1
|
Shao H, Liu M, Jiang H, Zhang Y. Polysaccharide-based drug delivery targeted approach for colon cancer treatment: A comprehensive review. Int J Biol Macromol 2025; 302:139177. [PMID: 39798740 DOI: 10.1016/j.ijbiomac.2024.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release. Polysaccharide-based CDDS, utilizing natural polymers like chitosan, cyclodextrin, pectin, guar gum, alginate, hyaluronic acid, dextran, chondroitin sulfate, and inulin, have emerged as innovative approaches for improving the specificity and efficacy of colon cancer treatments. These biocompatible and biodegradable polymers enable site-specific drug delivery, enhance tumor apoptosis, reduce systemic side effects, and improve patient compliance. This review evaluates recent advancements in polysaccharide-based CDDS, detailing their drug release mechanisms, therapeutic potential, and challenges in overcoming gastrointestinal transit and pH variability. Studies highlight the successful formulation of nanoparticles, microspheres, and other delivery systems, demonstrating targeted drug delivery, improved bioavailability, and enhanced cytotoxicity against colon cancer cells in-vitro and in-vivo. The review underscores the need for continued research on polysaccharide-based CDDS for colon cancer treatment, offering a path toward more effective, patient-centered oncological care.
Collapse
Affiliation(s)
- Hua Shao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Ying Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Zhang Z, Wang J, Hou L, Zhu D, Xiao HJ, Wang K. Graphene/carbohydrate polymer composites as emerging hybrid materials in tumor therapy and diagnosis. Int J Biol Macromol 2025; 287:138621. [PMID: 39667456 DOI: 10.1016/j.ijbiomac.2024.138621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Despite the introduction of various types of treatments for cancer control, cancer therapy faces several challenges such as aggressive behavior, heterogeneous characteristics, and the development of resistance. In contrast, the methods have depended on the creation and formulation of nanoparticles to impede tumor growth. Carbon nanoparticles have attracted considerable attention for cancer therapy, with graphene nanoparticles emerging as promising vehicles for delivering drugs and genes. Moreover, graphene composites can enhance immunotherapy, phototherapy, and combination therapies. Nonetheless, the biocompatibility and toxicity of graphene composites present difficulties. Consequently, this manuscript assesses the alteration of graphene nanocomposites using carbohydrate polymers. Altering graphene composites with carbohydrate polymers such as chitosan, hyaluronic acid, cellulose, and starch can enhance their efficacy in cancer treatment. Furthermore, graphene composites functionalized with carbohydrate polymers for tumor ablation induced by phototherapy. Graphene oxide and graphene quantum dots have been modified with carbohydrate polymers to enhance their therapeutic and diagnostic uses. These nanoparticles can transport gene therapy techniques like siRNA in the treatment of cancer. Despite the breakdown of these nanoparticles within the body, they maintain excellent biosafety and biocompatibility.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Jinxiang Wang
- Scientific Research Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China.
| | - Hai-Juan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kaili Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Kahraman E, Hayri-Senel T, Nasun-Saygili G. Kinetics and Optimization Studies of Controlled 5-Fluorouracil Release from Graphene Oxide Incorporated Vegetable Oil-Based Polyurethane Composite Film. ACS OMEGA 2024; 9:47395-47409. [PMID: 39651068 PMCID: PMC11618446 DOI: 10.1021/acsomega.4c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 12/11/2024]
Abstract
The current study focuses on investigating the potential of produced graphene oxide (GO)/oil-based polyurethane composite films as a drug carrier for 5-fluorouracil (5-FU). Polyurethane was synthesized starting from blends of castor oil and sunflower oil-based glyceride, followed by GO and 5-FU anticancer drug bearing film production by solution casting. GO/PU composite film samples were characterized by FTIR, TGA and SEM analysis, confirming the PU production and distribution of 5-FU drug at a homogeneous level in GO/PU films. Experimental design studies were carried out to provide insight into the influence of GO incorporation, the amount of loaded drug, and the release medium pH value on 5-FU release behavior. The amount of 5-FU delivered from GO/PU composites displayed a tendency to increase at high GO ratios and high pH values, with the obtained maximum ratio of 91.4%. From release kinetics studies, the pH-sensitive behavior of GO/PU composites was observed following a Higuchi or zero-order kinetic model depending on the GO ratio, indicating a sustained release of the drug. The in vitro cytotoxicity effect of GO/PU film through 5-FU drug release was confirmed against the MCF-7 human breast cancer cell line, while good biocompatibility of the drug-free GO/PU film against the L-929 mouse fibroblast cell line was confirmed via MTT assay test. Overall, the findings support that produced GO/PU composites hold potential for clinical drug delivery applications as a 5-FU drug carrier.
