1
|
Behera S, Singh D, Mohapatra S, Behera BC, Thatoi H. Organic acid-fractionated lignin silver nanoparticles: Antimicrobial, anticancer, and antioxidant characteristics. Int J Biol Macromol 2024; 280:135738. [PMID: 39293629 DOI: 10.1016/j.ijbiomac.2024.135738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Bioactive substances are utilized to treat a variety of diseases. Green lignin-mediated silver nanoparticles (L-Ag-NPs) have significant promise as a building block in the production of bio-renovation materials. The work optimized organic acid extraction to remove lignin from residual fermented hybrid Napier grass byproducts. We subsequently produced L-Ag-NPs. FTIR, XRD, DLS, and STEM characterized the sample. L-Ag-NPs were tested for antioxidant activity with the DPPH, DMPD, FRAP, and ABTS assays, as well as antibacterial activities. Antimicrobial activity was evaluated using four pathogenic bacteria (Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli). In contrast, cytotoxicity and ROS production assays were carried out using the HeLa cell line. The findings showed that L-Ag-NPs had high antioxidant efficiency. For each bacteria isolate, the antimicrobial activity showed favorable growth inhibition, with significant variations in L-Ag-NPs. L-Ag-NPs were reported to have an IC50 of 43.61 g/mL in the cytotoxicity test, and a significant increase in ROS generation was seen. In conclusion, L-Ag NPs have an excellent prospect in the pharmaceutical and biomedical industries and can be a dependable and environmentally safe material for their potential use.
Collapse
Affiliation(s)
- Sandesh Behera
- Department of Biotechnology, Maharaja Sriram Chandra BhanjaDeo University, Baripada 757003, Odisha, India
| | - Deepika Singh
- Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sonali Mohapatra
- Department of Biological Systems Engineering, Enzyme Institute, University of Wisconsin, Madison 53705, USA
| | - Bikash Chandra Behera
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, Odisha, India.
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
2
|
Liu X, Chen Q, Xu S, Wu J, Zhao J, He Z, Pan A, Wu J. A Prototype of Graphene E-Nose for Exhaled Breath Detection and Label-Free Diagnosis of Helicobacter Pylori Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401695. [PMID: 38965802 PMCID: PMC11425842 DOI: 10.1002/advs.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Helicobacter pylori (HP), a common microanaerobic bacteria that lives in the human mouth and stomach, is reported to infect ≈50% of the global population. The current diagnostic methods for HP are either invasive, time-consuming, or harmful. Therefore, a noninvasive and label-free HP diagnostic method needs to be developed urgently. Herein, reduced graphene oxide (rGO) is composited with different metal-based materials to construct a graphene-based electronic nose (e-nose), which exhibits excellent sensitivity and cross-reactive response to several gases in exhaled breath (EB). Principal component analysis (PCA) shows that four typical types of gases in EB can be well discriminated. Additionally, the potential of the e-nose in label-free detection of HP infection is demonstrated through the measurement and analysis of EB samples. Furthermore, a prototype of an e-nose device is designed and constructed for automatic EB detection and HP diagnosis. The accuracy of the prototype machine integrated with the graphene-based e-nose can reach 92% and 91% in the training and validation sets, respectively. These results demonstrate that the highly sensitive graphene-based e-nose has great potential for the label-free diagnosis of HP and may become a novel tool for non-invasive disease screening and diagnosis.
Collapse
Affiliation(s)
- Xuemei Liu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Qiaofen Chen
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
- Will‐think Sensing Technology Co., LTDHangzhou310030China
| | - Shiyuan Xu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jiaying Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Zhengfu He
- Department of Thoracic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Aiwu Pan
- Department of Internal MedicineThe Second Affiliated Hospital of Zhejiang UniversityHangzhou310003China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| |
Collapse
|
3
|
Feng N, Zhao X, Hu J, Tang F, Liang S, Wu Q, Zhang C. Recent advance in preparation of lignin nanoparticles and their medical applications: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155711. [PMID: 38749074 DOI: 10.1016/j.phymed.2024.155711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Lignin has attracted a lot of attention because it is non-toxic, renewable and biodegradable. Lignin nanoparticles (LNPs) have high specific surface area and specific surface charges. It provides LNPs with good antibacterial and antioxidant properties. LNPs preparation has become clear, however, the application remains in the early stages. PURPOSE A review centric research has been conducted, reviewing existing literature to accomplish a basic understanding of the medical applications of LNPs. METHODS Initially, we extensively counseled the heterogeneity of lignin from various sources. The size and morphology of LNPs from different preparation process were then discussed. Subsequently, we focused on the potential medical applications of LNPs, including drug delivery, wound healing, tissue engineering, and antibacterial agents. Lastly, we explained the significance of LNPs in terms of antibacterial, antioxidant and biocompatibility, especially highlighting the need for an integrated framework to understand a diverse range of medical applications of LNPs. RESULTS We outlined the chemical structure of different type of lignin, and highlighted the advanced methods for lignin nanoparticles preparation. Moreover, we provided an in-depth review of the potential applications of lignin nanoparticles in various medical fields, especially in drug carriers, wound dressings, tissue engineering components, and antimicrobial agents. CONCLUSION This review provides a detailed overview on the current state and progression of lignin nanoparticles for medical applications.
