1
|
Deng Q, Lin P, Gu H, Zhuang X, Wang F. Silk Protein-Based Nanoporous Microsphere for Controllable Drug Delivery through Self-Assembly in Ionic Liquid System. Biomacromolecules 2024; 25:1527-1540. [PMID: 38307005 DOI: 10.1021/acs.biomac.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ionic liquids (ILs) showed a promising application prospect in the field of biomedicine due to their unique recyclability, modifiability, and structure adjustability. In this study, nanoporous microsphere of silk protein and blending with poly(d,l-lactic acid) as model drug delivery was fabricated, respectively, through an IL-induced self-assembly method. Their morphology, structure, and thermal properties were comparably investigated through scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, X-ray diffraction, and thermogravimetric analyses, and the interaction mechanisms were also discussed to elucidate the effect of structure on drug delivery kinetics. The pure protein exhibited a bigger nanopore size in the microsphere compared to the composite one, facilitating more effective drug loading up to 88.7%. However, drug release was over 53.5% for the composite during initial 4 h, while pure protein was only about half of the composite. Both of them exhibited sustained slow release after 24 h and anticancer efficacy. Furthermore, the favorable compatibility between drug and microsphere vehicle was found and experienced improved thermal stability upon encapsulation, which could protect the drug molecules in high temperature at 200 °C. When the protein and its composite self-assembled to microspheres in ILs due to electrostatic and hydrophobic interaction, the drug could be infiltrated into the nanoporous matrix through biophysical action, and the protein structure displayed reversible transition during delivery. The sustained slow release from pure SF was attributed to the high β-sheet block action and strong drug-protein interactions, whose strength could be tuned through blending poly(d,l-lactic acid) with protein. These findings indicated that the SF-based nanoporous microspheres formed from IL self-assembled system are an ideal and potential drug delivery vehicle which can be incorporated into various biomaterials in the future.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ping Lin
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Xie C, Yang X, Zheng F, Shi J, Huo C, Wang Z, Reis RL, Kundu SC, Xiao B, Duan L. Facilely printed silk fibroin hydrogel microparticles as injectable long-lasting fillers. Biomater Sci 2024; 12:375-386. [PMID: 37997042 DOI: 10.1039/d3bm01488f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
There is a high demand from aging people for facial fillers with desirable biocompatibility and lasting filling effects to overcome facial depression. Novel injectable regenerated silk fibroin (RSF) microparticles were facilely printed from a glycidyl methacrylate-modified silk fibroin hydrogel to address this issue. The β-sheet content and mechanical properties of the RSF hydrogel can be simply modulated by the number of freeze-thawing cycles, and the swelling rate of the RSF hydrogel in saline was negligible. The printed RSF microparticles were uniform, and their diameter was about 300-500 μm, which could be adjusted by the pore sizes of the printed screens. After the injection with a 26-gauge needle, the size distribution of RSF microparticles had no noticeable variation, suggesting that the microparticles could bear the shear strain without breaking during the injection. The in vitro experiments demonstrated that RSF not only had desirable biocompatibility but also facilitated fibroblast migration. The subcutaneous injection experiments demonstrated that the RSF microparticles formed a lasting spot in the injected site. The tissue sections revealed that the RSF microparticles were still distinct on week 8, and blood vessels formed around the microparticles. These promising data demonstrate that the printed RSF microparticles have great potential for facial rejuvenation.
