1
|
Bayramoglu G, Kilic M, Yakup Arica M. Selective isolation and sensitive detection of lysozyme using aptamer based magnetic adsorbent and a new quartz crystal microbalance system. Food Chem 2022; 382:132353. [PMID: 35152024 DOI: 10.1016/j.foodchem.2022.132353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Magnetic chitosan beads and quartz crystal microbalance chip were decorated with lysozyme specific aptamer for isolation and detection of lysozyme, respectively. The lysozyme specific aptamer was immobilized on poly (dopamine) coated magnetic chitosan beads and the chip via Schiff base reaction. The percentage of the removal efficiency and purity of the isolated lysozyme from egg white were 87.6% and 91.8%, respectively. Further, the sensor system was contacted with different concentrations of lysozyme and other test proteins. This sensor system provided a method for the label-free, concentration-dependent, and selective detection of lysozyme with an observed detection limit of 17.9 ± 0.6 ng/mL. The sensor system was very selective and not significantly responded to the other tested proteins such as ovalbumin, trypsin, cytochrome C, and glucose oxidase. The prepared new sensor system showed a good durability and a high sensitivity for determination of lysozyme from solutions and whole egg white.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| | - Murat Kilic
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - M Yakup Arica
- Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|
2
|
Kopač T, Krajnc M, Ručigaj A. Protein release from nanocellulose and alginate hydrogels: The study of adsorption and desorption kinetics. Colloids Surf B Biointerfaces 2022; 217:112677. [PMID: 35792530 DOI: 10.1016/j.colsurfb.2022.112677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023]
Abstract
This work presents a study of the lysozyme release from crosslinked TEMPO nanocellulose (TOCNF) and alginate (ALG) hydrogels in a medium with different ionic strength and temperature. The main objective is to develop a mathematical model for a detailed study of the concurrent action of diffusion mechanism and adsorption/desorption kinetics. Model fit parameters provide important information about the initial (maximum) adsorption rate and its deceleration with increasing ionic strength of the release medium. Similarly, the initial (minimum) desorption rate and its acceleration with increasing salt concentration can be determined. The model leads us to the conclusion that the initial adsorption rate is higher in the case of TOCNF, but due to fewer electrostatic interactions and morphology as well as topography of the surface, it decreases to a negligible value much faster than in the case of ALG, where the diffusion process becomes dominant.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matjaž Krajnc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
3
|
Tian Y, Zhang X, Feng X, Zhang J, Zhong T. Shapeable and underwater super-elastic cellulose nanofiber/alginate cryogels by freezing-induced oxa-Michael reaction for efficient protein purification. Carbohydr Polym 2021; 272:118498. [PMID: 34420751 DOI: 10.1016/j.carbpol.2021.118498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023]
Abstract
Construction of monolithic cryogels that can efficiently adsorb proteins is of great significance in biotechnological and pharmaceutical industries. Herein, a novel approach is presented to fabricate microfibrillated cellulose (MFC)/sodium alginate (SA) cryogels by using freezing-induced oxa-Michael reaction at -12 °C. Thanks to the controllable reactiveness of divinyl sulfone (DVS), cryo-concentrated pH increase activates the oxa-Michael reaction between DVS and hydroxyl groups of MFCs and SAs. The obtained composite cryogel exhibits outstanding underwater shape recovery and excellent fatigue resistance. Moreover, the MFC/SAs reveal a high lysozyme adsorption capacity of 294.12 mg/g, surpassing most of absorbent materials previously reported. Furthermore, the cryogel-packed column can purify lysozyme continuously from chicken egg white, highlighting its outstanding practical application performance. Reuse experiments indicated that over 90% of lysozyme extraction capacity was retained after 6 cycles. This work provides a new avenue to design and develop next-generation chromatographic media of natural polysaccharide-based cryogel for protein purification.
