1
|
Varshan GSA, Namasivayam SKR. A Green Chemistry Principle for the Biotransformation of Fungal Biomass Derived Chitosan Into Versatile Nano Scale Materials with High Biocompatibility and Potential Biological Activities—A Review. BIONANOSCIENCE 2024; 14:4145-4166. [DOI: 10.1007/s12668-024-01564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/05/2025]
|
2
|
Jalalian S, Ebrahimzadeh A, Zahedi SM, Becker SJ, Hayati F, Hassanpouraghdam MB, Rasouli F. Chlamydomonas sp. extract meliorates the growth and physiological responses of 'Camarosa' strawberry (Fragaria × ananassa Duch) under salinity stress. Sci Rep 2024; 14:22436. [PMID: 39341865 PMCID: PMC11438894 DOI: 10.1038/s41598-024-72866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Microalgae like Chlamydomonas are beneficial organisms employed as biological stimulants to improve plants' growth, fruit quality, and stress tolerance. In the current study, the effects of Chlamydomonas sp. foliar spraying (0, 20, and 40 ml L-1) were assayed on Camarosa strawberry plants under salinity stress (0, 40, and 80 mM NaCl). The results showed that the foliar application of Chlamydomonas extract influenced strawberry's morphological, physiological, and biochemical characteristics under salinity stress. Foliar treatment of Chlamydomonas extract with and without salinity stress increased the leaf number and leaf area, the leaf relative water content, and photosynthetic pigments content. Moreover, the foliar application of Chlamydomonas extract decreased lipid peroxidation and hydrogen peroxide content and, on the other hand, enhanced the antioxidant enzymes activity (superoxide dismutase, guaiacol peroxidase, and peroxidase), phenolics, flavonoids, and anthocyanins content under salinity stress. For instance, the highest total antioxidant capacity was found in the plants foliar treated with 40 ml L-1 of Chlamydomonas algae extract under 80 mM salinity stress, which increased by 102.4% compared to the controls, as well as the highest total phenolic compounds and anthocyanin's content were 30.22, and 7.2% more than the control plants, respectively. Overall, the foliar application of Chlamydomonas algae extracts, especially at a concentration of 20 ml L-1 enhanced the strawberry's growth, yield, and physiological traits under saline conditions. The results with more detailed evaluations will be advisable for the pioneer farmers and extension section.
Collapse
Affiliation(s)
- Sahar Jalalian
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Asghar Ebrahimzadeh
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Silvia Jiménez Becker
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almeria, Almeria, España
| | - Faezeh Hayati
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
3
|
Padaga SG, Bhatt H, Ch S, Paul M, Itoo AM, Ghosh B, Roy S, Biswas S. Glycol Chitosan-Poly(lactic acid) Conjugate Nanoparticles Encapsulating Ciprofloxacin: A Mucoadhesive, Antiquorum-Sensing, and Biofilm-Disrupting Treatment Modality for Bacterial Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18360-18385. [PMID: 38573741 DOI: 10.1021/acsami.3c18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.
Collapse
Affiliation(s)
- Sri Ganga Padaga
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Himanshu Bhatt
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
4
|
Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 2024; 22:188. [PMID: 38519959 PMCID: PMC10958940 DOI: 10.1186/s12964-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.
Collapse
Affiliation(s)
- Nirmeen Aboelnaga
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Salma W Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A Saif
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Manar Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shehab Ayman
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
5
|
Beram FM, Ali SN, Mesbahian G, Pashizeh F, Keshvadi M, Mashayekhi F, Khodadadi B, Bashiri Z, Moeinzadeh A, Rezaei N, Namazifard S, Hossein-Khannazer N, Tavakkoli Yaraki M. 3D Printing of Alginate/Chitosan-Based Scaffold Empowered by Tyrosol-Loaded Niosome for Wound Healing Applications: In Vitro and In Vivo Performances. ACS APPLIED BIO MATERIALS 2024; 7:1449-1468. [PMID: 38442406 DOI: 10.1021/acsabm.3c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This study introduces a tyrosol-loaded niosome integrated into a chitosan-alginate scaffold (Nio-Tyro@CS-AL), employing advanced electrospinning and 3D printing techniques for wound healing applications. The niosomes, measuring 185.40 ± 6.40 nm with a polydispersity index of 0.168 ± 0.012, encapsulated tyrosol with an efficiency of 77.54 ± 1.25%. The scaffold's microsized porous structure (600-900 μm) enhances water absorption, promoting cell adhesion, migration, and proliferation. Mechanical property assessments revealed the scaffold's enhanced resilience, with niosomes increasing the compressive strength, modulus, and strain to failure, indicative of its suitability for wound healing. Controlled tyrosol release was demonstrated in vitro, essential for therapeutic efficacy. The scaffold exhibited significant antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, with substantial biofilm inhibition and downregulation of bacterial genes (ndvb and icab). A wound healing assay highlighted a notable increase in MMP-2 and MMP-9 mRNA expression and the wound closure area (69.35 ± 2.21%) in HFF cells treated with Nio-Tyro@CS-AL. In vivo studies in mice confirmed the scaffold's biocompatibility, showing no significant inflammatory response, hypertrophic scarring, or foreign body reaction. Histological evaluations revealed increased fibroblast and macrophage activity, enhanced re-epithelialization, and angiogenesis in wounds treated with Nio-Tyro@CS-AL, indicating effective tissue integration and repair. Overall, the Nio-Tyro@CS-AL scaffold presents a significant advancement in wound-healing materials, combining antibacterial properties with enhanced tissue regeneration, and holds promising potential for clinical applications in wound management.