Collapse
Affiliation(s)
- Chunyu Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Xiao Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Fan Zheng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jiahao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Caixia Huo
- Beijing Green Pharmaceutical Technology Co., Ltd, Fengtai, Beijing 100070, China
| | - Zuyuan Wang
- Beijing Green Pharmaceutical Technology Co., Ltd, Fengtai, Beijing 100070, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
3
|
Hu J, Li C, Yang Z, Wu Q, Wang J, Xu Z, Chen Y, Wan Q, Shuai Y, Yang S, Yang M. Hierarchically patterned protein scaffolds with nano-fibrillar and micro-lamellar structures modulate neural stem cell homing and promote neuronal differentiation. Biomater Sci 2023; 11:7663-7677. [PMID: 37855269 DOI: 10.1039/d3bm00801k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Biophysical factors are essential in cell survival and behaviors, but constructing a suitable 3D microenvironment for the recruitment of stem cells and exerting their physiological functions remain a daunting challenge. Here, we present a novel silk fibroin (SF)-based fabrication strategy to develop hierarchical microchannel scaffolds for biomimetic nerve microenvironments in vitro. We first modulated the formation of SF nanofibers (SFNFs) that mimic the nanostructures of the native extracellular matrix (ECM) by using graphene oxide (GO) nanosheets as templates. Then, SFNF-GO systems were shaped into 3D porous scaffolds with aligned micro-lamellar structures by freeze-casting. The interconnected microchannels successfully induced cell infiltration and migration to the SFNF-GO scaffolds' interior. Meanwhile, the nano-fibrillar structures and the GO component significantly induced neural stem cells (NSCs) to differentiate into neurons within a short timeframe of 14 d. Importantly, these 3D hierarchical scaffolds induced a mild inflammatory response, extensive cell recruitment, and effective stimulation of NSC neuronal differentiation when implanted in vivo. Therefore, these SFNF-GO lamellar scaffolds with distinctive nano-/micro-topographies hold promise in the fields of nerve injury repair and regenerative medicine.
Collapse
Affiliation(s)
- Jiaqi Hu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Chenlin Li
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhangze Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qi Wu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Zongpu Xu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yuyin Chen
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Quan Wan
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Hangzhou, 310016, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
4
|
Wu J, Guo W, Wang Y, Liu J, Wang H, Zheng Z, Wang X, Kaplan DL. Stabilization and Sustained Release of Fragrances Using Silk-PEG Microspheres. ACS Biomater Sci Eng 2023. [PMID: 37144723 DOI: 10.1021/acsbiomaterials.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fragrances, which are commonly used in food, textiles, consumer products, and medical supplies, are volatile compounds that require stabilization and controlled release due to their sensitivity to environmental conditions such as light, oxygen, temperature, and humidity. Encapsulation in various material matrices is a desired technique for these purposes, and there is a growing interest in using sustainable natural materials to reduce environmental impact. In this study, fragrance encapsulation in microspheres made from silk fibroin (SF) was investigated. Fragrance-loaded silk fibroin microspheres (Fr-SFMSs) were prepared by adding fragrance/surfactant emulsions to silk solutions, followed by mixing them with polyethylene glycol under ambient conditions. The study investigated eight different fragrances, where citral, beta-ionone, and eugenol showed higher binding affinities to silk than the other five fragrances, resulting in better microsphere formation with uniform sizes and higher fragrance loading (10-30%). Citral-SFMSs showed characteristic crystalline β-sheet structures of SF, high thermal stability (initial weight loss at 255 °C), long shelf life at 37 °C (>60 days), and sustained release (∼30% of citral remained after incubation at 60 °C for 24 h). When citral-SFMSs with different sizes were used to treat cotton fabrics, about 80% of the fragrance remained on the fabrics after one wash, and the duration of release from the treated fabrics was significantly longer than that of control samples treated with citral alone (no microspheres). This method of preparing Fr-SFMSs has potential applications in textile finishing, cosmetics, and the food industry.
