1
|
Sun S, Sun P. MOF-derived NiCo hydroxide for highly efficient non-enzymatic glucose biosensing. NANOTECHNOLOGY 2024; 35:275501. [PMID: 38537263 DOI: 10.1088/1361-6528/ad3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
An efficient and robust electrocatalyst is significant for glucose biosensing. The emergence of metal-organic framework (MOF) derived materials opens up new avenues for the development of high-performance glucose sensing catalysts. Herein, MOF derived nickel-cobalt hydroxide supported on conductive copper sheet (NiCo-OH/Cu sheet) is prepared at room temperature. The as-obtained NiCo-OH is endowed with three-dimensional network structure which enables the effective exposure of active materials, sufficient contact between glucose molecule and catalyst. The NiCo-OH/Cu sheet is revealed as good glucose electrochemical sensing material with a wide linear range of 0.05∼6.0 mM and a high sensitivity of 1340μA mM-1cm-2. Additionally, the as-fabricated NiCo-OH/Cu sheet displays good anti-interference ability and long-term stability.
Collapse
Affiliation(s)
- Shupei Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu, Sichuan 610225, People's Republic of China
| | - Ping Sun
- College of Optoelectronics Engineering, Chengdu University of Information Technology, Chengdu, Sichuan 610225, People's Republic of China
| |
Collapse
|
2
|
Zhou F, Liu S, Tang Y, Li W, Hai L, Zhang X, Li Y, Gao F. Wearable electrochemical glucose sensor of high flexibility and sensitivity using novel mushroom-like gold nanowires decorated bendable stainless steel wire sieve. Anal Chim Acta 2024; 1288:342148. [PMID: 38220282 DOI: 10.1016/j.aca.2023.342148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
Long-term high blood glucose levels brings extremely detrimental effect on diabetic patients, such as blindness, renal failure, and cardiovascular diseases. Therefore, there is an urgent need to develop highly flexible and sensitive sensors for precisely non-invasive and continuous monitoring glucose levels. Herein, we present a highly flexible and sensitive wearable sensor for non-enzymatic electrochemical glucose analysis with vertically aligned mushroom-like gold nanowires (v-AuNWs) chemically grown on stainless steel wire sieve (SSWS) as integrated electrode. Owing to the unique nanostructures and excellent catalysis of the v-AuNWs, the as-fabricated glucose sensors exhibit superior flexibility and excellent electro-catalytic capability. In detail, these sensors display rapid response towards glucose within 5 s, and the sensor constructed with v-AuNWs for growth time of 15 min shows the highest sensitivity of 180.1 μA mM-1 cm-2 within a wide linear range of 6.5 × 10-4 mM-12.0 mM and the lowest detection limit of 0.65 μM (S/N = 3). It is noteworthy that due to the good ductility of the v-AuNWs and their strong contact with the SSWS substrate, these glucose sensors exhibit no obvious response variation after repeated bending for 100 times at bending angle of 180°. Additionally, the glucose sensors display superior anti-interfering capability as well as desirable repeatability. More importantly, these glucose sensors can be attached on human skin to determine sweat glucose reliably and analyze glucose concentration in human serum in vitro.
Collapse
Affiliation(s)
- Fan Zhou
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Shu Liu
- State Key Laboratory for Manufacturing Systems Engineering, Institute of Precision Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yimei Tang
- Department of Endocrinology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China.