Collapse
Affiliation(s)
- Ebru Kahraman
- Chemical
Engineering Department, Istanbul Technical
University, Istanbul, 34469, Turkey
| | - Tugba Hayri-Senel
- Chemical
Engineering Department, Istanbul Technical
University, Istanbul, 34469, Turkey
| | | |
Collapse
|
4
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
5
|
Kahraman E, Nasun-Saygili G. 5-Fluorouracil adsorption on graphene oxide-amine modified graphene oxide/hydroxyapatite composite for drug delivery applications: Optimization and release kinetics studies. Heliyon 2024; 10:e38494. [PMID: 39398033 PMCID: PMC11471203 DOI: 10.1016/j.heliyon.2024.e38494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
The present study focused on investigation of graphene oxide/hydroxyapatite (GO/HAp) and amine modified graphene oxide/hydroxyapatite (GO-NH2/HAp) composites as potential drug carrier agents for 5-Fluorouracil (5-FU). Incorporation of 5-Fluorouracil drug was performed via adsorption through π-π interactions and electrostatic attractions. Modification of graphene oxide was performed for the production of amine modified graphene oxide/hydroxyapatite composite with the intention of enhancing adsorption performance. The X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and zeta potential/particle size analysis were performed for particle characterization while Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis were used to analyze detailed morphological properties. Experimental design studies were followed out in order to determine the effect of adsorption parameters including graphene oxide amount, pH and initial drug concentration on 5-Fluorouracil adsorption behavior. Adsorption isotherms of both composites with unmodified and modified GO were best fitted to Freundlich model with R2 values of 0.9616 and 0.9682 respectively. The maximum adsorption capacities (qm) were calculated as 47.3 mg/g and 18.4 for graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites respectively at pH 2.0. The highest adsorption percentage was obtained for amine modified graphene oxide/hydroxyapatite composite as 40.87 % at pH 2.0 condition. In vitro release kinetic studies revealed that compliance with Higuchi and Korsmeyer-Peppas kinetic models were observed for graphene oxide/hydroxyapatite, whereas zero order and Korsmeyer-Peppas kinetic models pointed out as the well-fitted model for amine modified graphene oxide/hydroxyapatite composite. The release period of 5-FU drug from all composites were continued up to 8-10 h in physiological conditions (pH 7.4, 37 °C) indicating an achieved controlled release. Based on the overall findings, graphene oxide/hydroxyapatite and amine modified graphene oxide/hydroxyapatite composites could be suggested as a potential drug delivery agent for 5-FU in clinical applications.
Collapse
Affiliation(s)
- Ebru Kahraman
- Chemical Engineering Department, Istanbul Technical University, 34469, Turkey
| | | |
Collapse
|
6
|
Lai J, Azad AK, Sulaiman WMAW, Kumarasamy V, Subramaniyan V, Alshehade SA. Alginate-Based Encapsulation Fabrication Technique for Drug Delivery: An Updated Review of Particle Type, Formulation Technique, Pharmaceutical Ingredient, and Targeted Delivery System. Pharmaceutics 2024; 16:370. [PMID: 38543264 PMCID: PMC10975882 DOI: 10.3390/pharmaceutics16030370] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 11/22/2024] Open
Abstract
Alginate is a natural biopolymer widely studied for pharmaceutical applications due to its biocompatibility, low toxicity, and mild gelation abilities. This review summarizes recent advances in alginate-based encapsulation systems for targeted drug delivery. Alginate formulations like microparticles, nanoparticles, microgels, and composites fabricated by methods including ionic gelation, emulsification, spray drying, and freeze drying enable tailored drug loading, enhanced stability, and sustained release kinetics. Alginate microspheres prepared by spray drying or ionic gelation provide gastric protection and colon-targeted release of orally delivered drugs. Alginate nanoparticles exhibit enhanced cellular uptake and tumor-targeting capabilities through the enhanced permeation and retention effect. Crosslinked alginate microgels allow high drug loading and controlled release profiles. Composite alginate gels with cellulose, chitosan, or inorganic nanomaterials display improved mechanical properties, mucoadhesion, and tunable release kinetics. Alginate-based wound dressings containing antimicrobial nanoparticles promote healing of burns and chronic wounds through sustained topical delivery. Although alginate is well-established as a pharmaceutical excipient, more extensive in vivo testing is needed to assess clinical safety and efficacy of emerging formulations prior to human trials. Future opportunities include engineered systems combining stimuli-responsiveness, active targeting, and diagnostic capabilities. In summary, this review discusses recent advances in alginate encapsulation techniques for oral, transdermal, and intravenous delivery, with an emphasis on approaches enabling targeted and sustained drug release for enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Joanne Lai
- Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (J.L.); (W.M.A.W.S.); (S.A.A.)
| | - Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, Kuala Lumpur 68100, Selangor, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (J.L.); (W.M.A.W.S.); (S.A.A.)
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur 56000, Selangor, Malaysia
| | - Vinoth Kumarasamy
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Salah Abdalrazak Alshehade
- Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (J.L.); (W.M.A.W.S.); (S.A.A.)
| |
Collapse
|
7
|
Fadaka AO, Akinsoji T, Klein A, Madiehe AM, Meyer M, Keyster M, Sikhwivhilu LM, Sibuyi NRS. Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach. J Pharm Anal 2023; 13:1235-1251. [PMID: 38174117 PMCID: PMC10759263 DOI: 10.1016/j.jpha.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Taiwo Akinsoji
- School of Medicine, Southern Illinois University, Springfield, IL, 62702, USA
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Lucky Mashudu Sikhwivhilu
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, 0950, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
| |
Collapse
|
8
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
9
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
10
|
Abreu S, Vale N, Soares OSGP. Combination of CNTs with Classical Drugs for Treatment in Human Colorectal Adenocarcinoma (HT-29) Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1933. [PMID: 37446448 DOI: 10.3390/nano13131933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Due to the increase in new types of cancer cells and resistance to drugs, conventional cancer treatments are sometimes insufficient. Therefore, an alternative is to apply nanotechnology to biomedical areas, minimizing side effects and drug resistance and improving treatment efficacy. This work aims to find a promising cancer treatment in the human colorectal adenocarcinoma cell line (HT-29) to minimize the viability of cells (IC50) by using carbon nanotubes (CNTs) combined with different drugs (5-fluorouracil (5-FU) and two repurposing drugs-tacrine (TAC) and ethionamide (ETA). Several CNT samples with different functional groups (-O, -N, -S) and textural properties were prepared and characterized by elemental and thermogravimetry analysis, size distribution, and textural and temperature programmed desorption. The samples that interacted most with the drugs and contributed to improving HT-29 cell treatment were samples doped with nitrogen and sulfur groups (CNT-BM-N and CNT-H2SO4-BM) with IC50 1.98 and 2.50 µmol∙dm-3 from 5-FU and 15.32 and 15.81 µmol∙dm-3 from TAC. On the other hand, ETA had no activity, even combined with the CNTs. These results allow us to conclude that the activity was improved for both 5-FU and TAC when combined with CNTs.