Collapse
Affiliation(s)
- Jianbing Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
- College of Textile, Garment and Design, Changshu Institute of Technology, Suzhou 215500, People's Republic of China
| | - Wenjun Guo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Heng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Liang M, Li F, Wang Y, Chen H, Tian J, Zhao Z, Schneider KH, Li G. Woven Vascular Stent-Grafts with Surface Modification of Silk Fibroin-Based Paclitaxel/Metformin Microspheres. Bioengineering (Basel) 2023; 10:bioengineering10040399. [PMID: 37106586 PMCID: PMC10136065 DOI: 10.3390/bioengineering10040399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
In-stent restenosis caused by tumor ingrowth increases the risk of secondary surgery for patients with abdominal aortic aneurysms (AAA) because conventional vascular stent grafts suffer from mechanical fatigue, thrombosis, and endothelial hyperplasia. For that, we report a woven vascular stent-graft with robust mechanical properties, biocompatibility, and drug delivery functions to inhibit thrombosis and the growth of AAA. Paclitaxel (PTX)/metformin (MET)-loaded silk fibroin (SF) microspheres were self-assembly synthesized by emulsification-precipitation technology and layer-by-layer coated on the surface of a woven stent via electrostatic bonding. The woven vascular stent-graft before and after coating drug-loaded membranes were characterized and analyzed systematically. The results show that small-sized drug-loaded microspheres increased the specific surface area and promoted the dissolution/release of drugs. The stent-grafts with drug-loaded membranes exhibited a slow drug-release profile more for than 70 h and low water permeability at 158.33 ± 17.56 mL/cm2·min. The combination of PTX and MET inhibited the growth of human umbilical vein endothelial cells. Therefore, it was possible to generate dual-drug-loaded woven vascular stent-grafts to achieve the more effective treatment of AAA.
Collapse
Affiliation(s)
- Mengdi Liang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Fang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Hao Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Jingjing Tian
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Karl H Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| |
Collapse
|
6
|
Bharadwaz A, Dhar S, Jayasuriya AC. Full factorial design of experiment-based and response surface methodology approach for evaluating variation in uniaxial compressive mechanical properties, and biocompatibility of photocurable PEGDMA-based scaffolds. Biomed Mater 2023; 18. [PMID: 36720161 DOI: 10.1088/1748-605x/acb7bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
The goal of this study is to fabricate biocompatible and minimally invasive bone tissue engineering scaffolds that allowin situphotocuring and further investigate the effect on the mechanical properties of the scaffold due to the prevailing conditions around defect sites, such as the shift in pH from the physiological environment and swelling due to accumulation of fluids during inflammation. A novel approach of incorporating a general full factorial design of experiment (DOE) model to study the effect of the local environment of the tissue defect on the mechanical properties of these injectable and photocurable scaffolds has been formulated. Moreover, the cross-interaction between factors, such as pH and immersion time, was studied as an effect on the response variable. This study encompasses the fabrication and uniaxial mechanical testing of polyethylene glycol dimethacrylate (PEGDMA) scaffolds for injectable tissue engineering applications, along with the loss in weight of the scaffolds over 72 h in a varying pH environment that mimicsin vivoconditions around a defect. The DOE model was constructed with three factors: the combination of PEGDMA and nano-hydroxyapatite referred to as biopolymer blend, the pH of the buffer solution used for immersing the scaffolds, and the immersion time of the scaffolds in the buffer solution. The response variables recorded were compressive modulus, compressive strength, and the weight loss of the scaffolds over 72 h of immersion in phosphate-buffered saline at respective pH. The statistical model analysis provided adequate information in explaining a strong interaction of the factors on the response variables. Further, it revealed a significant cross-interaction between the factors. The factors such as the biopolymer blend and pH of the buffer solution significantly affected the response variables, compressive modulus and strength. At the same time, the immersion time had a strong effect on the loss in weight from the scaffolds over 72 h of soaking in the buffer solution. The biocompatibility study done using a set of fluorescent dyes for these tissue scaffolds highlighted an enhancement in the pre-osteoblasts (OB-6) cell attachment over time up to day 14. The representative fluorescent images revealed an increase in cell attachment activity over time. This study has opened a new horizon in optimizing the factors represented in the DOE model for tunable PEGDMA-based injectable scaffold systems with enhanced bioactivity.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43606, United States of America
| | - Sarit Dhar
- Doctor of Medicine (M.D.) Program, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, United States of America
