao
- Department of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 PR China
- Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology Xi'an 710048 PR China
| | - Qingnan Meng
- Department of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 PR China
- Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology Xi'an 710048 PR China
| | - Qian Bai
- Department of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 PR China
| | - Xin Li
- Department of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 PR China
| | - Huating Hu
- Department of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 PR China
| | - Hua Jiao
- Department of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 PR China
- Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology Xi'an 710048 PR China
| | - Yufei Tang
- Department of Materials Science and Engineering, Xi'an University of Technology Xi'an 710048 PR China
- Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology Xi'an 710048 PR China
| |
Collapse
|
5
|
pH-sensitive and targeted core-shell and yolk-shell microcarriers for in vitro drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ningombam GS, Srinivasan B, Chidananda AH, Kalkura SN, Sharma Y, Singh NR. Polymer modified magnetic-luminescent nanocomposites for combined optical imaging and magnetic fluid hyperthermia in cancer therapy: analysis of Mn 2+ doping for enhanced heating effect, hemocompatibility and biocompatibility. Dalton Trans 2022; 51:8510-8524. [PMID: 35605979 DOI: 10.1039/d2dt00308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic MnxFe3-xO4 nanoparticles and polymer coated magnetic-luminescent MnxFe3-xO4@(Y,Dy/Eu)VO4 nanocomposites were prepared to study their comparative heat generation efficiency and biocompatibilities. Cubic crystalline phases were obtained for the nanoparticles and cubic-tetragonal biphasic phases were observed for the nanocomposites. The successful doping of Mn2+ was also confirmed by inductively coupled plasma optical emission spectroscopy. The compositions and the surface modification chemistry were confirmed by infrared spectroscopy. The formation of near-spherical and cubic/cuboid nanoparticles was observed from electron microscopy. Comparative analysis of induction heating efficiencies and magnetization values of the synthesized materials was performed for the samples. The samples showed an efficient heating effect under the influence of alternating magnetic field strengths - 3.05 × 106 kA m-1 s-1 and 4.58 × 106 kA m-1 s-1. A higher Mn2+ content was found to possess higher magnetization and perform better in heat generation. The nanocomposites give brilliant color emission on excitation using ultraviolet wavelengths - 300 and 315 nm. Their hydrodynamic radii and zeta potential values indicate good stability of the dispersions. Hemocompatibility studies were carried out to ascertain the effect on red blood cells. The materials were also found to exhibit excellent biocompatibility towards HeLa cell lines. This article will provide a new insight into the use of MnxFe3-xO4 based nanocomposites for magnetic fluid hyperthermia in cancer therapy.
Collapse
Affiliation(s)
| | - Baskar Srinivasan
- Crystal Growth Centre, Anna University, Chennai - 600025, India.,Department of Physics, Easwari Engineering College, Chennai - 600089, India
| | | | | | - Yogendra Sharma
- Centre for Cellular and Molecular Biology, Hyderabad - 500007, India
| | | |
Collapse
|
7
|
Using supercritical carbon dioxide to synthesize polymer nanospheres with an open hole on the surface and the application of spatially structured PS/P(DVB-co-MAA)@Fe3O4/TA@Ag nanocomposites. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Li ZR, Zhang XH, Du YY, Han GZ. Urchin-like hollow SiO 2@γ-MnO 2 microparticles for the rapid degradation of organic dyes. RSC Adv 2022; 12:1728-1737. [PMID: 35425158 PMCID: PMC8979116 DOI: 10.1039/d1ra06490h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
In this paper, using hollow silica microspheres as carriers, we developed a facile one-pot method for the preparation of hollow SiO2@MnO2 composite microparticles. Under a certain proportion of hollow silica microspheres and manganese salt, a novel kind of hollow urchin-like SiO2@γ-MnO2 microparticles was obtained. The structure and morphology of the composite microparticles were characterized by XRD, SEM and TEM. On this basis, using rhodamine B and methyl orange as model molecules, the oxidative degradation ability of the hollow SiO2@γ-MnO2 microparticles for organic dyes in water was investigated through UV-vis analysis technology. The urchin-like SiO2@γ-MnO2 microparticles showed excellent performance for the rapid oxidative degradation of organic dyes under acidic conditions. This study indicated that γ-MnO2 loaded on hollow materials can be used as an efficient tool for treating organic dye wastewater, and shows broad application prospects for solving environmental problems in the related industry.