Collapse
Affiliation(s)
| | - Saba Naeimaei Ali
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Ghazal Mesbahian
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd 8916188635, Iran
| | | | - Farzaneh Mashayekhi
- Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran 14535, Iran
| | - Behnoosh Khodadadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993891176, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Niloufar Rezaei
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Saina Namazifard
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, 500 West First Street, Arlington, Texas 76019, United States
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
6
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Elsayed EM, Farghali AA, Zanaty MI, Abdel-Fattah M, Alkhalifah DHM, Hozzein WN, Mahmoud AM. Poly-Gamma-Glutamic Acid Nanopolymer Effect against Bacterial Biofilms: In Vitro and In Vivo Study. Biomedicines 2024; 12:251. [PMID: 38397853 PMCID: PMC10887140 DOI: 10.3390/biomedicines12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a biodegradable poly-gamma-glutamic-acid nanopolymer (Ɣ-PGA NP) was investigated for its activity against clinical strains of Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae and Escherichia coli), and reference strains of S. aureus ATCC 6538, S. pyogenes ATCC 19615 (Gram-positive), and Gram-negative E. coli ATCC 25922, and K. pneumoniae ATCC 13884 bacterial biofilms. The minimum inhibitory concentration (MIC) effect of Ɣ-PGA NP showed inhibitory effects of 0.2, 0.4, 1.6, and 3.2 μg/mL for S. pyogenes, S. aureus, E. coli, and K. pneumoniae, respectively. Also, MIC values were 1.6, 0.8, 0.2, and 0.2 μg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Afterwards, MBEC (minimum biofilm eradication concentration) and MBIC (minimum biofilm inhibitory concentration) were investigated to detect Ɣ-PGA NPs efficiency against the biofilms. MBEC and MBIC increased with increasing Ɣ-PGA NPs concentration or time of exposure. Interestingly, MBIC values were at lower concentrations of Ɣ-PGA NPs than those of MBEC. Moreover, MBEC values showed that K. pneumoniae was more resistant to Ɣ-PGA NPs than E. coli, S. aureus, and S. pyogenes, and the same pattern was observed in the reference strains. The most effective results for MBEC were after 48 h, which were 1.6, 0.8, 0.4, and 0.2 µg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. Moreover, MBIC results were the most impactful after 24 h but some were the same after 48 h. MBIC values after 48 h were 0.2, 0.2, 0.2, and 0.1 μg/mL for K. pneumoniae, E. coli, S. aureus, and S. pyogenes, respectively. The most effective results for MBEC were after 24 h, which were 1.6, 0.8, 0.4, and 0.4 µg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Also, MBIC results were the most impactful after an exposure time of 12 h. MBIC values after exposure time of 12 h were 0.4, 0.4, 0.2, and 0.2 μg/mL for K. pneumoniae ATCC 13884, E. coli ATCC 25922, S. aureus ATCC 6538, and S. pyogenes ATCC 19615, respectively. Besides that, results were confirmed using confocal laser scanning microscopy (CLSM), which showed a decrease in the number of living cells to 80% and 60% for MBEC and MBIC, respectively, for all the clinical bacterial strains. Moreover, living bacterial cells decreased to 70% at MBEC while decreasing up to 50% at MBIC with all bacterial refence strains. These data justify the CFU quantification. After that, ImageJ software was used to count the attached cells after incubating with the NPs, which proved the variation in live cell count between the manual counting and image analysis methods. Also, a scanning electron microscope (SEM) was used to detect the biofilm architecture after incubation with the Ɣ-PGA NP. In in vivo wound healing experiments, treated wounds of mice showed faster healing (p < 0.00001) than both the untreated mice and those that were only wounded, as the bacterial count was eradicated. Briefly, the infected mice were treated faster (p < 0.0001) when infected with S. pyogenes > S. aureus > E. coli > K. pneumoniae. The same pattern was observed for mice infected with the reference strains. Wound lengths after 2 h showed slightly healing (p < 0.001) for the clinical strains, while treatment became more obvious after 72 h > 48 h > 24 h (p < 0.0001) as wounds began to heal after 24 h up to 72 h. For reference strains, wound lengths after 2 h started to heal up to 72 h.
Collapse
Affiliation(s)
- Eman M. Elsayed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Ahmed A. Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Mohamed I. Zanaty
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Medhat Abdel-Fattah
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| | - Ahmed M. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (M.A.-F.); (W.N.H.); (A.M.M.)
| |
Collapse
|
8
|
Machado M, Sousa S, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Anti-obesity potential of a yogurt functionalized with a CLNA-rich pomegranate oil. Food Res Int 2023; 173:113364. [PMID: 37803704 DOI: 10.1016/j.foodres.2023.113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 10/08/2023]
Abstract
Pomegranate oil is rich in conjugated linolenic acids, compounds which have attracted attention due to their potential applicability in obesity management as they are capable of modulating leptin and adiponectin secretion and regulate fatty acids storage and glucose metabolism. Among the possible bioactive foodstuffs capable of delivering these bioactive compounds yogurts have shown potential. Thus, the purpose of this work was to develop functional yogurts through the addition of pomegranate oil either in its free or encapsulated (used as a protective strategy against oxidation and gastrointestinal tract passage) forms. To that end, the pomegranate oil (free and encapsulated) was incorporated in yogurt and the functional yogurt capacity to modulate hepatic lipid accumulation, adipocyte metabolism (in terms of lipolysis, and adipokines secretion) and immune response was evaluated. The results obtained showed that the pomegranate oil's incorporation led to an improvement in the yogurts' nutritional values, with a reduction in its atherogenic and thrombogenic indexes (more than 78% for atherogenic and 76% for thrombogenic index) and an enhancement of its hypocholesterolemic/hypercholesterolemic ratio (more than 62%) when compared to the control yogurt. Furthermore, data also showed for the first time how these functional yogurts promoted modulation of metabolic processes post GIT as they were capable of reducing by 40% triglycerides accumulation in steatosis-induced Hep G2 cells and by 30 % in differentiated adipocytes. Moreover, samples also showed a capacity to modulate the leptin and adiponectin secretion (56 % of increase in adiponectin) and reduce the IL-6 secretion (ca 44%) and TNF-α (ca 12%) in LPS-stimulated cells. Thus, the CLNA-rich yogurt here developed showed potential as a viable nutraceutical alternative for obesity management.
Collapse
Affiliation(s)
- Manuela Machado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Luís M Rodriguez-Alcalá
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
9
|
Chen XJ, Lei ZY, Liu P, Lei MJ, Xu H, Yu LJ, Ao MZ. An aminocaproic acid-grafted chitosan derivative with superior antibacterial and hemostatic properties for the prevention of secondary bleeding. Carbohydr Polym 2023; 316:120988. [PMID: 37321717 DOI: 10.1016/j.carbpol.2023.120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Uncontrolled bleeding is one of the leading causes of human mortality. Existing hemostatic materials or techniques cannot meet the clinical requirements for safe and effective hemostasis. The development of novel hemostatic materials has always been of great interest. Chitosan hydrochloride (CSH), a derivative of chitin, is extensively used on wounds as an antibacterial and hemostatic agent. However, the formation of intra- or intermolecular hydrogen bonds between hydroxyl and amino groups limits its water solubility and dissolution rate and affects its effectiveness in promoting coagulation. Herein, we covalently grafted aminocaproic acid (AA) to the hydroxyl and amino groups of CSH via ester and amide bonds, respectively. The solubility of CSH in water (25 °C) was 11.39 ± 0.98 % (w/v), whereas the AA-grafted CSH (CSH-AA) reached 32.34 ± 1.23 % (w/v). Moreover, the dissolution rate of CSH-AA in water was 6.46 times higher than that of CSH. Subsequent studies proved that CSH-AA is non-toxic, biodegradable, and has superior antibacterial and hemostatic properties to CSH. Additionally, anti-plasmin activity can be exerted by the dissociated AA from the CSH-AA backbone, which can help to lessen secondary bleeding.
Collapse
Affiliation(s)
- Xiao-Juan Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi-Yong Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pan Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meng-Jie Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Xu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long-Jiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China.
| | - Ming-Zhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China.