Collapse
Affiliation(s)
- Yiran Tian
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Jinmeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| | - Tianyi Zhong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China
| |
Collapse
|
4
|
Sikkema R, Keohan B, Zhitomirsky I. Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13183070. [PMID: 34577971 PMCID: PMC8471633 DOI: 10.3390/polym13183070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Natural bone is a composite organic-inorganic material, containing hydroxyapatite (HAP) as an inorganic phase. In this review, applications of natural alginic acid (ALGH) polymer for the fabrication of composites containing HAP are described. ALGH is used as a biocompatible structure directing, capping and dispersing agent for the synthesis of HAP. Many advanced techniques for the fabrication of ALGH-HAP composites are attributed to the ability of ALGH to promote biomineralization. Gel-forming and film-forming properties of ALGH are key factors for the development of colloidal manufacturing techniques. Electrochemical fabrication techniques are based on strong ALGH adsorption on HAP, pH-dependent charge and solubility of ALGH. Functional properties of advanced composite ALGH-HAP films and coatings, scaffolds, biocements, gels and beads are described. The composites are loaded with other functional materials, such as antimicrobial agents, drugs, proteins and enzymes. Moreover, the composites provided a platform for their loading with cells for the fabrication of composites with enhanced properties for various biomedical applications. This review summarizes manufacturing strategies, mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
|
5
|
Eweida BY, El-Moghazy AY, Pandey PK, Amaly N. Fabrication and simulation studies of high-performance anionic sponge alginate beads for lysozyme separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Frota EG, Sartor KB, Biduski B, Margarites ACF, Colla LM, Piccin JS. Co-immobilization of amylases in porous crosslinked gelatin matrices by different reticulations approaches. Int J Biol Macromol 2020; 165:1002-1009. [DOI: 10.1016/j.ijbiomac.2020.09.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
|
7
|
Bayramoglu G, Yakup Arica M. Strong and weak cation-exchange groups generated cryogels films for adsorption and purification of lysozyme from chicken egg white. Food Chem 2020; 342:128295. [PMID: 33092916 DOI: 10.1016/j.foodchem.2020.128295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Here, the macroporous poly(hydroxylmethyl methacrylate/glycidyl methacrylate [p(HEMA-GMA)] cryogels with large porous surface were prepared, and then the epoxy groups of the p(HEMA-GMA) cryogels were systematically modified into strong and weak cationic groups. The effects of initial protein concentrations, adsorption time, pH, salt concentrations and temperatures on adsorption efficiency of cation exchange cryogels for lysozyme were determined. The maximum lysozyme adsorption capacities of strong and weak cation exchange cryogels were found to be 188.3 and 79.7 mg/g cryogel at 25 °C, respectively. The performance of the strong cationic cryogel was evaluated by purification of lysozyme from egg white. The activity of the isolated lysozyme was found to be 21,347 U/mg. The cationic cryogel maintained its expected high adsorption capacity and efficiency of the purification levels during repeated adsorption desorption processes. Finally, the purpose of this work is the design a cation exchange system for purification of lysozyme from egg-white.
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| | - M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| |
Collapse
|
8
|
Investigation of Hydrodynamic Behavior of Alginate Aerogel Particles in a Laboratory Scale Wurster Fluidized Bed. Molecules 2019; 24:molecules24162915. [PMID: 31405225 PMCID: PMC6721213 DOI: 10.3390/molecules24162915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of design and operating parameters on the superficial velocity at the onset of circulatory motion and the residence time of alginate aerogel particles in a laboratory scale Wurster fluidized bed were investigated. Several sets of experiments were conducted by varying Wurster tube diameter, Wurster tube length, batch volume and partition gap height. The superficial velocities for Wurster tube with 10 cm diameter were lower than the tube with 8 cm diameter. Superficial velocities increased with increasing batch volume and partition gap height. Moreover, increasing batch volume and partition gap height led to a decrease in the particle residence time in the Wurster tube. The results showed that there is an upper limit for each parameter in order to obtain a circulatory motion of the particles. It was found that the partition gap height should be 2 cm for proper particle circulation. Maximum batch volume for the tube with 10 cm diameter was found as 500 mL whereas maximum batch volume was 250 mL for the tube with 8 cm diameter. The fluidization behavior of the aerogel particles investigated in this study could be described by the general fluidization diagrams in the literature.
Collapse
|
9
|
Recovery of lysozyme from aqueous solution by polyelectrolyte precipitation with sodium alginate. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Wulandari Z, Fardiaz D, Thenawijaya M, Dewi Yuliana N, Budiman C. ISOLASI LISOZIM ALBUMIN TELUR AYAM RAS DENGAN METODE KROMATOGRAFI PENUKAR ION. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2018. [DOI: 10.6066/jtip.2018.29.2.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Wang D, Lv R, Ma X, Zou M, Wang W, Yan L, Ding T, Ye X, Liu D. Lysozyme immobilization on the calcium alginate film under sonication: Development of an antimicrobial film. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Xu W, Lou Y, Xu B, Li Y, Xiong Y, Jing J. Mineralized calcium carbonate/xanthan gum microspheres for lysozyme adsorption. Int J Biol Macromol 2018; 120:2175-2179. [PMID: 30201565 DOI: 10.1016/j.ijbiomac.2018.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/17/2018] [Accepted: 09/07/2018] [Indexed: 11/15/2022]
Abstract
Calcium carbonate/xanthan gum (Ca2CO3/XG) microspheres were prepared using biomimetic mineralization method for lysozyme (Ly) adsorption. The morphology of Ca2CO3/XG microspheres was characterized by field emission scanning electron microscope (FE-SEM). The Ly adsorption behavior was verified by Fourier transform infrared (FTIR) and in situ fluorescence microscope images. The effects of pHs on lysozyme adsorption were investigated as well. It was revealed that CaCO3/XG microspheres could immobilize lysozyme efficiently via electrostatic interactions with adsorption rate and adsorption quantity of 58.55 ± 0.56% and 18.7 ± 1.2 μg/mg as the pH was 7.0. Comparatively, the values markedly improved to 80.97 ± 0.15% and 24.3 ± 0.1 μg/mg respectively as the pH was 9.0 (p < 0.05). Additionally, UV and fluorescence spectrum showed that Ly maintained its original secondary structure during the adsorption/desorption process. The study therefore demonstrated that CaCO3/XG microspheres can be used as a practical and efficient support for Ly adsorption and desorption.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China; Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang 464000, China.
| | - Yucui Lou
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Bin Xu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang 473000, China
| | - Yingying Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - YongZhao Xiong
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Junxiang Jing
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
13
|
Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:25-32. [DOI: 10.1016/j.msec.2018.03.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/27/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
|