Collapse
Affiliation(s)
- Nianjie Feng
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xiangdong Zhao
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jiaxin Hu
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Fei Tang
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuang Liang
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qian Wu
- School of Material Science and Chemical Engineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China.
| |
Collapse
|
4
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
5
|
Malik S, Fatima B, Hussain D, Imran M, Chohan TA, Khan MS, Majeed S, Najam-Ul-Haq M. Synthesis of novel nonsteroidal anti-inflammatory galloyl β-sitosterol-loaded lignin-capped Ag-based drug. Inflammopharmacology 2024; 32:1333-1351. [PMID: 37994993 DOI: 10.1007/s10787-023-01390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Biocompatible anti-inflammatory lignin-capped Ag (LCAg) nanoparticles (NPs) were synthesized for the delivery of galloyl β-sitosterol (Galloyl-BS). β-Sitosterol (BS) is effective against inflammatory responses, like cancer-induced inflammations. BS was modified via gallic acid esterification to enhance its anti-inflammatory potential. LCAg NPs were synthesized by a green method and loaded with galloyl-BS. For comparison, pure BS was also loaded onto LCAg NPs in a separate assembly. The antioxidant potential of Galloyl-BS was greater (IC50 177 µM) than pure BS. Materials were characterized by FT-IR, SEM, XRD, and Zeta potential. Using UV-Vis spectroscopy, drug release experiments were performed by varying pH, time, concentration, and temperature. Maximum drug release was observed after 18 h at pH 6 and 40 °C. Galloyl-BS showed improved drug loading efficiency, release %age, and antioxidant activity compared to pure BS when loaded onto LCAg NPs. DLCAg exhibited excellent anti-inflammatory activity in rat models. These findings indicate that galloyl-BS (drug)-loaded LCAg (DLCAg) NPs have the potential as an anti-inflammatory agent without any prior release and scavenging in normal cells.
Collapse
Affiliation(s)
- Sana Malik
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Imran
- Biochemistry Section Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Tahir Ali Chohan
- Department of Biochemistry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
6
|
Bansal R, Barshilia HC, Pandey KK. Nanotechnology in wood science: Innovations and applications. Int J Biol Macromol 2024; 262:130025. [PMID: 38340917 DOI: 10.1016/j.ijbiomac.2024.130025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Application of nanomaterials is gaining tremendous interest in the field of wood science and technology for value addition and enhancing performance of wood and wood-based composites. This review focuses on the use of nanomaterials in improving the properties of wood and wood-based materials and protecting them from weathering, biodegradation, and other deteriorating agents. UV-resistant, self-cleaning (superhydrophobic) surfaces with anti-microbial properties have been developed using the extraordinary features of nanomaterials. Scratch-resistant nano-coatings also improve durability and aesthetic appeal of wood. Moreover, nanomaterials have been used as wood preservatives for increasing the resistance against wood deteriorating agents such as fungi, termites and borers. Wood can be made more resistant to ignition and slower to burn by introducing nano-clays or nanoparticles of metal-oxides. The use of nanocellulose and lignin nanoparticles in wood-based products has attracted huge interest in developing novel materials with improved properties. Nanocellulose and lignin nanoparticles derived/synthesized from woody biomass can enhance the mechanical properties such as strength and stiffness and impart additional functionalities to wood-based products. Cellulose nano-fibres/crystals find application in wide areas of materials science like reinforcement for composites. Incorporation of nanomaterials in resin has been used to enhance specific properties of wood-based composites. This review paper highlights some of the advancements in the use of nanotechnology in wood science, and its potential impact on the industry.
Collapse
Affiliation(s)
- Richa Bansal
- Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru 560003, India
| | - Harish C Barshilia
- CSIR-National Aerospace Laboratories, HAL Airport Road, Bangalore 560017, India
| | - Krishna K Pandey
- Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru 560003, India.
| |
Collapse
|
7
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int J Biol Macromol 2023; 252:126281. [PMID: 37572815 DOI: 10.1016/j.ijbiomac.2023.126281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The control of microbial infection transmission often relies on the utilization of synthetic and metal-based antimicrobial agents. However, their non-biodegradability and inadequate disposal practices lead to significant environmental contamination. To address this concern, the quest for natural alternatives has gained paramount importance. Lignin, a widely available renewable aromatic compound, emerges as a promising candidate owing to its inherent phenolic moiety, which lends itself well to acting as a natural antimicrobial agent either independently or in combination with other agents. This article provides a comprehensive account of the structure and primary classes of lignin. Additionally, it elucidates the antimicrobial mechanism of lignin, the factors influencing its efficacy, and the methods employed for its detection. Moreover, it describes the progress made in developing the antimicrobial capacity of lignin in different areas. In conclusion, this paper not only outlines the current state of research on the antimicrobial function of lignin, but also identifies challenges and future possibilities for enhancing its antimicrobial properties. This work holds great significance in the ongoing endeavor to contribute to high-impact research on natural alternatives for controlling infections and fostering environmentally conscious practices.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Zhang S, Yu F, Chen J, Yan D, Gong D, Chen L, Chen J, Yao Q. A thin film comprising silk peptide and cellulose nanofibrils implanting on the electrospun poly(lactic acid) fibrous scaffolds for biomedical reconstruction. Int J Biol Macromol 2023; 251:126209. [PMID: 37567522 DOI: 10.1016/j.ijbiomac.2023.126209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Conjunctival reconstruction using biocompatible polymers constitutes an effective treatment for conjunctival scarring and associated visual impairment. In this work, a thin film comprising silk peptide (SP), cellulose nanofibrils (CNF) and Ag nanoparticles (AgNPs) that implanted on the poly(lactic acid) (PLA) electrospun fibrous membranes (EFMs) was designed for biomedical reconstruction. SP and CNF as thin films can improve the surface hydrophilicity of the as-prepared scaffolds, which synergistically enhanced the biocompatibility. In in vivo experiments, the developed PLA EFMs modified with 3 wt% SP/CNF/AgNPs could be easily manipulated and transplanted onto conjunctival defects in rabbits, consequently accelerating the structural and functional restoration of the ocular surface in 12 days. Additionally, incorporation of 0.30 mg/g AgNPs efficiently reduced the topical application of antibiotics without causing infections. Thus, these resultant scaffolds could not only serve as useful alternatives for conjunctival engineering, but also prevent infections effectively with a very low content of AgNPs.