| |
Collapse
|
10
|
Sinha S, Kumar R, Anand J, Gupta R, Gupta A, Pant K, Dohare S, Tiwari P, Kesari KK, Krishnan S, Gupta PK. Nanotechnology-Based Solutions for Antibiofouling Applications: An Overview. ACS APPLIED NANO MATERIALS 2023; 6:12828-12848. [DOI: 10.1021/acsanm.3c01539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Somya Sinha
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Rhythm Gupta
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Akshima Gupta
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Sushil Dohare
- Department of Epidemiology, College of Public Health and Tropical Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Preeti Tiwari
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkari 1, Helsinki 00100, Finland
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Saravanan Krishnan
- Creative Carbon Laboratories Pvt Ltd., Chennai 600113, Tamil Nadu, India
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
11
|
Barman S, Chakraborty A, Saha S, Sikder K, Maitra Roy S, Modi B, Bahadur S, Khan AH, Manna D, Bag P, Sarkar AK, Bhattacharya R, Basu A, Maity AR. Efficient Synergistic Antibacterial Activity of α-MSH Using Chitosan-Based Versatile Nanoconjugates. ACS OMEGA 2023; 8:12865-12877. [PMID: 37065019 PMCID: PMC10099120 DOI: 10.1021/acsomega.2c08209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The application of antimicrobial peptides has emerged as an alternative therapeutic tool to encounter against multidrug resistance of different pathogenic organisms. α-Melanocyte stimulating hormone (α-MSH), an endogenous neuropeptide, is found to be efficient in eradicating infection of various kinds of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). However, the chemical stability and efficient delivery of these biopharmaceuticals (i.e., α-MSH) to bacterial cells with a significant antibacterial effect remains a key challenge. To address this issue, we have developed a chitosan-cholesterol polymer using a single-step, one-pot, and simple chemical conjugation technique, where α-MSH is loaded with a significantly high amount (37.7%), and the final product is obtained as chitosan-cholesterol α-MSH polymer-drug nanoconjugates. A staphylococcal growth inhibition experiment was performed using chitosan-cholesterol α-MSH and individual controls. α-MSH and chitosan-cholesterol both show bacterial growth inhibition by a magnitude of 50 and 79%, respectively. The killing efficiency of polymer-drug nanoconjugates was very drastic, and almost no bacterial colony was observed (∼100% inhibition) after overnight incubation. Phenotypic alternation was observed in the presence of α-MSH causing changes in the cell structure and shape, indicating stress on Staphylococcus aureus. As a further consequence, vigorous cell lysis with concomitant release of the cellular material in the nearby medium was observed after treatment of chitosan-cholesterol α-MSH nanoconjugates. This vigorous lysis of the cell structure is associated with extensive aggregation of the bacterial cells evident in scanning electron microscopy (SEM). The dose-response experiment was performed with various concentrations of chitosan-cholesterol α-MSH nanoconjugates to decipher the degree of the bactericidal effect. The concentration of α-MSH as low as 1 pM also shows significant inhibition of bacterial growth (∼40% growth inhibition) of Staphylococcus aureus. Despite playing an important role in inhibiting bacterial growth, our investigation on hemolytic assay shows that chitosan-cholesterol α-MSH is significantly nontoxic at a wide range of concentrations. In a nutshell, our analysis demonstrated novel antimicrobial activity of nanoparticle-conjugated α-MSH, which could be used as future therapeutics against multidrug-resistant Staphylococcus aureus and other types of bacterial cells.
Collapse
Affiliation(s)
- Sourav Barman
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Asmita Chakraborty
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sujata Saha
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Kunal Sikder
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sayoni Maitra Roy
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Barkha Modi
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Sabarnee Bahadur
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Ali Hossain Khan
- S.
N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Dipak Manna
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Pousali Bag
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| | - Ankan Kumar Sarkar
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Rishi Bhattacharya
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Arnab Basu
- Department
of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research
Institute, Belur Math, Howrah, West
Bengal 711202, India
| | - Amit Ranjan Maity
- Amity
Institute of Biotechnology, Amity University, Kolkata, West Bengal 700135, India
| |
Collapse
|
12
|
Pino P, Bosco F, Mollea C, Onida B. Antimicrobial Nano-Zinc Oxide Biocomposites for Wound Healing Applications: A Review. Pharmaceutics 2023; 15:pharmaceutics15030970. [PMID: 36986831 PMCID: PMC10053511 DOI: 10.3390/pharmaceutics15030970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic wounds are a major concern for global health, affecting millions of individuals worldwide. As their occurrence is correlated with age and age-related comorbidities, their incidence in the population is set to increase in the forthcoming years. This burden is further worsened by the rise of antimicrobial resistance (AMR), which causes wound infections that are increasingly hard to treat with current antibiotics. Antimicrobial bionanocomposites are an emerging class of materials that combine the biocompatibility and tissue-mimicking properties of biomacromolecules with the antimicrobial activity of metal or metal oxide nanoparticles. Among these nanostructured agents, zinc oxide (ZnO) is one of the most promising for its microbicidal effects and its anti-inflammatory properties, and as a source of essential zinc ions. This review analyses the most recent developments in the field of nano-ZnO–bionanocomposite (nZnO-BNC) materials—mainly in the form of films, but also hydrogel or electrospun bandages—from the different preparation techniques to their properties and antibacterial and wound-healing performances. The effect of nanostructured ZnO on the mechanical, water and gas barrier, swelling, optical, thermal, water affinity, and drug-release properties are examined and linked to the preparation methods. Antimicrobial assays over a wide range of bacterial strains are extensively surveyed, and wound-healing studies are finally considered to provide a comprehensive assessment framework. While early results are promising, a systematic and standardised testing procedure for the comparison of antibacterial properties is still lacking, partly because of a not-yet fully understood antimicrobial mechanism. This work, therefore, allowed, on one hand, the determination of the best strategies for the design, engineering, and application of n-ZnO-BNC, and, on the other hand, the identification of the current challenges and opportunities for future research.
Collapse
|
13
|
Sheng Y, Chen Z, Wu W, Lu Y. Engineered organic nanoparticles to combat biofilms. Drug Discov Today 2023; 28:103455. [PMID: 36403883 DOI: 10.1016/j.drudis.2022.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Biofilms are colonies of microorganisms that are embedded in autocrine extracellular polymeric substances (EPS), imparting antibiotic resistance and recalcitrant bacterial infection. Nanoparticles (NPs) can enhance the biofilm inhibition and eradication of delivered antibiotics. This is mainly because of enhanced EPS penetration and a high local drug concentration. As we discuss here, novel strategies are being developed to further enhance the antibiofilm capacity of NPs, including size optimization, surface modification, stimuli-triggered release, and combined strategies. Thus, NPs represent an effective and promising approach to combat biofilms.
Collapse
Affiliation(s)
- Yuze Sheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai Engineering Research Center For External Chinese Medicine, Shanghai 200433, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Fudan Zhangjiang Institute, Shanghai 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
14
|
Insights into the Biocompatibility and Biological Potential of a Chitosan Nanoencapsulated Textile Dye. Int J Mol Sci 2022; 23:ijms232214234. [PMID: 36430710 PMCID: PMC9693863 DOI: 10.3390/ijms232214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Traditionally synthetic textile dyes are hazardous and toxic compounds devoid of any biological activity. As nanoencapsulation of yellow everzol textile dye with chitosan has been shown to produce biocompatible nanoparticles which were still capable of dyeing textiles, this work aims to further characterize the biocompatibility of yellow everzol nanoparticles (NPs) and to ascertain if the produced nanoencapsulated dyes possess any biological activity against various skin pathogens in vitro assays and in a cell infection model. The results showed that the NPs had no deleterious effects on the HaCat cells' metabolism and cell wall, contrary to the high toxicity of the dye. The biological activity evaluation showed that NPs had a significant antimicrobial activity, with low MICs (0.5-2 mg/mL) and MBCs (1-3 mg/mL) being registered. Additionally, NPs inhibited biofilm formation of all tested microorganisms (inhibitions between 30 and 87%) and biofilm quorum sensing. Lastly, the dye NPs were effective in managing MRSA infection of HaCat cells as they significantly reduced intracellular and extracellular bacterial counts.