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43606, United States of America.,Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, United States of America
| |
Collapse
|
7
|
Du Y, Shi J, Duan R, Tsim KWK, Shen L, Zhang N, Wang B. cRGD peptide incorporated with patchouli alcohol loaded silk fibroin nanoparticles for enhanced targeting of inflammatory sites in colitis. BIOMATERIALS ADVANCES 2022; 140:213069. [PMID: 35961188 DOI: 10.1016/j.bioadv.2022.213069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The combination therapy of strengthening inflammation regression and mucosal repair may overcome the "therapeutic ceiling" of ulcerative colitis (UC). However, poor targeting is an outstanding challenge in the preparation of drug delivery systems for UC treatment. Here, we developed anti-inflammatory drug (patchouli alcohol, PA)-loaded nanoparticles (NPs) derived from natural silk fibroin (SF) and subjected to surface functionalization with cyclo RGD peptide (cRGD). Self-assembled SF NPs realized sustained drug release. Meanwhile, cRGD functionalization yielded notably targeted drug delivery to inflamed colon, and thereby enhanced the anti-inflammatory and barrier repair capabilities of NPs. Moreover, cRGD-PASFNs regulated innate immune responses and exerted a potent therapeutic efficacy against acute colitis. Surprisingly, the cRGD-PASFNs also modulated the abnormal level of amino acids which are crucial to the integrity of the intestinal barrier. Additionally, oral delivery of this nanomedicine displayed an excellent safety profile in the mouse model. This study confers confidence for the further development of targeted precision therapy for UC and other inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Junyu Shi
- Department of Oral and Maxillofacial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Ran Duan
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Du J, Liu X, Hou Z, Liu X, Yao J, Cheng X, Wang X, Tang R. Acid-sensitive polymeric prodrug micelles for achieving enhanced chemo-photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Wang X, Liu P, Wu Q, Zheng Z, Xie M, Chen G, Yu J, Wang X, Li G, Kaplan D. Sustainable Antibacterial and Anti-Inflammatory Silk Suture with Surface Modification of Combined-Therapy Drugs for Surgical Site Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11177-11191. [PMID: 35192338 DOI: 10.1021/acsami.2c00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silk sutures with antibacterial and anti-inflammatory functions were developed for sustained dual-drug delivery to prevent surgical site infections (SSIs). The silk sutures were prepared with core-shell structures braided from degummed silk filaments and then coated with a silk fibroin (SF) layer loaded with berberine (BB) and artemisinin (ART). Both the rapid release of drugs to prevent initial biofilm formation and the following sustained release to maintain effective concentrations for more than 42 days were demonstrated. In vitro assays using human fibroblasts (Hs 865.Sk) demonstrated cell proliferation on the materials, and hemolysis was 2.4 ± 0.8%, lower than that required by ISO 10993-4 standard. The sutures inhibited platelet adhesion and promoted collagen deposition and blood vessel formation. In vivo assessments using Sprague-Dawley (SD) rats indicated that the coating reduced the expression of pro-inflammatory cytokines interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α), shortening the inflammatory period and promoting angiogenesis. The results demonstrated that these new sutures exhibited stable structures, favorable biocompatibility, and sustainable antibacterial and anti-inflammatory functions with potential for surgical applications.
Collapse
Affiliation(s)
- Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Peixin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Maobin Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
10
|
Wu Q, He C, Wang X, Zhang S, Zhang L, Xie R, Li Y, Wang X, Han Z, Zheng Z, Li G. Sustainable Antibacterial Surgical Suture Using a Facile Scalable Silk-Fibroin-Based Berberine Loading System. ACS Biomater Sci Eng 2021; 7:2845-2857. [PMID: 34043327 DOI: 10.1021/acsbiomaterials.1c00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical sutures with sustainable antibacterial properties can effectively inhibit pathogens, thus avoiding the occurrence of surgical site infection and reducing the recurrence of patients resulting in postoperative death. This paper describes a facile scalable antibacterial surgical suture with sustainable antibacterial function and fair mechanical and biocompatible properties using a simple, efficient, and eco-friendly method. Silk filaments were braided into a core-shell structure using a braiding machine, and then silk fibroin (SF) films loaded with different percentages of berberine (BB) were coated onto the surface of the suture. The drug-loaded sutures performed a slow drug-release profile of more than 7 days. Retention of the knot-pull tensile strength of all groups was above 87% during in vitro degradation within 42 days. The sutures had no toxicity to the cells' in vitro cytotoxicity. The results of the in vivo biocompatibility test showed mild inflammation and clear signs of supporting angiogenesis in the implantation site of the rats. This work provides a new route for achieving a BB-loaded and high-performance antibacterial suture, which is of great potential in applications for surgical operations.