Collapse
Affiliation(s)
- Sara Abreu
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Olívia Salomé G P Soares
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
11
|
Raghav N, Vashisth C, Mor N, Arya P, Sharma MR, Kaur R, Bhatti SP, Kennedy JF. Recent advances in cellulose, pectin, carrageenan and alginate-based oral drug delivery systems. Int J Biol Macromol 2023:125357. [PMID: 37327920 DOI: 10.1016/j.ijbiomac.2023.125357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Polymers-based drug delivery systems constitute one of the highly explored thrust areas in the field of the medicinal and pharmaceutical industries. In the past years, the properties of polymers have been modified in context to their solubility, release kinetics, targeted action site, absorption, and therapeutic efficacy. Despite the availability of diverse synthetic polymers for the bioavailability enhancement of drugs, the use of natural polymers is still highly recommended due to their easy availability, accessibility, and non-toxicity. The aim of the review is to provide the available literature of the last five years on oral drug delivery systems based on four natural polymers i.e., cellulose, pectin, carrageenan, and alginate in a concise and tabulated manner. In this review, most of the information is in tabulated form to provide easy accessibility to the reader. The data related to active pharmaceutical ingredients and supported components in different formulations of the mentioned polymers have been made available.
Collapse
Affiliation(s)
- Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| | - Chanchal Vashisth
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nitika Mor
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priyanka Arya
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Manishita R Sharma
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Ravinder Kaur
- Chemistry Department, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | | | - John F Kennedy
- Chembiotech laboratories Ltd, Tenbury Wells, WR15 8FF, United Kingdom.
| |
Collapse
|
12
|
Xu Y, Guo J, Liu Y, Guan F, Li Z, Yao Q, Bao D. Dual-stimuli responsive skin-core structural fibers with an in situ crosslinked alginate ester for hydrophobic drug delivery. J Mater Chem B 2023; 11:2762-2769. [PMID: 36880839 DOI: 10.1039/d2tb02623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
To solve the problems of low bioavailability and low intestinal release efficiency of curcumin as a hydrophobic drug in the treatment of diabetes, a novel alginate ester/Antarctic krill protein/2-formylphenylboronic acid (AE/AKP/2-FPBA) skin-core structural fiber with pH and glucose stimulation responsiveness was prepared by an acid-catalyzed polyol in situ crosslinked phase separation method as a drug delivery system. The reaction mechanism and apparent morphology of the fiber were studied. The controlled release ability of the fiber in simulated liquids was evaluated. AE targeted the release of curcumin by pH stimulation; the release amount in the simulated colonic fluid reached 100%, while the release amount in the simulated digestive fluid was less than 12%. 2-FPBA controlled the release rate of curcumin by glucose stimulation, which increases with the increase of 2-FPBA content. Moreover, the cytotoxicity test confirmed that the skin-core structural fiber was non-toxic. These results suggest that skin-core structural fibers have great potential as curcumin delivery systems.
Collapse
Affiliation(s)
- Yi Xu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Yuanfa Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian, 116034, China
| | - Zheng Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Da Bao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
13
|
Carbohydrate Polymer-Based Targeted Pharmaceutical Formulations for Colorectal Cancer: Systematic Review of the Literature. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Colon cancer is the third most diagnosed cancer worldwide, followed by lung and breast cancer. Conventional treatment methods are associated with numerous side effects and compliance issues. Thus, colon targeted drug delivery has gained much attention due to its evident advantages. Although many technologies have been explored, the use of pH-sensitive polymers, especially biodegradable polymers, holds exceptional promise. This review aims to collate research articles concerning recent advances in this area. A systematic search using multiple databases (Google Scholar, EMBASE, PubMed, MEDLINE and Scopus) was carried out following the preferred reported items for systematic reviews and meta-analyses (PRISMA) guidelines with an aim to explore the use of pH-sensitive carbohydrate polymers in developing colon targeted pharmaceutical formulations. Following screening and quality assessment for eligibility, 42 studies were included, exploring either single or a combination of carbohydrate polymers to develop targeted formulations for colon cancer therapy. Pectin (11) is the most widely used of these biopolymers, followed by chitosan (09), alginate (09) and guar gum (08). This systematic review has successfully gathered experimental evidence highlighting the importance of employing carbohydrate polymers in developing targeting formulations to manage colon cancer.