Collapse
|
15
|
Relationship between the Antifungal Activity of Chitosan-Capsaicin Nanoparticles and the Oxidative Stress Response on Aspergillus parasiticus. Polymers (Basel) 2022; 14:polym14142774. [PMID: 35890550 PMCID: PMC9322876 DOI: 10.3390/polym14142774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 02/05/2023] Open
Abstract
The fungus Aspergillus parasiticus is a contaminant in agricultural crops and its eradication involves the indiscriminate use of harmful synthetic pesticides. In the search for antifungal agents of natural origin, chitosan (Q) and capsaicin (C) are coupled in the form of nanoparticles (Np), which can possess a direct application under specific conditions. Due to their small size, Np can cross through the cell wall, taking the cells into a pro-oxidant environment known as “oxidative stress”, which presents when the reactive oxygen species (ROS) surpass the number of antioxidants in the cell. In the present investigation, nanoparticles of chitosan (Np Q) and nanoparticles of chitosan-capsaicin (Np QC) with an average diameter of 44.8 ± 20.6 nm and 111.1 ± 14.1 nm, respectively, were synthesized, and there was a zeta potential of + 25.6 ± 0.7 mV and + 26.8 ± 6.1 mV, respectively. The effect of the concentration of Np Q (A, B, C, and D), of Np QC (A, B, C, and D), and capsaicin in a solution (control) was evaluated on the viability of the spores, the accumulation of intracellular ROS, and the morphometric changes of A. parasiticus. Acute toxicity of the Np was determined utilizing bioassays with Artemia salina, and acute phytotoxicity was evaluated in lettuce seeds (Lactuca sativa). According to ROS results, capsaicin (control) did not induce oxidative stress in the cell; otherwise, it was observed to have an elevated (p < 0.05) accumulation of ROS when the concentration of Np Q increased. For both, Np Q and Np QC, an inverse physiological pattern relating spore viability and ROS accumulation in the fungus was found; the viability of spores decreased as the ROS accumulation increased. The spore viability of A. parasiticus diminished upon increasing the concentration of chitosan (0.3−0.4 mg/mL) in the Np, while the intracellular accumulation of ROS increased proportionally to the concentration of the nanomaterials in the treatments of Np Q and Np QC. On the other hand, Np QC presented a lower (p < 0.05) toxicological effect in comparison with Np Q, which indicates that the incorporation of bioactive compounds, such as capsaicin, into nanoparticles of chitosan is a strategy that permits the reduction of the toxicity associated with nanostructured materials.
Collapse
|
16
|
Bioactivity of star-shaped polycaprolactone/chitosan composite hydrogels for biomaterials. Int J Biol Macromol 2022; 212:420-431. [PMID: 35623458 DOI: 10.1016/j.ijbiomac.2022.05.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
Recently, our group reported the synthesis and fabrication of composite hydrogels of chitosan (CS) and star-shaped polycaprolactone (stPCL). The co-crosslink of modified stPCL with carboxyl at the end chain (stPCL-COOH) provided good mechanical properties and stability to the composite hydrogels. This research presents the bioactivities of composite hydrogels showing a potential candidate to develop biomaterials such as wound dressing and bone tissue engineering. The bioactivities were the antibacterial activity, cell viability, skin irritation, decomposability, and ability to attach ions for apatite nucleation. The results showed that all the composite hydrogels were completely decomposed within 2 days. The composite hydrogels had better antibacterial activity and higher efficiency to Gram-negative (Escherichia coli) than to Gram-positive (Staphylococcus epidermidis) bacteria. The composite hydrogels were studied for cell viability based on MTT assay and skin irritation on rabbit skin. The results indicated high cell survival more than 80% and no skin irritation. In addition, the results showed that calcium and phosphorous were preferentially attached to the composite hydrogel surface to grow apatite crystal (Ca/P ratio 1.86) compared to attaching to the chitosan hydrogel (Ca/P ratio 1.48) in 21 days of testing.
Collapse
|
17
|
Physicochemical studies of the structure of chitosan and chitosan ascorbate nanoparticles. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Upmanyu K, Haq QMR, Singh R. Factors mediating Acinetobacter baumannii biofilm formation: Opportunities for developing therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100131. [PMID: 35909621 PMCID: PMC9325880 DOI: 10.1016/j.crmicr.2022.100131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii has notably become a superbug due to its mounting risk of infection and escalating rates of antimicrobial resistance, including colistin, the last-resort antibiotic. Its propensity to form biofilm on biotic and abiotic surfaces has contributed to the majority of nosocomial infections. Bacterial cells in biofilms are resistant to antibiotics and host immune response, and pose challenges in treatment. Therefore current scenario urgently requires the development of novel therapeutic strategies for successful treatment outcomes. This article provides a holistic understanding of sequential events and regulatory mechanisms directing A. baumannii biofilm formation. Understanding the key factors functioning and regulating the biofilm machinery of A. baumannii will provide us insight to develop novel approaches to combat A. baumannii infections. Further, the review article deliberates promising strategies for the prevention of biofilm formation on medically relevant substances and potential therapeutic strategies for the eradication of preformed biofilms which can help tackle biofilm-associated A. baumannii infections. Advances in emerging therapeutic opportunities such as phage therapy, nanoparticle therapy and photodynamic therapy are also discussed to comprehend the current scenario and future outlook for the development of successful treatment against biofilm-associated A. baumannii infections.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| |
Collapse
|
19
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
20
|
Synthesis of Amphotericin B Conjugated Chitosan Nanomaterial From Fish Scales and Evaluation of its Antifungal Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Lipatova I, Yusova A, Makarova L. Fabrication and characterization of starch films containing chitosan nanoparticles using in situ precipitation and mechanoactivation techniques. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Caroni JG, de Almeida Mattos AV, Fernandes KR, Balogh DT, Renno ACM, Okura MH, Malpass ACG, Ferraresi C, Garcia LA, Sanfelice RC, Pavinatto A. Chitosan-based glycerol-plasticized membranes: bactericidal and fibroblast cellular growth properties. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03310-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Kašparová P, Zmuda M, Vaňková E, Maťátková O, Masák J. Low-molecular weight chitosan enhances antibacterial effect of antibiotics and permeabilizes cytoplasmic membrane of Staphylococcus epidermidis biofilm cells. Folia Microbiol (Praha) 2021; 66:983-996. [PMID: 34291404 DOI: 10.1007/s12223-021-00898-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
This study evaluated the effect of low-molecular weight chitosan on Staphylococcus epidermidis, a common colonizer of joint implants and other prosthetic devices. We have also attempted to elucidate its mechanism of action. Chitosan was found to be effective against both the planktonic and biofilm cells (MIC80 35-40 mg/L; MBIC80 40-150 mg/L), in contrast to the antibiotics erythromycin and tetracycline with no antibiofilm activity (MBIC80 not found). In combination, chitosan had an additive effect with antibiotics on suspension growth of S. epidermidis (FICi 0.7-1.0), and the combinatory action caused a complete inhibition of biofilm metabolic activity in some cases. In addition, chitosan caused rapid cellular damage and enhanced antihaemolytic activity of tetracycline in combination towards S. epidermidis biofilm cells. Chitosan efficiently inhibited S. epidermidis growth acting via cell membrane damage, yet the extent of antimicrobial and antibiofilm activities was quite strain-specific. It was proved to be a very efficient antimicrobial agent worth further examination as a potent candidate in pharmaceutical research. Apart from antimicrobial activity, it also acted as antivirulence enhancing agent which is a very promising strategy for alternative infectious diseases treatment.