Collapse
Affiliation(s)
- Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jin Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Danni Gong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
9
|
Vo TV, Tran NT, Nguyen PLM, Nguyen NN, Nguyen NT, Nguyen TTT, Tran TTV, Nguyen VP, Thai HT, Hoang D. Sustainable Lignin-Based Nano Hybrid Biomaterials with High-Performance Antifungal Activity. ACS OMEGA 2023; 8:37540-37548. [PMID: 37841154 PMCID: PMC10568684 DOI: 10.1021/acsomega.3c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Aspergillus flavus (A. flavus) and Aspergillus niger (A. niger) mainly spread through airborne fungal spores. An effective control to impede the dissemination of the spores of Aspergillus in the air affecting the environment and food was carried out. This study focuses on the sustainable rice husk-extracted lignin, nanolignin, lignin/n-lignin capped silver nanoparticles used for fungal growth inhibition. These biomaterials inhibit the growth of fungi by altering the permeability of cell membranes and influencing intracellular biosynthesis. The antifungal indexes for A. flavus and A. niger on day 5 at a concentration of 2000 μg/100 μL are 50.8 and 43.6%, respectively. The results demonstrate that the hybrid biomaterials effectively prevent the growth or generation of fungal spores. The findings of this research hold significant implications for future investigations focused on mitigating the dissemination of Aspergillus during the cultivation of agricultural products or in the process of assuring agricultural product management, such as peanuts and onions.
Collapse
Affiliation(s)
- Tuan Vu Vo
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Nhat Thong Tran
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Phi Long My Nguyen
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Nguyen Ngan Nguyen
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Department
of Chemical Engineering, Pohang University
of Science and Technology, Pohang 37673, Korea
| | - Ngoc Thuy Nguyen
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Trang Thi Thu Nguyen
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Thi Thanh Van Tran
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| | - Vinh Phu Nguyen
- Faculty
of Basic Sciences, University of Medicine
and Pharmacy, Hue University, Hue
City 530000, Vietnam
| | - Hoa Tran Thai
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - DongQuy Hoang
- University
of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi
Minh City 700000, Vietnam
| |
Collapse
|
10
|
Peng D, Shan J, Fan Z, Huang C, Chen H, Wu X. Mechanistic insights into the cinnamaldehyde modification of lignin for sustainable anti-fungal reagent. Int J Biol Macromol 2023; 249:125994. [PMID: 37506788 DOI: 10.1016/j.ijbiomac.2023.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The limited anti-fungal activity of enzymatic hydrolysis lignin (EHL) has been a challenge in its direct application as a bamboo preservative. To address this issue, the cinnamaldehyde modification of EHL was carried out to introduce anti-fungal structures into the lignin matrix, effectively enhancing its anti-fungal activity. The results demonstrated that the minimal inhibitory concentrations of the modified lignin (EHL-DC) against Aspergillus niger significantly improved from 16 mg/mL to 1 mg/mL, with comparable enhancements in anti-fungal activity against other fungi. As a result of the modification, the EHL-DC is more prone to interact with fungal cell membranes, contributing to a roughened, shrunken hyphal surface and a decrease in mycelial biomass. Multiple characterization methods were employed to better grapple with the EHL-DC chemical changes. The nitrogen content increased from 2.3 % to 8.3 %, and alterations in elemental compositions further support the proposed reaction mechanism and its role in enhancing EHL's anti-fungal activity. This study offers novel insights into the high-value utilization of enzymatic hydrolysis lignin based on green chemistry principles.
Collapse
Affiliation(s)
- Dandan Peng
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Jingqun Shan
- School of Finance, Zhejiang University of Finance and Economics, Hangzhou 310018, People's Republic of China
| | - Zhiwei Fan
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Haili Chen
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China.