Collapse
|
14
|
Yoon JP, Kim DH, Min SG, Kim HM, Choi JH, Lee HJ, Park KH, Kim SS, Chung SW, Yoon SH. Effects of a graphene oxide-alginate sheet scaffold on rotator cuff tendon healing in a rat model. J Orthop Surg (Hong Kong) 2022; 30:10225536221125950. [PMID: 36121787 DOI: 10.1177/10225536221125950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Natural polymer scaffolds used to promote rotator cuff healing have limitations in terms of their mechanical and biochemical properties. This animal study aimed to investigate the effects of combined graphene oxide (GO) and alginate scaffold and the toxicity of GO on rotator cuff healing in a rat model. METHODS First, the mechanical properties of a GO/alginate scaffold and a pure alginate scaffold were compared. The in vitro cytotoxicity of and proliferation of human tenocytes with the GO/alginate scaffold were evaluated by CCK-8 assay. For the in vivo experiment, 20 male rats were randomly divided into two groups (n = 10 each), and supraspinatus repair was performed: group 1 underwent supraspinatus repair alone, and group 2 underwent supraspinatus repair with the GO/alginate scaffold. Biomechanical and histological analyses were performed to evaluate the quality of tendon-to-bone healing 8 weeks after rotator cuff repair. RESULTS The GO/alginate scaffold exhibited an increased maximum load (p = .001) and tensile strength (p = .001). In the cytotoxicity test, the cell survival rate with the GO/alginate scaffold was 102.08%. The proliferation rate of human tenocytes was no significant difference between the GO/alginate and alginate groups for 1, 3, 5, and 7 days. Biomechanically, group 2 exhibited a significantly greater ultimate failure load (p < .001), ultimate stress (p < .001), and stiffness (p < .001) than group 1. The histological analysis revealed that the tendon-to-bone interface in group 2 showed more collagen fibers bridging, tendon-to-bone integration, longitudinally oriented collagen fibers, and fibrocartilage formation than in group 1. CONCLUSION A small amount of GO added to alginate improved the mechanical properties of the scaffold without evidence of cytotoxicity. At 8 weeks after rotator cuff repair, the GO/alginate scaffold improved tendon-to-bone healing without causing any signs of toxicity in a rat model.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Dong Hyun Kim
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Seung Gi Min
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Hun-Min Kim
- 65672Korea Dyeing & Finishing Technology Institute, Daegu, Korea
| | - Jin-Hyun Choi
- Department of Bio-Fibers and Materials Science, 34986Kyungpook National University, Daegu, Korea
| | - Hyun Joo Lee
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Kyeong Hyeon Park
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Seong Soo Kim
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, School of Medicine, 34986Konkuk University, Seoul, Korea
| | - Sung Hyuk Yoon
- Department of Orthopaedic Surgery, School of Medicine, 34986Kyungpook National University, Daegu, Korea
| |
Collapse
|
15
|
Hassanpouraghdam Y, Pooresmaeil M, Namazi H. In-vitro evaluation of the 5-fluorouracil loaded GQDs@Bio-MOF capped with starch biopolymer for improved colon-specific delivery. Int J Biol Macromol 2022; 221:256-267. [PMID: 36067851 DOI: 10.1016/j.ijbiomac.2022.08.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
Herein, for the first time, the photoluminescent graphene quantum dots@Bio-metal organic framework (GQDs@Bio-MOF) nanohybrid was prepared. BET analysis obtained the average pore diameter of GQDs@Bio-MOF about 11.97 nm. The existence of nanoscale porosity in GQDs@Bio-MOF displays its suitability for 5-Fu loading owing to the smaller size of 5-Fu. 5-Fu entrapment efficiency and loading capacity were found to be ~42.04 % and ~4.20 %, respectively (5-Fu@GQDs@Bio-MOF). The 5-Fu@GQDs@Bio-MOF was capped with starch biopolymer (St@5-Fu@GQDs@Bio-MOF), fabricated sample displayed 4.67 for pHPZC. SEM analysis displayed that the St@5-Fu@GQDs@Bio-MOF microspheres have a spherical shape with a diameter of ~2 μm. The in vitro drug release assay displayed better release behavior for St@5-Fu@GQDs@Bio-MOF than 5-Fu@GQDs@Bio-MOF, releasing about 62.3 % of the entrapped 5-Fu within 96 h of incubation. The 5-Fu release showed the best fitting with the Higuchi model with R2 0.9884. The in vitro cytotoxicity screening outcomes displayed that the St@GQDs@Bio-MOF is a promising biocompatible carrier, with cell viability of higher than 84 %. Accumulation of the results revealed that the St@5-Fu@GQDs@Bio-MOF is a new system with advantages of sustained drug release and biocompatibility that are the main criteria for each newly designed anticancer drug carrier.
Collapse
Affiliation(s)
- Yashar Hassanpouraghdam
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Malihe Pooresmaeil
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
16
|
Rostami E. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
18
|
5-aminosalicylic acid pH sensitive core-shell nanoparticles targeting ulcerative colitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Gels 2022; 8:gels8070431. [PMID: 35877516 PMCID: PMC9316786 DOI: 10.3390/gels8070431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
For many years, corneal transplantation has been the first-choice treatment for irreversible damage affecting the anterior part of the eye. However, the low number of cornea donors and cases of graft rejection highlighted the need to replace donor corneas with new biomaterials. Tissue engineering plays a fundamental role in achieving this goal through challenging research into a construct that must reflect all the properties of the cornea that are essential to ensure correct vision. In this review, the anatomy and physiology of the cornea are described to point out the main roles of the corneal layers to be compensated and all the requirements expected from the material to be manufactured. Then, a deep investigation of alginate as a suitable alternative to donor tissue was conducted. Thanks to its adaptability, transparency and low immunogenicity, alginate has emerged as a promising candidate for the realization of bioengineered materials for corneal regeneration. Chemical modifications and the blending of alginate with other functional compounds allow the control of its mechanical, degradation and cell-proliferation features, enabling it to go beyond its limits, improving its functionality in the field of corneal tissue engineering and regenerative medicine.