Collapse
Affiliation(s)
- Petra Kašparová
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice 166 28, Prague, Czech Republic.
| | - Martin Zmuda
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice 166 28, Prague, Czech Republic
| | - Eva Vaňková
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice 166 28, Prague, Czech Republic
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice 166 28, Prague, Czech Republic
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice 166 28, Prague, Czech Republic
| |
Collapse
|
24
|
A sustainable way for surface functionalisation of PET nonwoven with novel chitosan-cinnamaldehyde cross-linked nanoparticles. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021; 50:1587-1616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are complex three-dimensional structures formed at interfaces by the vast majority of bacteria and fungi. These robust communities have an important detrimental impact on a wide range of industries and other facets of our daily lives, yet their removal is challenging owing to the high tolerance of biofilms towards conventional antimicrobial agents. This key issue has driven an urgent search for new innovative antibiofilm materials. Amongst these emerging approaches are highly promising materials that employ aqueous-soluble macromolecules, including peptides, proteins, synthetic polymers, and nanomaterials thereof, which exhibit a range of functionalities that can inhibit biofilm formation or detach and destroy organisms residing within established biofilms. In this Review, we outline the progress made in inhibiting and removing biofilms using macromolecular approaches, including a spotlight on cutting-edge materials that respond to environmental stimuli for "on-demand" antibiofilm activity, as well as synergistic multi-action antibiofilm materials. We also highlight materials that imitate and harness naturally derived species to achieve new and improved biomimetic and biohybrid antibiofilm materials. Finally, we share some speculative insights into possible future directions for this exciting and highly significant field of research.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia and Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
26
|
Coscueta ER, Sousa AS, Reis CA, Pintado M. Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery: Optimal formulation. PLoS One 2021; 16:e0248257. [PMID: 33956792 PMCID: PMC8101728 DOI: 10.1371/journal.pone.0248257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022] Open
Abstract
Phenylethyl isothiocyanate (PEITC), a chemopreventive compound, is highly reactive due to its considerably electrophilic nature. Furthermore, it is hydrophobic and has low stability, bioavailability and bioaccessibility. This restricts its use in biomedical and nutraceutical or food applications. Thus, the encapsulation of this agent has the function of overcoming these limitations, promoting its solubility in water, and stabilizing it, preserving its bioactivity. So, polymeric microparticles were developed using chitosan-olive oil-PEITC systems. For this, an optimisation process (factors: olive oil: chitosan ratio and PEITC: chitosan ratio) was implemented through a 3-level factorial experimental design. The responses were: the particle size, zeta-potential, polydisperse index, and entrapment efficiency. The optimal formulation was further characterised by FTIR and biocompatibility in Caco-2 cells. Optimal conditions were olive oil: chitosan and PEITC: chitosan ratios of 1.46 and 0.25, respectively. These microparticles had a size of 629 nm, a zeta-potential of 32.3 mV, a polydispersity index of 0.329, and entrapment efficiency of 98.49%. We found that the inclusion process affected the optical behaviour of the PEITC, as well as the microparticles themselves and their interaction with the medium. Furthermore, the microparticles did not show cytotoxicity within the therapeutic values of PEITC. Thus, PEITC was microencapsulated with characteristics suitable for potential biomedical, nutraceutical and food applications.
Collapse
Affiliation(s)
- Ezequiel R. Coscueta
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Sofia Sousa
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Celso A. Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
- Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
27
|
Arif M, Sharaf M, Samreen, Khan S, Chi Z, Liu CG. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:813-832. [PMID: 33428545 DOI: 10.1080/09205063.2020.1870323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Driven by the need to find alternatives to control H. pylori infections, this work describes the development of chitosan-PMLA nanoparticulate systems as carriers for antimicrobial glycolipid. By using a simple ionic gelation method stable nanoparticle was obtained showing an encapsulation efficiency of 73.1 ± 1.3% and an average size of 217.0 ± 15.6 nm for rhamnolipids chitosan-PMLA nanoparticles (RL-CS-NPs). Glycolipid incorporation and particle size were correspondingly corroborated by FT-IR and TEM analysis. Rhamnolipids chitosan nanoparticles (RL-CS-NPs) presented the highest antimicrobial effect towards H. pylori (ATCC 26695) exhibiting a minimal inhibitory concentration of 132 µg/mL and a biofilm inhibition ability of 99%. Additionally, RL-CS-NPs did not interfere with human fibroblasts viability and proliferation under the tested conditions. The results revealed that the RL-CS-NPs were able to inhibit bacterial growth showing adequate cytocompatibility and might become, after additional studies, a valuable approach to fight H. pylori biofilm related-infections.
Collapse
Affiliation(s)
- Muhammad Arif
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Mohamed Sharaf
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China.,Department of Biochemistry Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Samreen
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Sohaib Khan
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Zhe Chi
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| | - Chen-Guang Liu
- College of Marine Life Science, Ocean University Of China, Qingdao, P.R. China
| |
Collapse
|
28
|
Souri D, Salimi N, Ghabooli M. Hydrothermal fabrication of pure ZnSe nanocrystals at different microwave irradiation times and their disc-diffusion antibacterial potential against Gram negative bacteria: Bio-optical advantages. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Costa EM, Silva S, Veiga M, Baptista P, Tavaria FK, Pintado ME. Textile dyes loaded chitosan nanoparticles: Characterization, biocompatibility and staining capacity. Carbohydr Polym 2020; 251:117120. [PMID: 33142655 DOI: 10.1016/j.carbpol.2020.117120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
Textile dyeing is a hazardous and toxic process. While traditionally it has been managed through effluent treatment, new approaches focused upon improving the dyeing process are gaining relevance. In this work, we sought to obtain, for the first time, an eco-friendly chitosan-nanoparticle based textile dyeing method. To that end, yellow everzol and navy blue itosperse loaded chitosan nanoparticles were produced and their capacity to dye textiles and cytotoxicity towards human skin cells were evaluated. The results obtained showed that it was possible to obtain nanoencapsulated dyes through ionic gelation with an average entrapment efficacy above 90 %. Nanoparticles presented a positive surface charge and sizes between 190 and 800 nm with yellow everzol NPs occurring via ionic interactions while navy blue itosperse NPs were formed through hydrogen bonds. Furthermore, the produced dye NPs presented no cytotoxicity towards HaCat cells and presented staining percentages reaching 17.60 % for a viscose/wool blend.
Collapse
Affiliation(s)
- Eduardo M Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Sara Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Mariana Veiga
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Patricia Baptista
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Freni K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
30
|
Cunha CS, Castro PJ, Sousa SC, Pullar RC, Tobaldi DM, Piccirillo C, Pintado MM. Films of chitosan and natural modified hydroxyapatite as effective UV-protecting, biocompatible and antibacterial wound dressings. Int J Biol Macromol 2020; 159:1177-1185. [PMID: 32416293 DOI: 10.1016/j.ijbiomac.2020.05.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022]
Abstract
Chitosan is a natural polysaccharide widely used in biomedicine, for instance for wound dressing. Hydroxyapatite is a very bioactive calcium phosphate which, if modified with an appropriate element (iron Fe), can also have UV-absorbing properties. In this work, we report the study of films of chitosan incorporated with iron-modified hydroxyapatite of natural origin (from cod fish bones); this combination led to an innovative chitosan-based material with excellent and advanced functional properties. The films showed very high UV absorption (Ultraviolet Protection Factor (UPF) value higher than 50). This is the first time that a chitosan-based material has shown such high UV protection properties. The films also showed to be non-cytotoxic, and possessed antimicrobial activity towards both Gram-positive and negative strains. Their mechanical properties, optimised with an experimental design approach, confirmed their potential use as multifunctional wound dressing, capable of reducing bacterial infections and, at the same time, protecting from UV light.