| | - Xinxing Wu
- School of Chemical and Materials Engineering, National Engineering & Technology Research Center of Wood-Based Resources Comprehensive Utilization, Zhejiang A & F University, Hangzhou 311300, People's Republic of China; Microbes and Insects Control Institute of Bio-based Materials, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
11
|
Haider MK, Kharaghani D, Yoshiko Y, Kim IS. Lignin-facilitated growth of Ag/CuNPs on surface-activated polyacryloamidoxime nanofibers for superior antibacterial activity with improved biocompatibility. Int J Biol Macromol 2023; 242:124945. [PMID: 37211079 DOI: 10.1016/j.ijbiomac.2023.124945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Nanofibers are one of the role-playing innovations of nanotechnology. Their high surface-to-volume ratio allows them to be actively functionalized with a wide range of materials for a variety of applications. The functionalization of nanofibers with different metal nanoparticles (NPs) has been studied widely to fabricate antibacterial substrates to battle antibiotic-resistant bacteria. However, metal NPs show cytotoxicity to living cells, thereby restricting their application in biomedicine. OBJECTIVES To minimize the cytotoxicity of NPs, biomacromolecule lignin was employed as both a reducing and capping agent to green synthesize silver (Ag) and copper (Cu) NPs on the surface of highly activated polyacryloamidoxime nanofibers. The activation of polyacrylonitrile (PAN) nanofibers via amidoximation was employed for enhanced loading of NPs to achieve superior antibacterial activity. METHODOLOGY At first, electrospun PAN nanofibers (PANNM) were activated to produce polyacryloamidoxime nanofibers (AO-PANNM) by immersing PANNM in a solution of Hydroxylamine hydrochloride (HH) and Na2CO3 under controlled conditions. Later, Ag and Cu ions were loaded by immersing AO-PANNM in different molar concentrations of AgNO3 and CuSO4 solutions in a stepwise manner. The reduction of Ag and Cu ions into NPs to fabricate bimetal-coated PANNM (BM-PANNM) was carried out via alkali lignin at 37 °C for 3 h in a shaking incubator with ultrasonication every 1 h. RESULTS AO-APNNM and BM-PANNM hold their nano-morphology except for some changes in fiber orientation. XRD analysis demonstrated the formation of Ag and CuNPs as evident from their respective spectral band. Maximum 8.46 ± 0.14 wt% and 0.98 ± 0.04 wt% Ag and Cu species were loaded on AO-PANNM, respectively as revealed by ICP spectrometric analysis. The hydrophobic PANNM turned into super hydrophilic, having WCA of 14 ± 3.32° after amidoximation which further reduced to 0° for BM-PANNM. However, the swelling ratio of PANNM reduced from 13.19 ± 0.18 g/g to 3.72 ± 0.20 g/g for AO-PANNM. Even at the third cycle test against S. aureus strains, 0.1Ag/Cu-PANNM, 0.3Ag/Cu-PANNM, and 0.5Ag/Cu-PANNM displayed bacterial reduction of 71.3 ± 1.64 %, 75.2 ± 1.91 %, and 77.24 ± 1.25 %, respectively. On 3rd cycle test against E. coli, above 82 % bacterial reduction was noticed for all BM-PANNM. Amidoximation increased COS-7 cell viability up to 82 %. The cell viability of 0.1Ag/Cu-PANNM, 0.3Ag/Cu-PANNM, and 0.5Ag/Cu-PANNM was found to be ~68 %, ~62, and 54 %, respectively. In LDH assay, almost no release of LDH was detected, suggesting the compatibility of the cell membrane in contact with BM-PANNM. The improved biocompatibility of BM-PANNM even at higher loading (%) of NPs must be ascribed to the controlled release of metal species in the early stage, antioxidant, and biocompatible lignin capping of NPs. CONCLUSIONS BM-PANNM displayed superior antibacterial activity against E. coli and S. aureus bacterial strains and acceptable biocompatibility of COS-7 cells even at higher loading (%) of Ag/CuNPs. Our findings suggest that BM-PANNM can be used as a potential antibacterial wound dressing and other antibacterial applications where sustained antibacterial activity is needed.
Collapse
Affiliation(s)
- Md Kaiser Haider
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
12
|
Ferreres G, Ivanova K, Torrent-Burgués J, Tzanov T. Multimodal silver-chitosan-acylase nanoparticles inhibit bacterial growth and biofilm formation by Gram-negative Pseudomonas aeruginosa bacterium. J Colloid Interface Sci 2023; 646:576-586. [PMID: 37210905 DOI: 10.1016/j.jcis.2023.04.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Pseudomonas aeruginosa bacteria originate severe infections in hospitalized patients and those with chronic debilitating diseases leading to increased morbidity and mortality, longer hospitalization and huge financial burden to the healthcare system. The clinical relevance of P. aeruginosa infections is increased by the capability of this bacterium to grow in biofilms and develop multidrug resistant mechanisms that preclude conventional antibiotic treatments. Herein, we engineered novel multimodal nanocomposites that integrate in the same entity antimicrobial silver nanoparticles (NPs), the intrinsically antimicrobial, but biocompatible biopolymer chitosan, and the anti-infective quorum quenching enzyme acylase I. Acylase present in the NPs specifically degraded the signal molecules governing bacterial cell-to-cell communication and inhibited by ∼ 55 % P. aeruginosa biofilm formation, while the silver/chitosan template altered the integrity of bacterial membrane, leading to complete eradication of planktonic bacteria. The innovative combination of multiple bacteria targeting modalities resulted in 100-fold synergistic enhancement of the antimicrobial efficacy of the nanocomposite at lower and non-hazardous towards human skin cells concentrations, compared to the silver/chitosan NPs alone.
Collapse
Affiliation(s)
- Guillem Ferreres
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Juan Torrent-Burgués
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain.
| |
Collapse
|
13
|
Mukheja Y, Kaur J, Pathania K, Sah SP, Salunke DB, Sangamwar AT, Pawar SV. Recent advances in pharmaceutical and biotechnological applications of lignin-based materials. Int J Biol Macromol 2023; 241:124601. [PMID: 37116833 DOI: 10.1016/j.ijbiomac.2023.124601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Lignin, a versatile and abundant biomass-derived polymer, possesses a wide array of properties that makes it a promising material for biotechnological applications. Lignin holds immense potential in the biotechnology and pharmaceutical field due to its biocompatibility, high carbon content, low toxicity, ability to be converted into composites, thermal stability, antioxidant, UV-protectant, and antibiotic activity. Notably, lignin is an environmental friendly alternative to synthetic plastic and fossil-based materials because of its inherent biodegradability, safety, and sustainability potential. The most important findings related to the use of lignin and lignin-based materials are reported in this review, providing an overview of the methods and techniques used for their manufacturing and modification. Additionally, it emphasizes on recent research and the current state of applications of lignin-based materials in the biomedical and pharmaceutical fields and also highlights the challenges and opportunities that need to be overcome to fully realize the potential of lignin biopolymer. An in-depth discussion of recent developments in lignin-based material applications, including drug delivery, tissue engineering, wound dressing, pharmaceutical excipients, biosensors, medical devices, and several other biotechnological applications, is provided in this review article.