Collapse
|
20
|
A pH/Time/Pectinase-Dependent Oral Colon-Targeted System Containing Isoliquiritigenin: Pharmacokinetics and Colon Targeting Evaluation in Mice. Eur J Drug Metab Pharmacokinet 2022; 47:677-686. [PMID: 35790663 DOI: 10.1007/s13318-022-00783-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Oral colon-targeted gel beads containing isoliquiritigenin (ISL) were successfully designed in our study. In order to further explore the targeting of the colon by the gel beads, a systematic study of their in vivo pharmacokinetics and colon targeting was performed in mice. METHODS Eighteen male mice were included in this study. The mice were separated into six groups at random. We collected blood, stomach, duodenum, jejunum, ileum, and colon tissues at 2, 4, 6, 8, 12, and 24 h after oral administration of gel beads containing isoliquiritigenin at a dose of 20 mg/kg. Gel beads in tissues were recorded and taken out to observe their swelling and erosion. The total ISL concentrations in different tissues and gel beads were analyzed by high-performance liquid chromatography. RESULTS All gel beads reached the upper part of the stomach at 2 h with no obvious swelling. Most of the gel beads were still in the lower part of stomach, while a small amount had reached the small intestine at 4 h. A few gel beads reached the colon and swelled at 6 h. Furthermore, the gel beads in the colon were swollen and erosive at 8 h. Meanwhile, the plasma ISL concentration could be detected, which indicated that the ISL in the gel beads was absorbed. At 12 h, the gel beads were almost dissolved and the plasma concentration was 8.33 times that at 8 h. At 24 h, the gel beads had completely disappeared, and the plasma concentration was 2.55 times that at 12 h. CONCLUSION The gel beads containing ISL are a sustained, controlled, and colon-targeting delivery system that can alter the ISL distribution in the gastrointestinal tract.
Collapse
|
21
|
Atmaca H, Oguz F, Ilhan S. Drug delivery systems for cancer treatment: a review of marine-derived polysaccharides. Curr Pharm Des 2022; 28:1031-1045. [DOI: 10.2174/1381612828666220211153931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is a disease characterized by uncontrolled cell proliferation and the spread of cells to other tissues and remains one of the worldwide problems waiting to be solved. There are various treatment strategies for cancer, such as chemotherapy, surgery, radiotherapy, and immunotherapy, although it varies according to its type and stage. Many chemotherapeutic agents have limited clinical use due to lack of efficacy, off-target toxicity, metabolic instability, or poor pharmacokinetics. One possible solution to this high rate of clinical failure is to design drug delivery systems that deliver drugs in a controlled and specific manner and are not toxic to normal cells.
Marine systems contain biodiversity, including components and materials that can be used in biomedical applications and therapy. Biomaterials such as chitin, chitosan, alginate, carrageenan, fucoidan, hyaluronan, agarose, and ulvan obtained from marine organisms have found use in DDSs today. These polysaccharides are biocompatible, non-toxic, biodegradable, and cost-effective, making them ideal raw materials for increasingly complex DDSs with a potentially regulated release. In this review, the contributions of polysaccharides from the marine environment to the development of anticancer drugs in DDSs will be discussed.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Ferdi Oguz
- Department of Biology, The Institute of Natural and Applied Sciences, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| |
Collapse
|
22
|
Maspes A, Pizzetti F, Rossetti A, Makvandi P, Sitia G, Rossi F. Advances in Bio-Based Polymers for Colorectal CancerTreatment: Hydrogels and Nanoplatforms. Gels 2021; 7:6. [PMID: 33440908 PMCID: PMC7838948 DOI: 10.3390/gels7010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
Adenocarcinoma of the colon is the most common malignant neoplasia of the gastrointestinal tract and is a major contributor to mortality worldwide. Invasiveness and metastatic behavior are typical of malignant tumors and, because of its portal drainage, the liver is the closest capillary bed available in this case, hence the common site of metastatic dissemination. Current therapies forecast total resection of primary tumor when possible and partial liver resection at advanced stages, along with systemic intravenous therapies consisting of chemotherapeutic agents such as 5-fluorouracil. These cures are definitely not exempt from drawbacks and heavy side effects. Biocompatible polymeric networks, both in colloids and bulk forms, able to absorb large quantities of water and load a variety of molecules-belong to the class of innovative drug delivery systems, thus suitable for the purpose and tunable on each patient can represent a promising alternative. Indeed, the implantation of polymeric scaffolds easy to synthesize can substitute chemotherapy and combination therapies scheduling, shortening side effects. Moreover, they do not require a surgical removal thanks to spontaneous degradation and guarantees an extended and regional cargo release, maintaining high drug concentrations. In this review, we focus our attention on the key role of polymeric networks as drug delivery systems potentially able to counteract this dramatic disease.
Collapse
Affiliation(s)
- Anna Maspes
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Fabio Pizzetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Arianna Rossetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, 56025 Pisa, Italy;
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| |
Collapse
|
23
|
Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan SU. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1970. [PMID: 33027891 PMCID: PMC7600772 DOI: 10.3390/nano10101970] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023]
Abstract
Biodegradable natural polymers have been investigated extensively as the best choice for encapsulation and delivery of drugs. The research has attracted remarkable attention in the pharmaceutical industry. The shortcomings of conventional dosage systems, along with modified and targeted drug delivery methods, are addressed by using polymers with improved bioavailability, biocompatibility, and lower toxicity. Therefore, nanomedicines are now considered to be an innovative type of medication. This review critically examines the use of natural biodegradable polymers and their drug delivery systems for local or targeted and controlled/sustained drug release against fatal diseases.