Collapse
Affiliation(s)
- Carla S Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal; Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Pedro J Castro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Sérgio C Sousa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Robert C Pullar
- Department of Materials and Ceramic Engineering and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - David M Tobaldi
- Department of Materials and Ceramic Engineering and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Clara Piccirillo
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Lecce, Italy.
| | - Maria M Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| |
Collapse
|
31
|
Role of micellar interface in the synthesis of chitosan nanoparticles formulated by reverse micellar method. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Niaz T, Shabbir S, Noor T, Abbasi R, Imran M. Alginate-caseinate based pH-responsive nano-coacervates to combat resistant bacterial biofilms in oral cavity. Int J Biol Macromol 2020; 156:1366-1380. [DOI: 10.1016/j.ijbiomac.2019.11.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
|
33
|
Preparation and Characterization of Cinnamomum Essential Oil–Chitosan Nanocomposites: Physical, Structural, and Antioxidant Activities. Processes (Basel) 2020. [DOI: 10.3390/pr8070834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, different amounts of cinnamomum essential oil (CEO) were encapsulated in chitosan nanoparticles (NPs) (CS-NPs) through oil-in-water emulsification and ionic gelation. An ultraviolet-visible spectrophotometer, Fourier-transform infrared spectroscopy, synchronous thermal analysis, and X-ray diffraction were employed to analyze the CEO encapsulation. As observed by field-emission scanning electron microscopy, NP size analysis and zeta potential, the prepared CS-NPs, containing CEO (CS-CEO), were spherical with uniformly distributed sizes (diameters: 190–340 nm). The ranges of encapsulation efficiency (EE) and loading capacity (LC) were 4.6–32.9% and 0.9–10.4%, with variations in the starting weight ratio of CEO to CS from 0.11 to 0.53 (w/w). It was also found that the antioxidant activity of the CS-NPs loaded with CEO increased as the EE increased. The active ingredients of the CEO were prevented from being volatilized, significantly improving the chemical stability. The antioxidant activity of CS-CEO was higher than that of the free CEO. These results indicate the promising potential of CS-CEO as an antioxidant for food processing, and packaging applications.
Collapse
|
34
|
Shakerimoghaddam A, Razavi D, Rahvar F, Khurshid M, Ostadkelayeh SM, Esmaeili SA, Khaledi A, Eshraghi M. Evaluate the Effect of Zinc Oxide and Silver Nanoparticles on Biofilm and icaA Gene Expression in Methicillin-Resistant Staphylococcus aureus Isolated From Burn Wound Infection. J Burn Care Res 2020; 41:1253-1259. [PMID: 32479611 DOI: 10.1093/jbcr/iraa085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus is the cause of nosocomial and community-acquired infections. This study aimed to evaluate the effect of zinc oxide and silver nanoparticles (ZnO-Ag NPs) on biofilms formation and icaA gene expression in methicillin-resistant S. aureus (MRSA). In this study, three standard strains (ATCC 43300, 25923, and 29913) and a clinical isolate are included. The minimum inhibitory concentration (MIC) of nanoparticles was determined by microdilution broth method. The antibacterial effects of ZnO-Ag NPs either alone or in combination with each other were compared with vancomycin (as the control group). The effect of MIC and sub-MIC concentrations of ZnO-Ag NPs on biofilm formation was determined by the microtiter plate method. The expression level of the icaA gene was assessed by real-time PCR LightCycler® 96 software (Version 1.1.0.1320, Roche, Germany). technique. All experiments were repeated three times. Data were analyzed using SPSS software through ANOVA and t-test. The P-value of less than .05 was considered as statistically significant. The average MICs of ZnO, Ag, and ZnO-Ag NPs compounds were 393.2, 179.8, and 60.8 μg/ml, respectively. The compound of ZnO-Ag NPs had a synergistic effect against all isolates. ZnO-Ag NPs decreased the biofilm formation rate at MIC and sub-MIC concentrations (P < .001). Sub-MIC ZnO-Ag NPs concentration significantly reduced the icaA gene expression in S. aureus strains (P < .03). The sub-MIC concentration of ZnO-Ag NPs reduced biofilm formation rate and icaA gene expression in Staphylococcus aureus strains compared with vancomycin. It can be used to cover medical devices after examining more clinical isolates to prevent bacterial colonization.
Collapse
Affiliation(s)
- Ali Shakerimoghaddam
- Infectious Diseases, Research Center, Kashan University of Medical Sciences, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Iran
| | - Delaramsadat Razavi
- Biology Department, Sciences Faculty, Science and Arts University, Yazd, Iran
| | - Farzaneh Rahvar
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Maria Khurshid
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Azad Khaledi
- Infectious Diseases, Research Center, Kashan University of Medical Sciences, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Iran
| | - Mohsen Eshraghi
- Department of Thoracic Surgery, Qom University of Medical Sciences, Iran
| |
Collapse
|
35
|
Wang C, Makvandi P, Zare EN, Tay FR, Niu L. Advances in Antimicrobial Organic and Inorganic Nanocompounds in Biomedicine. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chen‐yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
| | - Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz 6153753843 Iran
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR) Naples 80125 Italy
| | | | - Franklin R. Tay
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
- College of Graduate StudiesAugusta University Augusta GA 30912 USA
| | - Li‐na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
- College of Graduate StudiesAugusta University Augusta GA 30912 USA
| |
Collapse
|
36
|
Scolari IR, Páez PL, Musri MM, Petiti JP, Torres A, Granero GE. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus. Drug Deliv Transl Res 2020; 10:1403-1417. [PMID: 32363536 DOI: 10.1007/s13346-019-00705-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study aims to explore the antimicrobial activity of rifampicin (RIF) and ascorbic acid (ASC) co-loaded into alginate (ALG)/chitosan (CS) nanoparticles (RIF/ASC NPs) and tested for their antibacterial activity against several strains of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Also, the present research focused on exploring the possible antibacterial mechanism of action of these RIF/ASC NPs, which demonstrated a significant biocide activity against the S. aureus strains with minimum inhibitory concentrations (MIC) between 2- and 8-fold lower than those one exhibited with the free antibiotic RIF. The proposed antimicrobial mechanism of action of the RIF/ASC NPs seems to be the result of collaborative effects between NPs and the RIF/ASC antibiotic combination. Moreover, results indicated that the functionalized RIF/ASC NP surface played a crucial role on the processes of NP adhesion into the bacterial surface, the alterations on the cell membrane integrity, and the cell uptake of the RIF/ASC antibiotic into bacteria. Further, the in vivo lung deposition pattern of empty NPs labeled (NPs-FITC) with isothiocyanate fluorescein in rats was investigated post intratracheal instillation of NPs. In summary, findings from this work show that our novel designed engineered RIF/ASC co-loaded NPs could be a suitable system for antibiotic lung administration with promising perspectives for effective treatments of pulmonary intracellular infections for those known antibiotics that are losing effectiveness due to antimicrobial resistance problems. Graphical Abstract.