Collapse
Affiliation(s)
- Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Chaoheng He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shujun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ruijuan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yi Li
- The School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhifen Han
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Esmaeili J, Barati A, Ai J, Nooshabadi VT, Mirzaei Z. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies. RSC Adv 2021; 11:10646-10669. [PMID: 35423538 PMCID: PMC8695814 DOI: 10.1039/d1ra00855b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a complicated disease that involves the efforts of researchers to introduce and investigate novel successful treatments. Traditional cancer therapy approaches, especially chemotherapy, are prone to possible systemic side effects, such as the dysfunction of liver or kidney, neurological side effects and a decrease of bone marrow activity. Hydrogels, along with tissue engineering techniques, provide tremendous potential for scientists to overcome these issues through the release of drugs at the site of tumor. Hydrogels demonstrated competency as potent and stimulus-sensitive drug delivery systems for tumor removal, which is attributed to their unique features, including high water content, biocompatibility, and biodegradability. In addition, hydrogels have gained more attention as 3D models for easier and faster screening of cancer and tumors due to their potential in mimicking the extracellular matrix. Hydrogels as a reservoir can be loaded by an effective dosage of chemotherapeutic agents, and then deliver them to targets. In comparison to conventional procedures, hydrogels considerably decreased the total cost, duration of research, and treatment time. This study provides a general look into the potential role of hydrogels as a powerful tool to augment cancer studies for better analysis of cancerous cell functions, cell survival, angiogenesis, metastasis, and drug screening. Moreover, the upstanding application of drug delivery systems related to the hydrogel in order to sustain the release of desired drugs in the tumor cell-site were explored.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| | - Abolfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences Semnan Iran
| | - Zeynab Mirzaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology Hafez str. 424 Tehran Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| |
Collapse
|
12
|
Jummaat F, Yahya EB, Khalil H.P.S. A, Adnan AS, Alqadhi AM, Abdullah CK, A.K. AS, Olaiya NG, Abdat M. The Role of Biopolymer-Based Materials in Obstetrics and Gynecology Applications: A Review. Polymers (Basel) 2021; 13:633. [PMID: 33672526 PMCID: PMC7923797 DOI: 10.3390/polym13040633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Biopolymers have gained tremendous attention in many daily life applications, including medical applications, in the past few years. Obstetrics and gynecology are two fields dealing with sensitive parts of the woman's body and her newborn baby, which are normally associated with many issues such as toxicity, infections, and even gene alterations. Medical professions that use screening, examination, pre, and post-operation materials should benefit from a better understanding of each type of material's characteristics, health, and even environmental effects. The underlying principles of biopolymer-based materials for different obstetric and gynecologic applications may discover various advantages and benefits of using such materials. This review presents the health impact of conventional polymer-based materials on pregnant women's health and highlights the potential use of biopolymers as a safer option. The recent works on utilizing different biopolymer-based materials in obstetric and gynecologic are presented in this review, which includes suture materials in obstetric and gynecologic surgeries, cosmetic and personal care products, vaginal health, and drug delivery; as well as a wound dressing and healing materials. This review highlights the main issues and challenges of biopolymers in obstetric and gynecologic applications.
Collapse
Affiliation(s)
- Fauziah Jummaat
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - A. S. Adnan
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | | | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Atty Sofea A.K.
- Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, Permatang Pauh 13700, Malaysia;
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Munifah Abdat
- Department of Preventive and Public Health Dentistry, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|
13
|
Preparation of ropivacaine-loaded mesoporous bioactive glass microspheres and evaluation of their efficacy for sciatic nerve block. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Xue Y, Hu X. Electrospun Silk-Boron Nitride Nanofibers with Tunable Structure and Properties. Polymers (Basel) 2020; 12:E1093. [PMID: 32403370 PMCID: PMC7284470 DOI: 10.3390/polym12051093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 11/28/2022] Open
Abstract
In this study, hexagonal boron nitride (h-BN) nanosheets and Bombyx mori silk fibroin (SF) proteins were combined and electrospun into BNSF nanofibers with different ratios. It was found that the surface morphology and crosslinking density of the nanofibers can be tuned through the mixing ratios. Fourier transform infrared spectroscopy study showed that pure SF electrospun fibers were dominated by random coils and they gradually became α-helical structures with increasing h-BN nanosheet content, which indicates that the structure of the nanofiber material is tunable. Thermal stability of electrospun BNSF nanofibers were largely improved by the good thermal stability of BN, and the strong interactions between BN and SF molecules were revealed by temperature modulated differential scanning calorimetry (TMDSC). With the addition of BN, the boundary water content also decreased, which may be due to the high hydrophobicity of BN. These results indicate that silk-based BN composite nanofibers can be potentially used in biomedical fields or green environmental research.
Collapse
Affiliation(s)
- Ye Xue
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
15
|
Long S, Xiao Y, Zhang X. Progress in Preparation of Silk Fibroin Microspheres for Biomedical Applications. Pharm Nanotechnol 2020; 8:358-371. [PMID: 33038918 DOI: 10.2174/2211738508666201009123235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
As a natural biomaterial, silk fibroin (SF) holds great potential in biomedical applications with its broad availability, good biocompatibility, high mechanical strength, ease of fabrication, and controlled degradation. With emerging fabrication methods, nanoand microspheres made from SF have brought about unique opportunities in drug delivery, cell culture, and tissue engineering. For these applications, the size and distribution of silk fibroin particles (SFPs) are critical and require precise control during fabrication. Herein, we review common and emerging SFPs fabrication methods and their biomedical applications, and also the challenges and opportunities for SFPs in the near future. Lay Summary: The application of silk in textile has an extraordinarily long history and new biomedical applications emerged owing to the good biocompatibility and versatile fabrication options of its major protein component, silk fibroin. With the development of nanotechnology and microfabrication, silk fibroin has been fabricated into nano- or microspheres with precisely controlled shape and distribution. In this review, we summarize common and emerging silk fibroin particle fabrication methods and their biomedical applications, and also discuss their challenges and opportunities in the nearest future.
Collapse
Affiliation(s)
- Shihe Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Passi M, Kumar V, Packirisamy G. Theranostic nanozyme: Silk fibroin based multifunctional nanocomposites to combat oxidative stress. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110255. [PMID: 31761203 DOI: 10.1016/j.msec.2019.110255] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022]
Abstract
Multifunctional nanomaterials integrating therapeutic and imaging modalities in one platform have opened a new era in the present therapeutic strategies. In the present study, a multifunctional silk fibroin-based carrier has been designed for the delivery of antioxidant and imaging agents. One-step desolvation method was used to prepare sulforaphane (antioxidant drug) loaded silk fibroin nanoparticles (SFSNPs). These anionic SFSNPs were further coupled with cationic cerium oxide nanoparticles (CeNPs) and PEI passivated carbon dots (CDs) to form self-assembled CeNP-CD@SFSNPs nanocomposites. CDs were synthesized from mulberry leaves (Morus indica) as green source of carbon and bPEI as a passivating agent to get positively charged CDs. The CDs functioned as molecular probes by emitting green fluorescence while the presence of CeNPs augmented the antioxidant potential due to their unique redox property. Time-dependent in vitro release of sulforaphane was fast in acidic pH than under normal physiological conditions. Cytotoxicity studies were performed on L132 normal epithelial lung cell lines and A549 lung cancer cell lines to analyze the toxicity of the nanocomposites. Green fluorescence from the CDs facilitated in fluorescence microscopic imaging and cellular uptake studies. ROS scavenging capability was analyzed by exposing cells to H2O2 stress using flow cytometry and DCFH-DA staining. Overall, the synthesized CeNP-CD@SFSNPs nanocomposites efficiently reduced ROS levels by simultaneously enabling imaging of the cells. Thus, this CeNP-CD@SFSNPs nanocomposite could be a potential candidate for simultaneous imaging and drug delivery against oxidative stress.