Collapse
Affiliation(s)
- Humaira Idrees
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
| | - Syed Zohaib Javaid Zaidi
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Aneela Sabir
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
| | - Rafi Ullah Khan
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore 54590, Pakistan; (A.S.); (R.U.K.)
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
24
|
Emadi F, Emadi A, Gholami A. A Comprehensive Insight Towards Pharmaceutical Aspects of Graphene Nanosheets. Curr Pharm Biotechnol 2020; 21:1016-1027. [PMID: 32188383 DOI: 10.2174/1389201021666200318131422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Graphene Derivatives (GDs) have captured the interest and imagination of pharmaceutical scientists. This review exclusively provides pharmacokinetics and pharmacodynamics information with a particular focus on biopharmaceuticals. GDs can be used as multipurpose pharmaceutical delivery systems due to their ultra-high surface area, flexibility, and fast mobility of charge carriers. Improved effects, targeted delivery to tissues, controlled release profiles, visualization of biodistribution and clearance, and overcoming drug resistance are examples of the benefits of GDs. This review focuses on the application of GDs for the delivery of biopharmaceuticals. Also, the pharmacokinetic properties and the advantage of using GDs in pharmaceutics will be reviewed to achieve a comprehensive understanding about the GDs in pharmaceutical sciences.
Collapse
Affiliation(s)
- Fatemeh Emadi
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5000, Iran
| | - Arash Emadi
- Faculty of Pharmacy and Pharmaceutical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, P.O. Box: 7146864685, Iran
| |
Collapse
|
25
|
Jagiełło J, Chlanda A, Baran M, Gwiazda M, Lipińska L. Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Composites with Inorganic Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1846. [PMID: 32942775 PMCID: PMC7559217 DOI: 10.3390/nano10091846] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Graphene oxide (GO) and reduced graphene oxide (RGO), due to their large active surface areas, can serve as a platform for biological molecule adhesion (both organic and inorganic). In this work we described methods of preparing composites consisting of GO and RGO and inorganic nanoparticles of specified biological properties: nanoAg, nanoAu, nanoTiO2 and nanoAg2O. The idea of this work was to introduce effective methods of production of these composites that could be used for future biomedical applications such as antibiotics, tissue regeneration, anticancer therapy, or bioimaging. In order to characterize the pristine graphene materials and resulting composites, we used spectroscopic techniques: XPS and Raman, microscopic techniques: SEM with and AFM, followed by X-Ray diffraction. We obtained volumetric composites of flake graphene and Ag, Au, Ag2O, and TiO2 nanoparticles; moreover, Ag nanoparticles were obtained using three different approaches.
Collapse
Affiliation(s)
- Joanna Jagiełło
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network-Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw, Poland; (A.C.); (M.B.); (M.G.); (L.L.)
| | - Adrian Chlanda
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network-Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw, Poland; (A.C.); (M.B.); (M.G.); (L.L.)
| | - Magdalena Baran
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network-Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw, Poland; (A.C.); (M.B.); (M.G.); (L.L.)
| | - Marcin Gwiazda
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network-Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw, Poland; (A.C.); (M.B.); (M.G.); (L.L.)
- Faculty of Material Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw, Poland
| | - Ludwika Lipińska
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network-Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01-919 Warsaw, Poland; (A.C.); (M.B.); (M.G.); (L.L.)
| |
Collapse
|
26
|
Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020; 250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Graphene-based bionanocomposites are employed in several ailments, such as cancers and infectious diseases, due to their large surface area (to carry drugs), photothermal properties, and ease of their functionalization (owing to their active groups). Modification of graphene-derivatives with polysaccharides is a promising strategy to decrease their toxicity and improve target ability, which consequently enhances their biotherapeutic efficacy. Herein, functionalization of graphene-based materials with carbohydrate polymers (e.g., chitosan, starch, alginate, hyaluronic acid, and cellulose) are presented. Subsequently, recent advances in graphene nanomaterial/polysaccharide-based bionanocomposites in infection treatment and cancer therapy are comprehensively discussed. Pharmacogenomic and toxicity assessments for these bionanocomposites are also highlighted to provide insight for future optimized and smart investigations and researches.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran.