| | - Wenqiang Li
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Lixin Hai
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Xinmiao Zhang
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Yan Li
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Feng Gao
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
3
|
Chitare YM, Jadhav SB, Pawaskar PN, Magdum VV, Gunjakar JL, Lokhande CD. Metal Oxide-Based Composites in Nonenzymatic Electrochemical Glucose Sensors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yogesh M. Chitare
- Centre for Interdisciplinary Research (CIR), D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416 006, Maharashtra, India
| | - Satish B. Jadhav
- Centre for Interdisciplinary Research (CIR), D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416 006, Maharashtra, India
| | - Padamaja N. Pawaskar
- Centre for Interdisciplinary Research (CIR), D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416 006, Maharashtra, India
| | - Vikas V. Magdum
- Centre for Interdisciplinary Research (CIR), D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416 006, Maharashtra, India
| | - Jayavant L. Gunjakar
- Centre for Interdisciplinary Research (CIR), D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416 006, Maharashtra, India
| | - Chandrakant D. Lokhande
- Centre for Interdisciplinary Research (CIR), D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416 006, Maharashtra, India
| |
Collapse
|
4
|
Kurup CP, Mohd-Naim NF, Ahmed MU. Recent trends in nanomaterial-based signal amplification in electrochemical aptasensors. Crit Rev Biotechnol 2021; 42:794-812. [PMID: 34632900 DOI: 10.1080/07388551.2021.1960792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ultrasensitive biosensors have become a necessity in the world of scientific research, and several signal enhancement strategies have been employed to attain exceptionally low detection limits. Nanotechnology turns out to be a strong contender for signal amplification, as they can be employed as platform modifiers, catalysts, carriers or labels. Here, we have described the most recent advancements in the utilization of nanomaterials as signal amplification components in aptamer-based electrochemical biosensors. We have briefly reviewed the methods that utilized nanomaterials, namely gold and carbon, as well as nanocomposites such as: graphene, carbon nanotubes, quantum dots, and metal-organic frameworks.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.,PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
5
|
Sun S, Shi N, Zhang B, Liao X, Huang Z, Chen X, Pu X, Yin G. Hierarchically porous CuO spindle-like nanosheets grown on a carbon cloth for sensitive non-enzymatic glucose sensoring. NANOTECHNOLOGY 2020; 31:375502. [PMID: 32460258 DOI: 10.1088/1361-6528/ab96e2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, porous CuO spindle-like nanosheets were fabricated on a carbon cloth using a facile hydrothermal method, and surface morphology, microstructure, and glucose sensing performance were studied. The porous spindle-like nanosheets are constructed by nanoparticles and slit-like pores, exhibiting a hierarchical structure. When used for non-enzymatic glucose sensoring, the obtained CuO nanosheet electrode exhibits a wide linear range from 0.05 to 3.30 mM, a high sensitivity of 785.2 μA mM-1 cm-2 and a low detection limit of 0.22 μM (S/N = 3). Besides, good selectivity, stability, and reproducibility for glucose detection indicate a promising application of CuO nanosheet electrodes as non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Shupei Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gao X, Du X, Liu D, Gao H, Wang P, Yang J. Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Sci Rep 2020; 10:1365. [PMID: 31992829 PMCID: PMC6987199 DOI: 10.1038/s41598-020-58403-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Non-enzymatic electrodes based on noble metals have excellent selectivity and high sensitivity in glucose detection but no such shortcomings as easy to be affected by pH, temperature, and toxic chemicals. Herein, spherical gold-nickel nanoparticles with a core-shell construction (Au@Ni) are prepared by oleylamine reduction of their metal precursors. At an appropriate Au/Ni ratio, the core-shell Au@Ni nanoparticles as a sensor for glucose detection combine the high electrocatalytic activity, good selectivity and biological compatibility of Au with the remarkable tolerance of Ni for chlorine ions (Cl-) and poisoning intermediates in catalytic oxidation of glucose. This electrode exhibits a low operating voltage of 0.10 V vs. SCE for glucose oxidation, leading to higher selectivity compared with other Au- and Ni-based sensors. The linear range for the glucose detection is from 0.5 mmol L-1 to 10 mmol L-1 with a rapid response time of ca. 3 s, good stability, sensitivity estimated to be 23.17 μA cm-2 mM-1, and a detection limit of 0.0157 mM. The sensor displays high anti-toxicity, and is not easily poisoned by the adsorption of Cl- in solution.
Collapse
Affiliation(s)
- Xuejin Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xinzhao Du
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Danye Liu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Gao
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- Engineering Research Centre of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
- Beijing Laboratory for Urban Mass Transit, Beijing University of Technology, Beijing, 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
| | - Pu Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
- Engineering Research Centre of Digital Community, Ministry of Education, Beijing University of Technology, Beijing, 100124, China
- Beijing Laboratory for Urban Mass Transit, Beijing University of Technology, Beijing, 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
7
|
Syrek K, Skolarczyk M, Zych M, Sołtys-Mróz M, Sulka GD. A Photoelectrochemical Sensor Based on Anodic TiO 2 for Glucose Determination. SENSORS 2019; 19:s19224981. [PMID: 31731703 PMCID: PMC6891723 DOI: 10.3390/s19224981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023]
Abstract
A simple photoelectrochemical (PEC) sensor based on non-modified nanostructured anodic TiO2 was fabricated and used for a rapid and sensitive detection of glucose. The anodic TiO2 layers were synthesized in an ethylene glycol-based solution containing NH4F (0.38 wt.%) and H2O (1.79 wt.%) via a three-step procedure carried out at the constant voltage of 40 V at 20 °C. At the applied potentials of 0.2, 0.5, and 1 V vs. saturated calomel electrode (SCE), the developed sensor exhibited a photoelectochemical response toward the oxidation of glucose, and two linear ranges in calibration plots were observed. The highest sensitivity of 0.237 µA µmol−1 cm−2 was estimated for the applied bias of 1 V. The lowest limit of detection (LOD) was obtained for the potential of 0.5 V vs. SCE (7.8 mM) with the fastest response at ~3 s. Moreover, the proposed PEC sensor exhibited relatively high sensibility, good reproducibility, and due to its self-cleaning properties, a good long-term stability. Interfering tests showed the selective response of the sensor in the presence of urea and uric acid. Real-life sample analyses were performed using an intravenous glucose solution, which confirmed the possibility of determining the concentration of analyte in such types of samples.