Collapse
Affiliation(s)
- Mehak Passi
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
17
|
Gong H, Wang J, Zhang J, Wu J, Zheng Z, Xie X, Kaplan DL, Li G, Wang X. Control of octreotide release from silk fibroin microspheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:820-828. [DOI: 10.1016/j.msec.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/02/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
|
18
|
Rodionov IA, Abdullah N, Kaplan DL. Microporous drug-eluting large silk particles through cryo-granulation. ADVANCED ENGINEERING MATERIALS 2019; 21:1801242. [PMID: 31892840 PMCID: PMC6938394 DOI: 10.1002/adem.201801242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 06/10/2023]
Abstract
A facile method for the preparation of large, microporous, drug-loaded particles is presented. High shear bollus injections of silk with cross-linker and drug colloids into super-cooled hexane were utilized to trigger phase separation of silk droplets, followed by immediate freezing at -60°C. A subsequent -20°C freeze-thaw of the frozen droplets resulted in self-assembly (crystallization) of the silk. The silk particles developed an internal interconnected microporous morphology with 0.1-10 µm in diameter pores. The silk particles ranged in diameter from 100 to 1,300 µm, with particle mean diameter and polydispersity controlled by the starting concentration of the cross-linking agent and silk, the rheology of the reaction mixture, and the injection pressure (80 - 300kPa). Cryogranulation provided a one-step process to produce microporous meso-scale silk particles with encapsulated drugs, such as doxorubicin chloride (DoxR), tobramycin sulfate (TS), kanamycin sulfate (KS) or gentamicin sulfate (GS). Almost 100% drug encapsulation efficiency was achieved in the process, and subsequent release profiles depended on the starting concentration of both the drug, silk, and pH of the elution medium. Kirby-Bauer tests and bioluminescent imaging confirmed the retention of anti-bacterial potency of the antibiotics pre-encapsulated in the cryo-particles, and macroparticles cytocompatibility towards human fibroblast and kidney cells.
Collapse
Affiliation(s)
- Ilya A. Rodionov
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Nadia Abdullah
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
19
|
Chen Y, Gu J, Liu J, Tong L, Shi F, Wang X, Wang X, Yu D, Wu H. Dexamethasone-loaded injectable silk-polyethylene glycol hydrogel alleviates cisplatin-induced ototoxicity. Int J Nanomedicine 2019; 14:4211-4227. [PMID: 31239676 PMCID: PMC6559256 DOI: 10.2147/ijn.s195336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Cisplatin is an extensively used anti-neoplastic agent for the treatment of various solid tumors. However, a high incidence of severe ototoxicity is accompanied by its use in the clinic. Currently, no drugs or therapeutic strategies have been approved for the treatment of cisplatin-induced ototoxicity by the FDA. Purpose: The purpose of this study was to investigate the otoprotective effects of dexamethasone (DEX)-loaded silk-polyethylene hydrogel (DEX-SILK) following round window membrane administration in the cisplatin-induced ototoxicity mouse model. Methods: The morphology, gelation kinetics, viscosity and secondary structure of the DEX-SILK hydrogel were analyzed. DEX concentration in the perilymph was tested at different time points following hydrogel injection on the RWM niche. Cultured cells (HEI-OC1), organ of Corti explants (C57/BL6, P0-2), and cisplatin-induced hearing loss mice model (C57/BL6) were used as in vitro and in vivo models for investigating the otoprotective effects of DEX-SILK hydrogel against cisplatin. Results: Encapsulation of DEX with a loading of 8% (w/v) did not significantly change the silk gelation time, and DEX was evenly distributed in the Silk-PEG hydrogel as visualized by scanning electron microscopy (SEM). The concentration of Silk majorly influenced DEX distribution, morphological characteristics, viscosity, and gelation time. The optimized DEX-SILK hydrogel (8% w/v loading, 15% silk concentration, 10 μl) was administered directly onto the RWM of the guinea pigs. The DEX concentration in the perilymph was maintained above 1 μg/ml for at least 21 days for the DEX-SILK, while it was maintained for less than 6 h in the control sample of free DEX. DEX-SILK (5-60 ng/ml) exhibited significant protective effects against cisplatin-induced cellular ototoxicity and notably reduced the production of reactive oxygen species (ROS). Eventually, pretreatment with DEX-SILK effectively preserved outer hair cells in the cultured organ of Corti explants and demonstrated significant hearing protection at 4, 8, and 16 kHz in the cisplatin-induced hearing loss mice as compared to the effects noted following pretreatment with DEX. Conclusion: These results demonstrated the clinical value of DEX-SILK for the therapy of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Ling Tong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Fuxin Shi