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, 80126, Italy
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská, 1402/2, Liberec, Czech Republic
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
27
|
Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci 2020; 2020:8886095. [PMID: 32832902 PMCID: PMC7428837 DOI: 10.1155/2020/8886095] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. The use of alginate can provide several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various routes of drug administration including targeted or localized drug-delivery systems. The development of alginates as a selected polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the system itself. The increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed. The recent advances in the in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Pharmaceutics Department, Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Jl. Mulyorejo Campus C, Surabaya 60115, Indonesia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Sin KR, Ko SG, Kim CJ, Pak SH, Kim HC, Kim CU. Quantum chemical investigation on interaction of 5-fluorouracil with cucurbiturils. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02599-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Wu T, Yu S, Lin D, Wu Z, Xu J, Zhang J, Ding Z, Miao Y, Liu T, Chen T, Cai X. Preparation, Characterization, and Release Behavior of Doxorubicin hydrochloride from Dual Cross-Linked Chitosan/Alginate Hydrogel Beads. ACS APPLIED BIO MATERIALS 2020; 3:3057-3065. [PMID: 35025352 DOI: 10.1021/acsabm.9b01119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ting Wu
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Shaobin Yu
- The No.1 Surgery Department of No.5 People’s Hospital of Foshan, Foshan 528211, P. R. China
| | - Dongzi Lin
- Department of Laboratory Medicine, Foshan Forth People’s Hospital, Foshan 528211, P. R. China
| | - Zhimin Wu
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Jun Xu
- Department of Critical Care Medicine, First Affiliated Hospital, Jinan University, Guangzhou 510630, P. R. China
| | - Jinglin Zhang
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Zefen Ding
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Ying Miao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, P. R. China
| | - Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Tao Chen
- Department of Laboratory Medicine, Foshan Forth People’s Hospital, Foshan 528211, P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan 528041, P. R. China
| |
Collapse
|
30
|
Alipour N, Namazi H. Chelating ZnO-dopamine on the surface of graphene oxide and its application as pH-responsive and antibacterial nanohybrid delivery agent for doxorubicin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110459. [DOI: 10.1016/j.msec.2019.110459] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/09/2019] [Accepted: 11/17/2019] [Indexed: 01/16/2023]
|
31
|
Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110356. [DOI: 10.1016/j.msec.2019.110356] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/05/2023]
|
32
|
Meng F, Kwon S, Wang J, Yeo Y. Immunoactive drug carriers in cancer therapy. BIOMATERIALS FOR CANCER THERAPEUTICS 2020:53-94. [DOI: 10.1016/b978-0-08-102983-1.00003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces 2020; 185:110596. [DOI: 10.1016/j.colsurfb.2019.110596] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/22/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
34
|
Branch-chain length modulated graphene oxides for regulating the physicochemical and tribophysical properties of pickering emulsions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
PMAA nanogel controllably releases anti-IL-1β IgY for treating allergic rhinitis. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1846-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Hong Y, Rao Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed Pharmacother 2019; 114:108764. [DOI: 10.1016/j.biopha.2019.108764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
|
37
|
Kiss K, Biri-Kovács B, Szabó R, Ranđelović I, Enyedi KN, Schlosser G, Orosz Á, Kapuvári B, Tóvári J, Mező G. Sequence modification of heptapeptide selected by phage display as homing device for HT-29 colon cancer cells to improve the anti-tumour activity of drug delivery systems. Eur J Med Chem 2019; 176:105-116. [PMID: 31100648 DOI: 10.1016/j.ejmech.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022]
Abstract
Development of peptide-based conjugates for targeted tumour therapy is a current research topic providing new possibilities in cancer treatment. In this study, VHLGYAT heptapeptide selected by phage display technique for HT-29 human colon cancer was investigated as homing peptide for drug delivery. Daunomycin was conjugated to the N-terminus of the peptide directly or through Cathepsin B cleavable spacers. Conjugates showed moderate in vitro cytostatic effect. Therefore, sequence modifications were performed by Ala-scan and positional scanning resulting in conjugates with much higher bioactivity. Conjugates in which Gly was replaced by amino acids with bulky apolaric side chains provided the best efficacy. The influence of the cellular uptake, stability and drug release on the anti-tumour activity was investigated. It was found that mainly the difference in the cellular uptake of the conjugates generated the distinct effect on cell viability. One of the most efficient conjugate Dau = Aoa-LRRY-VHLFYAT-NH2 showed tumour growth inhibition on orthotopically developed HT-29 colon cancer in mice with negligible toxic side effect compared to the free drug. We also indicate that this sequence is not specific to HT-29 cells, but it has a remarkable effect on many other cancer cells. Nevertheless, the Phe-containing conjugate was more active in all cases compared to the conjugate with the parent sequence. The literature data suggested that this sequence is highly overlapped with peptides that recognize Hsp70 membrane bound protein overexpressed in many types of tumours.
Collapse
Affiliation(s)
- Krisztina Kiss
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Rita Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Kata Nóra Enyedi
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary
| | - Ádám Orosz
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1444, Budapest, Hungary
| | - Bence Kapuvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, 1117, Budapest, Hungary; Institute of Chemistry, Eötvös L. University, 1117, Budapest, Hungary.
| |
Collapse
|
38
|
Lagoa R, Silva J, Rodrigues JR, Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv 2019; 38:107382. [PMID: 30978386 DOI: 10.1016/j.biotechadv.2019.04.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022]
Abstract
Natural compounds have significant anticancer pharmacological activities, but often suffer from low bioavailability and selectivity that limit therapeutic use. The present work critically analyzes the latest advances on drug delivery systems designed to enhance pharmacokinetics, targeting, cellular uptake and efficacy of anticancer phytoconstituents. Various phytochemicals, including flavonoids, resveratrol, celastrol, curcumin, berberine and camptothecins, carried by liposomes, nanoparticles, nanoemulsions and films showed promising results. Strategies to avoid drug metabolism, overcome physiological barriers and achieve higher concentration at cancer sites through skin, buccal, nasal, vaginal, pulmonary and colon targeted delivery are presented. Current limitations, challenges and future research directions are also discussed.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal.
| | - João Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Joaquim Rui Rodrigues
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA.