Collapse
Affiliation(s)
- Yashdeep Mukheja
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Jaspreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Khushboo Pathania
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sangeeta P Sah
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Abhay T Sangamwar
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
14
|
Tran NT, Ha D, Pham LH, Vo TV, Nguyen NN, Tran CK, Nguyen DM, Nguyen TTT, Van Tran TT, Nguyen PLM, Hoang D. Ag/SiO 2 nanoparticles stabilization with lignin derived from rice husk for antifungal and antibacterial activities. Int J Biol Macromol 2023; 230:123124. [PMID: 36599386 DOI: 10.1016/j.ijbiomac.2022.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Antibacterial materials have been developed for a long time but bacteria adapt very quickly and become resistant to these materials. This study focuses on the synthesis of a hybrid material system from lignin and silver/silica nanoparticles (Lig@Ag/SiO2 NPs) which were used against bacteria including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and inhibited the growth of the fungal Aspergillus flavus (A. flavus). The results showed that the spherical diameter of Lig@Ag/SiO2 NPs has narrow Gaussian distribution with a range from 15 nm to 40 nm in diameter. Moreover, there was no growth of E. coli in samples containing Lig@Ag/SiO2 NPs during 72-h incubation while colonies of S. aureus were only observed at high concentrations (106 CFU/mL) although both species of bacteria were able to thrive even at low bacterial concentration when they were exposed to Ag/SiO2 or lignin. For fungal resistance results, Lig@Ag/SiO2 NPs not only reduced mycelial growth but also inhibited sporulation in A. flavus, leading to decreasing the spreading of spores into the environment. This result represents a highly effective fungal growth inhibition of Lig@Ag/SiO2 NPs compared to lignin or Ag/SiO2, which could not inhibit the growth of sporulation.
Collapse
Affiliation(s)
- Nhat Thong Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Dat Ha
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Lam H Pham
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Tuan Vu Vo
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Nguyen Ngan Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Cong Khanh Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Dang Mao Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Laboratoire Innovation Matériau Bois Habitat (LIMBHA), Ecole supérieure du bois, 7 Rue Christian Pauc, 44306 Nantes, France.
| | - Trang Thi Thu Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Thi Thanh Van Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| | - Phi Long My Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam.
| | - DongQuy Hoang
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
15
|
Fragou F, Theofanous A, Deligiannakis Y, Louloudi M. Nanoantioxidant Materials: Nanoengineering Inspired by Nature. MICROMACHINES 2023; 14:383. [PMID: 36838085 PMCID: PMC9963756 DOI: 10.3390/mi14020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Oxidants are very active compounds that can cause damage to biological systems under specific environmental conditions. One effective way to counterbalance these adverse effects is the use of anti-oxidants. At low concentrations, an antioxidant is defined as a compound that can delay, control, or prevent an oxidative process. Antioxidants exist in plants, soil, and minerals; therefore, nature is a rich source of natural antioxidants, such as tocopherols and polyphenols. In nature, antioxidants perform in tandem with their bio-environment, which may tune their activity and protect them from degradation. In vitro use of antioxidants, i.e., out of their biomatrix, may encounter several drawbacks, such as auto-oxidation and polymerization. Artificial nanoantioxidants can be developed via surface modification of a nanoparticle with an antioxidant that can be either natural or synthetic, directly mimicking a natural antioxidant system. In this direction, state-of-the-art nanotechnology has been extensively incorporated to overcome inherent drawbacks encountered in vitro use of antioxidants, i.e., out of their biomatrix, and facilitate the production and use of antioxidants on a larger scale. Biomimetic nanoengineering has been adopted to optimize bio-medical antioxidant systems to improve stability, control release, enhance targeted administration, and overcome toxicity and biocompatibility issues. Focusing on biotechnological sciences, this review highlights the importance of nanoengineering in developing effective antioxidant structures and comparing the effectiveness of different nanoengineering methods. Additionally, this study gathers and clarifies the different antioxidant mechanisms reported in the literature and provides a clear picture of the existing evaluation methods, which can provide vital insights into bio-medical applications.
Collapse
Affiliation(s)
- Fotini Fragou
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Annita Theofanous
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | - Maria Louloudi
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| |
Collapse
|
16
|
Morena AG, Tzanov T. Antibacterial lignin-based nanoparticles and their use in composite materials. NANOSCALE ADVANCES 2022; 4:4447-4469. [PMID: 36341306 PMCID: PMC9595106 DOI: 10.1039/d2na00423b] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2023]
Abstract
Lignin, one of the most abundant biopolymers on earth, has been traditionally considered a low-value by-product of the pulp and paper industries. This renewable raw material, besides being a source of valuable molecules for the chemical industry, also has antioxidant, UV-absorbing, and antibacterial properties in its macromolecular form. Moreover, lignin in the form of nanoparticles (LigNPs) presents advantages over bulk lignin, such as higher reactivity due to its larger surface-to-volume ratio. In view of the rapid surge of antimicrobial resistance (AMR), caused by the overuse of antibiotics, continuous development of novel antibacterial agents is needed. The use of LigNPs as antibacterial agents is a suitable alternative to conventional antibiotics for topical application or chemical disinfectants for surfaces and packaging. Besides, their multiple and unspecific targets in the bacterial cell may prevent the emergence of AMR. This review summarizes the latest developments in antibacterial nano-formulated lignin, both in dispersion and embedded in materials. The following roles of lignin in the formulation of antibacterial NPs have been analyzed: (i) an antibacterial active in nanoformulations, (ii) a reducing and capping agent for antimicrobial metals, and (iii) a carrier of other antibacterial agents. Finally, the review covers the inclusion of LigNPs in films, fibers, hydrogels, and foams, for obtaining antibacterial lignin-based nanocomposites for a variety of applications, including food packaging, wound healing, and medical coatings.