Collapse
Affiliation(s)
- Zhuo-Rui Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiao-Hui Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yue-Yue Du
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Guo-Zhi Han
- College of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
9
|
Liu X, Wang J, Hu W. Preparation and inhibition behavior of Fe3O4/MBT nanocomposite inhibitor for mild steel in NaCl solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Zuo B, Li W, Wu X, Wang S, Deng Q, Huang M. Recent Advances in the Synthesis, Surface Modifications and Applications of Core‐Shell Magnetic Mesoporous Silica Nanospheres. Chem Asian J 2020; 15:1248-1265. [DOI: 10.1002/asia.202000045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Zuo
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Wanfang Li
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Xiaoqiang Wu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Shige Wang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Qinyue Deng
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Mingxian Huang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| |
Collapse
|
11
|
Li X, Zeng D, Ke P, Wang G, Zhang D. Synthesis and characterization of magnetic chitosan microspheres for drug delivery. RSC Adv 2020; 10:7163-7169. [PMID: 35493892 PMCID: PMC9049729 DOI: 10.1039/c9ra10792d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/11/2020] [Indexed: 11/21/2022] Open
Abstract
A novel magnetic microsphere was prepared by simple microemulsion polymerization for protein drug delivery systems. The Fe3O4 magnetic nanoparticles were successfully encapsulated in chitosan microspheres, which endowed the chitosan microspheres with good magnetism. The drug loading performance results indicated that the prepared magnetic chitosan microspheres exhibited a superior drug loading capacity, and the drug loading amount reached 947.01 mg g-1. Furthermore, the magnetic chitosan microspheres also showed a higher drug release rate (87.8%) and evident sustained-release performance in vitro. The magnetic microsphere carrier will be widely used in the biomedical field as a promising drug carrier.
Collapse
Affiliation(s)
- Xin Li
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 27 6886 2181 +86 27 6886 2181
| | - Danlin Zeng
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 27 6886 2181 +86 27 6886 2181
| | - Ping Ke
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 27 6886 2181 +86 27 6886 2181
| | - Guanghui Wang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 27 6886 2181 +86 27 6886 2181
| | - Dengke Zhang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 27 6886 2181 +86 27 6886 2181
| |
Collapse
|
12
|
Liu D, Bi YG. Controllable fabrication of hollow TiO2 spheres as sustained release drug carrier. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Yu Y, Li Y, Wang Y, Zou B. Self-Template Etching Synthesis of Urchin-Like Fe 3O 4 Microspheres for Enhanced Heavy Metal Ions Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9359-9365. [PMID: 30025456 DOI: 10.1021/acs.langmuir.8b01219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hierachical Fe3O4 microspheres with superparamagnetic properties are attractive for their superior structural, water-dispersible, and magnetic separation merits. Here self-template etching route was developed to create optimal porous structure in superparamagnetic Fe3O4 microspheres by using the oxalic acid (H2C2O4) as etching agent. A plausible formation mechanism of the urchin-like Fe3O4 microspheres was proposed based on systematic investigation of the etching process, which involved two stages including pore-forming step based on size-selective etching and pore-expanding step based on further etching. The as-synthesized Fe3O4 microspheres exhibited urchin-like structure with specific surface area and pore-size tunable, water-dispersible, and superparamagnetic properties. The optimal urchin-like Fe3O4 microspheres demonstrated superior performance including fast magnetic separation and high removal capabilities for the heavy metals ions like Pb2+ (112.8 mg g-1) and Cr(VI) (68.7 mg g-1). This work will shed new light on the synthesis of urchin-like microspheres for superior performance.
Collapse
|
14
|
Multifunctional core-shell silica microspheres and their performance in self-carrier decomposition, sustained drug release and fluorescent bioimaging. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Shan C, Wang B, Hu B, Liu W, Tang Y. Smart yolk-shell type luminescent nanocomposites based on rare-earth complex for NIR–NIR monitor of drug release in chemotherapy. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E324. [PMID: 29473914 PMCID: PMC5849021 DOI: 10.3390/ma11020324] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
Abstract
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Collapse
Affiliation(s)
- Lazhen Shen
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Bei Li
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Yongsheng Qiao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China.
| |
Collapse
|