| |
Collapse
|
39
|
5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02734-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Khoee S, Sadeghi A. An NIR-triggered drug release and highly efficient photodynamic therapy from PCL/PNIPAm/porphyrin modified graphene oxide nanoparticles with the Janus morphology. RSC Adv 2019; 9:39780-39792. [PMID: 35541408 PMCID: PMC9076064 DOI: 10.1039/c9ra06058h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/10/2019] [Indexed: 11/21/2022] Open
Abstract
This project aimed to investigate the synthesis and characteristics of stimuli-responsive nanoparticles with different morphologies. In the first step, graphene oxide was synthesized based on the improved Hummers' method. Then, thermo-responsive poly(N-isopropylacrylamide-co-N-(hydroxymethyl)acrylamide), an amphiphilic copolymer, and poly(caprolactone) (PCL), a hydrophobic polymer, were used to prepare Janus and mixed graphene oxide-based nanoparticles. Fluorescence microscopy was utilized to confirm the Janus structure by labeling the mixed and Janus NPs with fluorescent hydrophobic and hydrophilic dyes via a solvent-evaporation method. Then, terminally modified carboxyl porphyrin (TPPC3-COOH), used as the second generation photosensitizer, was grafted to the copolymer surrounding the mixed and Janus NPs. Next, quercetin, a hydrophobic anti-cancer drug, was loaded onto both NPs to accomplish NIR-triggered photodynamic- and chemo-therapy. Finally, the drug loading, encapsulation efficiency, and in vitro release of thermo-responsive NPs were investigated at temperatures of 37 °C and 40 °C as well as under laser irradiation (808 nm). This project aimed to investigate the synthesis and characteristics of stimuli-responsive nanoparticles with different morphologies.![]()
Collapse
Affiliation(s)
- Sepideh Khoee
- Polymer Laboratory
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
| | - Amirhossein Sadeghi
- Polymer Laboratory
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
| |
Collapse
|
41
|
Song B. Lotus leaf-inspired design of calcium alginate particles with superhigh drug encapsulation efficiency and pH responsive release. Colloids Surf B Biointerfaces 2018; 172:464-470. [PMID: 30199763 DOI: 10.1016/j.colsurfb.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Drug delivery systems with high drug encapsulation efficiency and controlled release are of great importance in biomedical fields. Herein, we report an ingenious approach inspired from the lotus leaf possessing the ability of strong repellency to water, which enables the rapid fabrication of drug-loaded calcium alginate (Ca-Alg) particles with high drug encapsulation efficiency and controlled drug delivery. The design is achieved by introducing aqueous droplets containing the mixture of dilute sodium alginate solution, dilute calcium chloride solution, and drug onto the superhydrophobic substrate. Due to water evaporation both the concentration of sodium alginate and calcium chloride within the droplets will gradually increase, and the ionic crosslinking reaction of sodium alginate with Ca2+ is further occurred to form the drug-embedded Ca-Alg hydrogel particles. The results indicate that the controllable fabrication of Ca-Alg particles can be easily achieved on the superhydrophobic surface, and the swelling behavior can be tuned by the pH of the buffer solution. Importantly, the drug encapsulation efficiencies are measured to be over 88% and the drug exhibits obvious pH responsive release. Findings from this study are expected to contribute to the rational design of drug delivery systems with high drug encapsulation efficiency and controlled release for pharmaceutic science and tissue engineering.
Collapse
Affiliation(s)
- Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
42
|
Yi L, Zhang Y, Shi X, Du X, Wang X, Yu A, Zhai G. Recent progress of functionalised graphene oxide in cancer therapy. J Drug Target 2018; 27:125-144. [DOI: 10.1080/1061186x.2018.1474359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lingyun Yi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Yanan Zhang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Xiaoqun Shi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Xiyou Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Xinyi Wang
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| |
Collapse
|
43
|
A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1371-1380. [DOI: 10.1016/j.nano.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/19/2018] [Accepted: 03/31/2018] [Indexed: 11/17/2022]
|
44
|
Dai J, Han S, Ju F, Han M, Xu L, Zhang R, Sun Y. Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:860-873. [DOI: 10.1080/21691401.2018.1470528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jialing Dai
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fang Ju
- Department of Oncology, No. 2 Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mei Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lisa Xu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ruoyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Sundaramurthy A, Sundramoorthy AK. Polyelectrolyte capsules preloaded with interconnected alginate matrix: An effective capsule system for encapsulation and release of macromolecules. Int J Biol Macromol 2017; 107:2251-2261. [PMID: 29074086 DOI: 10.1016/j.ijbiomac.2017.10.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
In recent years, the design of stimuli-responsive hollow polymeric capsules is of tremendous interest for the scientific community because of the broad application of these capsules in the biomedical field. The use of weak polyelectrolytes as layer components for capsule fabrication is especially interesting as it results in hollow capsules that show unique release characteristics under physiological conditions. In this work, a methodology to prepare sub-micron sized alginate doped calcium carbonate (CaCO3) particles through controlled precipitation in the presence of alginate is reported. Hollow capsules obtained by Layer-by-Layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) are showing an interconnected alginate matrix in the interior of the capsules. Investigations showed that the presence of alginate matrix enhances the encapsulation of cationic molecules (e.g. doxorubicin hydrochloride) manifold by charge controlled attraction mechanism. Capsule permeability investigated by confocal laser scanning microscopy revealed that the transformation from an open state to closed state is accompanied by an intermediate state where capsules are neither open nor closed. Furthermore, time dependent study indicated that the encapsulation process is linear as a function of time. The cell viability experiments demonstrated excellent biocompatibility of hollow capsules with mouse embryonic fibroblast cells. Anticancer investigations showed that DOX loaded capsules have significant anti-proliferative characteristics against HeLa cells. Such capsules have high potential for use as drug carrier for cationic drugs in cancer therapy.
Collapse
Affiliation(s)
- Anandhakumar Sundaramurthy
- SRM Research Institute, SRM University, Kattankulathur - 603203, Kanchipuram, Tamil Nadu, India; Department of Physics and Nanotechnology, SRM University, Kattankulathur - 603203, Kanchipuram, Tamil Nadu, India.
| | - Ashok K Sundramoorthy
- Department of Chemistry, SRM University, Kattankulathur - 603203, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
47
|
Graphene oxide/poly(N-isopropyl acrylamide)/sodium alginate-based dual responsive composite beads for controlled release characteristics of chemotherapeutic agent. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|