Collapse
Affiliation(s)
- A Gala Morena
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya Rambla Sant Nebridi 22 Terrassa 08222 Spain +34 93 739 82 25 +34 93 739 85 70
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya Rambla Sant Nebridi 22 Terrassa 08222 Spain +34 93 739 82 25 +34 93 739 85 70
| |
Collapse
|
17
|
Hajtuch J, Iwicka E, Szczoczarz A, Flis D, Megiel E, Cieciórski P, Radomski MW, Santos-Martinez MJ, Inkielewicz-Stepniak I. The Pharmacological Effects of Silver Nanoparticles Functionalized with Eptifibatide on Platelets and Endothelial Cells. Int J Nanomedicine 2022; 17:4383-4400. [PMID: 36164554 PMCID: PMC9507977 DOI: 10.2147/ijn.s373691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose In the search for new drug delivery platforms for cardiovascular diseases and coating of medical devices, we synthesized eptifibatide-functionalized silver nanoparticles (AgNPs-EPI) and examined the pharmacological activity of AgNPs-EPI on platelets and endothelial cells in vitro and ex vivo. Methods Spherical AgNPs linked to eptifibatide were synthesized and characterized. Cytotoxicity was measured in microvascular endothelial cells (HMEC-1), platelets and red blood cells. Platelet mitochondrial respiration was measured using the Oxygraph-2k, a high-resolution modular respirometry system. The effect of AgNPs-EPI on the aggregation of washed platelets was measured by light aggregometry and the ex vivo occlusion time was determined using a reference laboratory method. The surface amount of platelet receptors such as P-selectin and GPIIb/IIIa was measured. The influence of AgNPS-EPI on blood coagulation science was assessed. Finally, the effect of AgNPs-EPI on endothelial cells was measured by the levels of 6-keto-PGF1alpha, tPa, cGMP and vWF. Results We describe the synthesis of AgNPs using eptifibatide as the stabilizing ligand. The molecules of this drug are directly bonded to the surface of the nanoparticles. The synthesized AgNPs-EPI did not affect the viability of platelets, endothelial cells and erythrocytes. Preincubation of platelets with AgNPs-EPI protected by mitochondrial oxidative phosphorylation capacity. AgNPs-EPI inhibited aggregation-induced P-selectin expression and GPIIb/IIIa conformational changes in platelets. AgNPs-EPI caused prolongation of the occlusion time in the presence of collagen/ADP and collagen/adrenaline. AgNPs-EPI regulated levels of 6-keto-PGF1alpha, tPa, vWf and cGMP produced in thrombin stimulated HMEC-1 cells. Conclusion AgNPs-EPI show anti-aggregatory activity at concentrations lower than those required by the free drug acting via regulation of platelet aggregation, blood coagulation, and endothelial cell activity. Our results provide proof-of-principle evidence that AgNPs may be used as an effective delivery platform for antiplatelet drugs.
Collapse
Affiliation(s)
- Justyna Hajtuch
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eliza Iwicka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Szczoczarz
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Damian Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Marek Witold Radomski
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maria Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences and School of Medicine, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | | |
Collapse
|
18
|
Fabrication of flower-like Ag/lignin composites and application in antibacterial fabrics. Int J Biol Macromol 2022; 222:783-793. [PMID: 36174864 DOI: 10.1016/j.ijbiomac.2022.09.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
The bacterial infection and its transmission pose a great threat to life and health, which leads to the urgent development of efficient and broad-spectrum antibacterial agents. Herein, Ag/lignin layered nanoflower (Ag/EHL-CM-0.05) was synthesized by using biomass lignin as reducing and capping agents and silver nitrate as precursor. The study showed that the size distribution of Ag NPs was uniform distribution and about 20-40 nm. The crystal surface of Ag NPs was Ag (111) surface. The minimum inhibitory concentration of Ag/EHL-CM-0.05 against E. coli and S. aureus was all 7.8 μg/mL, which was the lowest of other Ag/lignin antibacterial materials and reached a level nearly as polycationic antibacterial agents. The antibacterial mechanism suggested that Ag/EHL-CM-0.05 could release OH and Ag+, which could cause bacterial death. Finally, Ag/EHL-CM-0.05 was sprayed onto the viscose fabrics by liquid-phase spray deposition method. It was found that the inhibition zone diameter of modified viscose fabrics against E. coli and S. aureus only dropped about 0.16 cm on average after friction treatment and 0.32 cm on average after washing treatment. This work provides a new idea for the design and synthesize of efficient, broad-spectrum, and bio-compatible antibacterial agents, which has important social, economic, and environmental significance.