Collapse
|
8
|
Shetti NP, Bukkitgar SD, Reddy KR, Reddy CV, Aminabhavi TM. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf B Biointerfaces 2019; 178:385-394. [DOI: 10.1016/j.colsurfb.2019.03.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
|
9
|
Wang L, Meng Y, Zhang C, Xiao H, Li Y, Tan Y, Xie Q. Improving Photovoltaic and Enzymatic Sensing Performance by Coupling a Core-Shell Au Nanorod@TiO 2 Heterostructure with the Bioinspired l-DOPA Polymer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9394-9404. [PMID: 30758182 DOI: 10.1021/acsami.8b19284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The photoelectrochemistry (PEC) performance of TiO2 is somewhat limited by its wide band gap and low quantum efficiency, and the innovation of its composite materials provides a promising solution for an improved performance. Herein, a composite of a Au nanorod@TiO2 core-shell nanostructure (AuNR@TiO2) and a melanin-like l-DOPA polymer (PD) is designed and prepared, where the outer layer PD tethered by TiO2-hydroxyl complexation and the AuNR core can intensify the long-wavelength light harvesting, and the AuNR@TiO2 core-shell structure can strengthen the hot-electron transfer to TiO2. The photocurrent of PD/AuNR@TiO2 is 8.4-fold improved versus that of commercial TiO2, and the maximum incident photon-to-electron conversion efficiency reaches 65% in the UV-visible-near-infrared region. In addition, the novel PD/AuNR@TiO2 photocatalyst possesses the advantages of good biocompatibility and stability, which can act as a versatile PEC biosensing platform for providing a biocompatible environment and improving detection sensitivity. Herein, a PEC enzymatic biosensor of glucose is developed on the basis of the immobilization of dual enzyme [glucose oxidase (GOx) and horseradish peroxidase (HRP)] in PD and the signaling strategy of biocatalytic precipitation. In phosphate buffer containing glucose and 4-chloro-1-naphthol, the HRP-catalyzed oxidation of 4-chloro-1-naphthol by GOx-generated H2O2 can form a precipitate on the electrode, by which the decrement of photocurrent intensity is proportional to the common logarithm of glucose concentration. The linear detection range is from 0.05 μM to 10.0 mM glucose, with a limit of detection of 0.01 μM (S/N = 3). Glucose in some human serum samples is analyzed with satisfactory results.
Collapse
Affiliation(s)
- Linping Wang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yue Meng
- Institute of Nano-Bio Diagnosis and Therapy, College of Chemistry and Materials Engineering , Hunan University of Arts and Science , Changde 415000 , China
| | - Chunxiu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Hongbo Xiao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yunlong Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Yueming Tan
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| | - Qingji Xie
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P.R. China
| |
Collapse
|
10
|
Cao M, Wang H, Ji S, Zhao Q, Pollet BG, Wang R. Hollow core-shell structured Cu2O@Cu1.8S spheres as novel electrode for enzyme free glucose sensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:174-182. [DOI: 10.1016/j.msec.2018.10.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/05/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
|
11
|
Xu F, Meng K, Cheng B, Yu J, Ho W. Enhanced Photocatalytic Activity and Selectivity for CO
2
Reduction over a TiO
2
Nanofibre Mat Using Ag and MgO as Bi‐Cocatalyst. ChemCatChem 2018. [DOI: 10.1002/cctc.201801282] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Feiyan Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 P. R. China
| | - Kai Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 P. R. China
| | - Wingkei Ho
- Department of Science and Environmental Studies and State Key Laboratory in Marine PollutionThe Education University of Hong Kong Tai Po Hong Kong 999077 P.R. China
| |
Collapse
|
12
|
Yuan RM, Li HJ, Yin XM, Wang HQ, Lu JH, Zhang LL. Coral-like Cu-Co-mixed oxide for stable electro-properties of glucose determination. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Mikrochim Acta 2017; 185:49. [PMID: 29594566 DOI: 10.1007/s00604-017-2609-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.
Collapse
|