Collapse
Affiliation(s)
- I R Scolari
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA - CONICET) and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - P L Páez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA - CONICET) and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - M M Musri
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba, Argentina.,Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J P Petiti
- INICSA, CONICET Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - A Torres
- INICSA, CONICET Centro de Microscopía Electrónica, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - G E Granero
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA - CONICET) and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
37
|
Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int J Biol Macromol 2020; 151:1004-1011. [DOI: 10.1016/j.ijbiomac.2019.11.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
|
38
|
Villegas-Peralta Y, López-Cervantes J, Madera Santana TJ, Sánchez-Duarte RG, Sánchez-Machado DI, Martínez-Macías MDR, Correa-Murrieta MA. Impact of the molecular weight on the size of chitosan nanoparticles: characterization and its solid-state application. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03139-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces 2020; 185:110627. [DOI: 10.1016/j.colsurfb.2019.110627] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023]
|
40
|
Mozafari M, Seyedpour SF, Salestan SK, Rahimpour A, Shamsabadi AA, Firouzjaei MD, Esfahani MR, Tiraferri A, Mohsenian H, Sangermano M, Soroush M. Facile Cu-BTC surface modification of thin chitosan film coated polyethersulfone membranes with improved antifouling properties for sustainable removal of manganese. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117200] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Khan F, Lee JW, Manivasagan P, Pham DTN, Oh J, Kim YM. Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb Pathog 2019; 135:103623. [PMID: 31325574 DOI: 10.1016/j.micpath.2019.103623] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023]
Abstract
The infection caused by Pseudomonas aeruginosa is a serious concern in human health. The bacterium is an opportunistic pathogen which has been reported to cause nosocomial and chronic infections through biofilm formation and synthesis of several toxins and virulence factors. Furthermore, the formation of biofilm by P. aeruginosa is known as one of the resistance mechanisms against conventional antibiotics. Natural compounds from marine resources have become one of the simple, cost-effective, biocompatible and non-toxicity for treating P. aeruginosa biofilm-related infections. Furthermore, hybrid formulation with nanomaterials such as nanoparticles becomes an effective alternative strategy to minimize the drug toxicity problem and cytotoxicity properties. For this reason, the present study has employed chitosan oligosaccharide for the synthesis of chitosan oligosaccharide-capped gold nanoparticles (COS-AuNPs). The synthesized COS-AuNPs were then characterized by using UV-Visible spectroscopy, Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Field emission transmission electron microscopy (FE-TEM), and Energy dispersive X-ray diffraction (EDX). The synthesized COS-AuNPs were applied for inhibiting P. aeruginosa biofilm formation. Results have shown that COS-AuNPs exhibited inhibition to biofilm as well as eradication to pre-existing mature biofilm. Simultaneously, COS-AuNPs were also able to reduce bacterial hemolysis and different virulence factors produced by P. aeruginosa. Overall, the present study concluded that the hybrid nanoformulation such as COS-AuNPs could act as a potential agent to exhibit inhibitory properties against the P. aeruginosa pathogenesis arisen from biofilm formation.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jang-Won Lee
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
42
|
Biodegradable cross-linked chitosan nanoparticles improve anti-Candida and anti-biofilm activity of TistH, a peptide identified in the venom gland of the Tityus stigmurus scorpion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109830. [PMID: 31349502 DOI: 10.1016/j.msec.2019.109830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Among several bioactive peptides identified from the venom glands of the Tityus stigmurus scorpion, one peptide with hypotensive action (TistH, Tityus stigmurus Hypotensin) showed multifunctional and biotechnological applications. The maximum efficacy of this class of compounds can be achieved by immobilizing it in specific and suitable biomaterials or suitable carriers. In this study, distinct entrapment methods of TistH in chitosan nanoparticles was tested using its incorporation (CN-TistH-Inc) or adsorption (CN-TistH-Ads) methods by ionotropic gelification. Physico-chemical properties as well as biocompatibility and antifungal efficacy were assessed for different samples. Atomic force microscopy and field emission gun scanning electronic microscopy images associated with particle size measurements demonstrated that the two methods induced cationic spherical, small (< 160 nm), and narrow-sized (PdI about 0.3) nanoparticles, even after peptide loading greater than 96.5%, which was confirmed using Fourier transform infrared spectroscopy. The colloidal suspensions showed to be stable for 8 weeks and were able to induce the desired slow in vitro peptide release. Cytotoxicity assays performed in normal cells originated from murine macrophages (RAW 264.7) and kidneys of African green monkeys (Vero E6) suggested biocompatibility of samples. The CN-TistH-Inc and CN-TistH-Ads showed a minimal inhibitory concentration of 89.2 μg.mL-1 against Candida albicans, 11.1 μg.mL-1 for C. parapsilosis and C. tropicalis, confirmed by minimum fungicidal concentrations assay. Moreover, the TistH-loaded cross-linked chitosan nanoparticles significantly reduced the biofilm formation of clinical yeast sepsis of C. tropicalis and C. krusei, as well as clinical yeasts of vulvovaginal candidiasis of C. albicans. In this approach, biodegradable nanocarriers prepared using simple and reproducible methods demonstrated the ability to deliver the TistH peptide from T. stigmurus and improve its antifungal efficacy.
Collapse
|
43
|
Preparation and Characterization of Furosemide-Silver Complex Loaded Chitosan Nanoparticles. Processes (Basel) 2019. [DOI: 10.3390/pr7040206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibiotic-resistant bacteria may result in serious infections which are difficult to treat. In addition, the poor antibiotic pipeline has contributed to the crisis. Recently, a complex of furosemide and silver (Ag-FSE) has been reported as a potential antibacterial agent. However, its poor aqueous solubility is limiting its activity. The purpose of this study was to encapsulate Ag-FSE into chitosan nanoparticles (CSNPs) and evaluate antibacterial efficacy. Ag-FSE CSNPs were prepared using an ionic gelation technique. The particle size, polydispersity index, and zeta potential of Ag-FSE CSNPs were 197.1 ± 3.88 nm 0.234 ± 0.018 and 36.7 ± 1.78 mV, respectively. Encapsulation efficiency was 66.72 ± 4.14%. In vitro antibacterial activity results showed that there was 3- and 6-fold enhanced activity with Ag-FSE CSNPs against E. coli and S. aureus, respectively. Results also confirmed that Ag-FSE CSNPs showed ~44% release within 4 h at pH 5.5 and 6.5. Moreover, release from the CSNPs was sustained with a cumulative release of ~75% over a period of 24 h. In conclusion, encapsulation of Ag-FSE into CSNPs resulted in significant improvement of antibacterial efficacy with a sustained and pH-sensitive release. Therefore, Ag-FSE CSNPs can be considered as a potential novel antibacterial agent against bacterial infections.