Collapse
|
19
|
Ali DA, Mehanna MM. Role of lignin-based nanoparticles in anticancer drug delivery and bioimaging: An up-to-date review. Int J Biol Macromol 2022; 221:934-953. [PMID: 36089088 DOI: 10.1016/j.ijbiomac.2022.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Lignin, an aromatic biopolymer, is the second most abundant naturally occurring one after cellulose that has drawn a great deal of interest over the years for its potential uses owing to the presence of high content of phenolic compounds, ecofriendly feature and cost-efficiency in comparison to the synthetic polymers. Nevertheless, with the intention of advancing its development, several efforts have been performed in the direction of utilizing lignin on the nanoscale due to its inimitable properties. The notable absorption capacity, fluorescence emission, biodegradability and non-toxicity of lignin nanoparticles permit its appropriateness as a vehicle for drugs and as a bioimaging material. Moreover, lignin nanoparticles have shown plausible therapeutic effects, such as anticancer, antimicrobial, and antioxidant. The current review sheds light on the recent development in the formulation and anticancer applications of lignin nanoparticles as a drug carrier and as a diagnostic tool. The surface properties of the nanomaterial affect the end product characteristics, hence, factors namely; lignin source, isolation technique, purification and quantitation methods, are discussed in this review. This study represents original work that has not been published elsewhere and that has not been submitted simultaneously for publication elsewhere. The manuscript has been read, revised, and approved by the authors.
Collapse
Affiliation(s)
- Dana A Ali
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
20
|
K.M. P, C.E. S, P. R, M.N.S. K, K. L, P.A. S, H. R. Synthesis, characterization, antibacterial, antifungal and antithrombotic activity studies of new chiral selenated Schiff bases and their Pd complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Verdini F, Gaudino EC, Canova E, Tabasso S, Behbahani PJ, Cravotto G. Lignin as a Natural Carrier for the Efficient Delivery of Bioactive Compounds: From Waste to Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113598. [PMID: 35684534 PMCID: PMC9182000 DOI: 10.3390/molecules27113598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
Lignin is a fascinating aromatic biopolymer with high valorization potentiality. Besides its extensive value in the biorefinery context, as a renewable source of aromatics lignin is currently under evaluation for its huge potential in biomedical applications. Besides the specific antioxidant and antimicrobial activities of lignin, that depend on its source and isolation procedure, remarkable progress has been made, over the last five years, in the isolation, functionalization and modification of lignin and lignin-derived compounds to use as carriers for biologically active substances. The aim of this review is to summarize the current state of the art in the field of lignin-based carrier systems, highlighting the most important results. Furthermore, the possibilities and constraints related to the physico–chemical properties of the lignin source will be reviewed herein as well as the modifications and processing required to make lignin suitable for the loading and release of active compounds.
Collapse
Affiliation(s)
- Federico Verdini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (F.V.); (E.C.); (S.T.); (P.J.B.)
| | - Emanuela Calcio Gaudino
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (F.V.); (E.C.); (S.T.); (P.J.B.)
- Correspondence: (E.C.G.); (G.C.); Tel.: +39-011-670-7183 (G.C.)
| | - Erica Canova
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (F.V.); (E.C.); (S.T.); (P.J.B.)
- Huvepharma Italia Srl, Via Roberto Lepetit 142, 12075 Garessio, Italy
| | - Silvia Tabasso
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (F.V.); (E.C.); (S.T.); (P.J.B.)
| | - Paria Jafari Behbahani
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (F.V.); (E.C.); (S.T.); (P.J.B.)
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (F.V.); (E.C.); (S.T.); (P.J.B.)
- Correspondence: (E.C.G.); (G.C.); Tel.: +39-011-670-7183 (G.C.)
| |
Collapse
|
22
|
Li S, Xue Y, Hao B, Yang T, Zhang Y, Shen Q. γ‐Valerolactone/H
2
O‐ Derived Facile Preparation of Lignin‐Based AgNPs to Full Utilization of Lignocellulosic Biomass. ChemistrySelect 2022. [DOI: 10.1002/slct.202200443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shengren Li
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Yuyuan Xue
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Baolin Hao
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Taowei Yang
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Yan Zhang
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| | - Qi Shen
- College of Chemical Engineering and Technology Taiyuan University of Technology Wanbailin District Taiyuan 030000 China
| |
Collapse
|
23
|
Du C, Fikhman DA, Monroe MBB. Shape Memory Polymer Foams with Phenolic Acid-Based Antioxidant Properties. Antioxidants (Basel) 2022; 11:antiox11061105. [PMID: 35740002 PMCID: PMC9219628 DOI: 10.3390/antiox11061105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Phenolic acids (PAs) are natural antioxidant agents in the plant kingdom that are part of the human diet. The introduction of naturally occurring PAs into the network of synthetic shape memory polymer (SMP) polyurethane (PU) foams during foam fabrication can impart antioxidant properties to the resulting scaffolds. In previous work, PA-containing SMP foams were synthesized to provide materials that retained the desirable shape memory properties of SMP PU foams with additional antimicrobial properties that were derived from PAs. Here, we explore the impact of PA incorporation on SMP foam antioxidant properties. We investigated the antioxidant effects of PA-containing SMP foams in terms of in vitro oxidative degradation resistance and cellular antioxidant activity. The PA foams showed surprising variability; p-coumaric acid (PCA)-based SMP foams exhibited the most potent antioxidant properties in terms of slowing oxidative degradation in H2O2. However, PCA foams did not effectively reduce reactive oxygen species (ROS) in short-term cellular assays. Vanillic acid (VA)- and ferulic acid (FA)-based SMP foams slowed oxidative degradation in H2O2 to lesser extents than the PCA foams, but they demonstrated higher capabilities for scavenging ROS to alter cellular activity. All PA foams exhibited a continuous release of PAs over two weeks. Based on these results, we hypothesize that PAs must be released from SMP foams to provide adequate antioxidant properties; slower release may enable higher resistance to long-term oxidative degradation, and faster release may result in higher cellular antioxidant effects. Overall, PCA, VA, and FA foams provide a new tool for tuning oxidative degradation rates and extending potential foam lifetime in the wound. VA and FA foams induced cellular antioxidant activity that could help promote wound healing by scavenging ROS and protecting cells. This work could contribute a wound dressing material that safely releases antimicrobial and antioxidant PAs into the wound at a continuous rate to ideally improve healing outcomes. Furthermore, this methodology could be applied to other oxidatively degradable biomaterial systems to enhance control over degradation rates and to provide multifunctional scaffolds for healing.