- Department of Otology and Laryngology, Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Decibel Therapeutics , Boston, MA, 02215, USA
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300) , Shanghai 200011, People's Republic of China
| |
Collapse
|
20
|
Xie X, Zheng X, Han Z, Chen Y, Zheng Z, Zheng B, He X, Wang Y, Kaplan DL, Li Y, Li G, Wang X, Lan P. A Biodegradable Stent with Surface Functionalization of Combined-Therapy Drugs for Colorectal Cancer. Adv Healthc Mater 2018; 7:e1801213. [PMID: 30468567 DOI: 10.1002/adhm.201801213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Indexed: 12/11/2022]
Abstract
In-stent restenosis caused by tumor ingrowth is a major problem for patients undergoing stent placement because conventional stents often lack sustainable antitumor capabilities. The aim of this work is to develop a silk fibroin (SF)-based nanofibrous membrane that is loaded with combined-therapy drugs by using electrospinning technologies, which is further coated on a polydioxanone (PDO) stent and used for the treatment of colorectal cancer (CRC). In order to improve treatment effectiveness, a combination of therapeutic drugs, i.e., curcumin (CUR) and 5-fluorouracil (5-FU), is dissolved into SF solution and then eletrospun onto the surface of the PDO stent. The morphology, secondary structure, and in vitro drug release profiles of the membranes are characterized. The antitumor efficacy is assessed in vitro and in vivo using a human CRC cell line and normal cells, and tumor-bearing nude mice. In vitro and in vivo studies on the nanofibrous memembrane-coating demonstrate improved antitumor effects for the CUR/5-FU dual drug system which can be attributed to cell cycle arrest in the S phase in association with induced apoptosis in tumor cells by blocking signal transducer and activator of transcription3 (Stat3) and nuclear factor kappa beta (NF-kB) signaling pathways, suggesting potential in the treatment of CRC in the future.
Collapse
Affiliation(s)
- Xusheng Xie
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - Xiaobin Zheng
- Department of Colorectal Surgery; The Sixth Affiliated Hospital of Sun Yat-Sen University; Guangzhou 510655 China
| | - Zhifen Han
- Department of Medical Oncology; Shuguang Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yufeng Chen
- Department of Colorectal Surgery; The Sixth Affiliated Hospital of Sun Yat-Sen University; Guangzhou 510655 China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - Bin Zheng
- Department of Colorectal Surgery; The Sixth Affiliated Hospital of Sun Yat-Sen University; Guangzhou 510655 China
| | - Xiaowen He
- Department of Colorectal Surgery; The Sixth Affiliated Hospital of Sun Yat-Sen University; Guangzhou 510655 China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - David L. Kaplan
- Department of Biomedical Engineering; Tufts University; 4 Colby St Medford MA 02155 USA
| | - Yi Li
- School of Materials; The University of Manchester; Manchester M13 9PL UK
| | - Gang Li
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering; Soochow University; Suzhou 215123 P. R. China
| | - Ping Lan
- Department of Colorectal Surgery; The Sixth Affiliated Hospital of Sun Yat-Sen University; Guangzhou 510655 China
| |
Collapse
|
21
|
Wu J, Wang J, Zhang J, Zheng Z, Kaplan DL, Li G, Wang X. Oral Delivery of Curcumin Using Silk Nano- and Microparticles. ACS Biomater Sci Eng 2018; 4:3885-3894. [DOI: 10.1021/acsbiomaterials.8b00454] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianbing Wu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| | - Jing Wang
- Laboratory Animal Center, Soochow University, Suzhou, China 215123
| | - Jue Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China 215123
| |
Collapse
|