Collapse
|
44
|
Li P, Chen X, Shen Y, Li H, Zou Y, Yuan G, Hu P, Hu H. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J Control Release 2019; 300:52-63. [PMID: 30825476 DOI: 10.1016/j.jconrel.2019.02.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022]
Abstract
The resistance of Helicobacter pylori (H. pylori) to conventional antibiotic treatments becomes prevalent recently. The biofilm formation was found to be highly correlated with the antibiotic resistance of H. pylori in the last decades. Moreover, H. pylori colonizes on the digestive tract epithelium located under the mucus layers, which further reduces therapeutic efficacy as mucus layers trap and remove exogenous substances including drugs. Herein, we reported a novel lipid polymer nanoparticles (LPNs) to overcome both biofilm and mucus layers obstruction. LPNs employed chitosan nanoparticle (CS NPs) as the core, mixed lipid layer containing rhamnolipids (RHL) as the shell and the surface of LPNs was further modified with DSPE-PEG2000 to improve hydrophilicity. Clarithromycin (CLR), a first-line drug for H. pylori infection, was encapsulated in LPNs. LPNs, especially the formulation utilizing 100% of RHL as the lipid shell, exhibited excellent eradicating ability to H. pylori biofilm, which was mainly reflected in the significant reduction of biofilm biomass and viability, destruction of biofilm architecture and elimination of extracellular polymeric substances (EPS). The anti-biofilm activities of LPNs are related to: 1) the disrupting effect of RHL on biofilm matrix; 2) antibacterial effects of CLR and CS NPs on biofilm bacteria and 3) inhibitory effects of CS NPs and RHL on bacteria adhesion and biofilm formation. Furthermore, PEGylated LPNs could rapidly penetrate through mucus without interacting with mucins and effectively eradicate H. pylori biofilm under mucus layer. In conclusion, a novel approach of drug-containing LPNs that could penetrate through mucus layers and effectively eradicate H. pylori biofilm provides new ways to treat persistent H. pylori infections.
Collapse
Affiliation(s)
- Pengyu Li
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Xiaonan Chen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yuanna Shen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Huatian Li
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yiqing Zou
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Gang Yuan
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Ping Hu
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Haiyan Hu
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
45
|
Scolari IR, Páez PL, Sánchez-Borzone ME, Granero GE. Promising Chitosan-Coated Alginate-Tween 80 Nanoparticles as Rifampicin Coadministered Ascorbic Acid Delivery Carrier Against Mycobacterium tuberculosis. AAPS PharmSciTech 2019; 20:67. [PMID: 30627867 DOI: 10.1208/s12249-018-1278-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to design a nanocarrier system for inhalation delivery of rifampicin (RIF) in combination with ascorbic acid (ASC), namely constituted of sodium alginate coated with chitosan and Tween 80 (RIF/ASC NPs) as a platform for the treatment of pulmonary tuberculosis infection. A Box-Behnken experimental design and response surface methodology (RSM) were applied to elucidate and evaluate the effects of several factors on the nanoparticle properties. On the other hand, it was found that RIF/ASC NPs were less cytotoxic than the free RIF, showing a significantly improved activity against nine clinical strains of Mycobacterium tuberculosis (M. tb) in comparison with the free drug. RIF/ASC NPs had an average particle size of 324.0 ± 40.7 nm, a polydispersity index of 0.226 ± 0.030, and a zeta potential of - 28.52 ± 0.47 mV and the surface was hydrophilic. The addition of sucrose (1% w/v) to the nanosuspension resulted in the formation of a solid pellet easily redispersible after lyophilization. RIF/ASC NPs were found to be stable at different physiological pH values. In summary, findings of this work highlight the potential of the RIF/ASC NP-based formulation development herein to deliver RIF in combination with ASC through pulmonary route by exploring a non-invasive route of administration of this antibiotic, increasing the local drug concentrations in lung tissues, the primary infection site, as well as reducing the risk of systemic toxicity and hence improving the patient compliance.
Collapse
|
46
|
Costa EM, Silva S, Veiga M, Tavaria FK, Pintado MM. Exploring chitosan nanoparticles as effective inhibitors of antibiotic resistant skin microorganisms - From in vitro to ex vitro testing. Carbohydr Polym 2018; 201:340-346. [PMID: 30241827 DOI: 10.1016/j.carbpol.2018.08.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/07/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023]
Abstract
Nowadays, nosocomial skin infections are increasingly harder to manage and control. In the search for new, natural compounds capable of being alternatives to traditional antibiotics, chitosan and its nanoparticles, have garnered attention. This work sought to understand the potential of chitosan NPs in the management of infections caused by MDR skin pathogens in planktonic and sessile assays. Additionally, NPs' capacity to inhibit biofilm quorum sensing and prevent HaCat infections was also evaluated. The results obtained showed that chitosan NPs had an average size and charge of 226.6 ± 5.24 nm and +27.1 ± 3.09 mV. Inhibitory and bactericidal concentrations varied between 1 and 2 mg/mL and 2-7 mg/mL, respectively. Chitosan NPs effectively inhibited biofilm growth for all microorganisms and possessed strong anti-quorum sensing activity. Lastly, chitosan NPs proved to be effective interfere with A. baumannii's infection of HaCat cells, as they significantly reduced intracellular and extracellular bacterial counts.
Collapse
Affiliation(s)
- Eduardo M Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Sara Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Mariana Veiga
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Freni K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Maria M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| |
Collapse
|
47
|
Costa EM, Silva S, Veiga M, Tavaria FK, Pintado MM. Chitosan’s biological activity upon skin-related microorganisms and its potential textile applications. World J Microbiol Biotechnol 2018; 34:93. [DOI: 10.1007/s11274-018-2471-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
48
|
Soares KSR, Gláucia-Silva F, Daniele-Silva A, Torres-Rêgo M, Araújo NKD, Menezes YASD, Damasceno IZ, Tambourgi DV, da Silva-Júnior AA, Fernandes-Pedrosa MDF. Antivenom Production against Bothrops jararaca and Bothrops erythromelas Snake Venoms Using Cross-Linked Chitosan Nanoparticles as an Immunoadjuvant. Toxins (Basel) 2018; 10:toxins10040158. [PMID: 29659491 PMCID: PMC5923324 DOI: 10.3390/toxins10040158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
In Brazil, envenomation by snakes of the genus Bothrops is clinically relevant, particularly for the species Bothrops jararaca and B. erythromelas. The most effective treatment for envenomation by snakes is the administration of antivenoms associated with adjuvants. Novel adjuvants are required to reduce side effects and maximize the efficiency of conventional serum and vaccine formulations. The polymer chitosan has been shown to have immunoadjuvant properties, and it has been used as a platform for delivery systems. In this context, we evaluated the potential immunoadjuvant properties of chitosan nanoparticles (CNPs) loaded with B. jararaca and B. erythromelas venoms in the production of sera against these venoms. Stable CNPs were obtained by ionic gelation, and mice were immunized subcutaneously for 6 weeks with 100 µL of each snake venom at concentrations of 5.0 or 10.0% (w/w), encapsulated in CNPs or associated with aluminium hydroxide (AH). The evaluation of protein interactions with the CNPs revealed their ability to induce antibody levels equivalent to those of AH, even with smaller doses of antigen. In addition, the CNPs were less inflammatory due to their modified release of proteins. CNPs provide a promising approach for peptide/protein delivery from snake venom and will be useful for new vaccines.
Collapse
Affiliation(s)
- Karla Samara Rocha Soares
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Fiamma Gláucia-Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Alessandra Daniele-Silva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Manoela Torres-Rêgo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Nathália Kelly de Araújo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Yamara Arruda Silva de Menezes
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Igor Zumba Damasceno
- Department of Materials Engineering, Technology Center, University Campus, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.
| | | | - Arnóbio Antônio da Silva-Júnior
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | | |
Collapse
|
49
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
50
|
Cui H, Bai M, Rashed MM, Lin L. The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. Int J Food Microbiol 2018; 266:69-78. [DOI: 10.1016/j.ijfoodmicro.2017.11.019] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022]
|