Collapse
|
24
|
Li S, Xue Y, Mai Y, Zhang Y, Shen Q. Light-induced facile and efficient synthesis of color-variable lignin-based gold nanoparticles and its application as Pb2+ sensor. Int J Biol Macromol 2022; 211:26-34. [DOI: 10.1016/j.ijbiomac.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
|
25
|
Recent advances in biological activities of lignin and emerging biomedical applications: A short review. Int J Biol Macromol 2022; 208:819-832. [PMID: 35364209 DOI: 10.1016/j.ijbiomac.2022.03.182] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022]
Abstract
As an abundant biopolymer, lignin gains interest owing to its renewable nature and polyphenolic structure. It possesses many biological activities such as antioxidant activity, antimicrobial activity, and biocompatibility. Studies are being carried out to relate the biological activities to the polyphenolic structures. These traits present lignin as a natural compound being used in biomedical field. Lignin nanoparticles (LNPs) are being investigated for safe use in drug and gene delivery, and lignin-based hydrogels are being explored as wound dressing materials, in tissue engineering and 3D printing. In addition, lignin and its derivatives have shown the potential to treat diabetic disease. This review summarizes latest research results on the biological activities of lignin and highlights potential applications exampled by selective studies. It helps to transform lignin from a waste material into valuable materials and products.
Collapse
|
26
|
Bharamanagowda MM, Panchangam RK. Lignin@Ni‐NPs: A Novel, Highly Efficient, Recyclable, and Selective Nanocatalyst for Base‐Free Transfer Hydrogenation Reactions at Room Temperature. ChemistrySelect 2022. [DOI: 10.1002/slct.202103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Raghavendra Kumar Panchangam
- Department of Studies and Research in Chemistry University College of Science Tumkur University Tumakuru 572 103 Karnataka-State India
| |
Collapse
|
27
|
Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
28
|
Hussin MH, Appaturi JN, Poh NE, Latif NHA, Brosse N, Ziegler-Devin I, Vahabi H, Syamani FA, Fatriasari W, Solihat NN, Karimah A, Iswanto AH, Sekeri SH, Ibrahim MNM. A recent advancement on preparation, characterization and application of nanolignin. Int J Biol Macromol 2022; 200:303-326. [PMID: 34999045 DOI: 10.1016/j.ijbiomac.2022.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
Each year, 50 to 70 million tonnes of lignin are produced worldwide as by-products from pulp industries and biorefineries through numerous processes. Nevertheless, about 98% of lignin is directly burnt to produce steam to generate energy for the pulp mills and only a handful of isolated lignin is used as a raw material for the chemical conversion and for the preparation of various substances as well as modification of lignin into nanomaterials. Thus, thanks to its complex structure, the conversion of lignin to nanolignin, attracting growing attention and generating considerable interest in the scientific community. The objective of this review is to provide a complete understanding and knowledge of the synthesis methods and functionalization of various lignin nanoparticles (LNP). The characterization of LNP such as structural, thermal, molecular weight properties together with macromolecule and quantification assessments are also reviewed. In particular, emerging applications in different areas such as UV barriers, antimicrobials, drug administration, agriculture, anticorrosives, the environment, wood protection, enzymatic immobilization and others were highlighted. In addition, future perspectives and challenges related to the development of LNP are discussed.
Collapse
Affiliation(s)
- M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Jimmy Nelson Appaturi
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Ng Eng Poh
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nur Hanis Abd Latif
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Isabelle Ziegler-Devin
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000, Metz, France
| | - Firda Aulya Syamani
- Research Center for Biomaterial, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Widya Fatriasari
- Research Center for Biomaterial, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomaterial, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Azizatul Karimah
- Research Center for Biomaterial, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Apri Heri Iswanto
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia; JATI-Sumatran Forestry Analysis Study Center, Jl. Tridharma Ujung No. 1, Kampus USU, Medan 20155, North Sumatera, Indonesia
| | - Siti Hajar Sekeri
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
29
|
Wei X, Cui S, Xie Y. Synthesis and Antibacterial Properties of Oligomeric Dehydrogenation Polymer from Lignin Precursors. Molecules 2022; 27:1466. [PMID: 35268566 PMCID: PMC8911982 DOI: 10.3390/molecules27051466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/05/2022] Open
Abstract
The lignin precursors of coniferin and syringin were synthesised, and guaiacyl-type and guaiacyl-syringyl-type oligomeric lignin dehydrogenation polymers (DHP and DHP-GS) were prepared with the bulk method. The carbon-13 nuclear magnetic resonance spectroscopy showed that both DHP-G and DHP-GS contained β-O-4, β-5, β-β, β-1, and 5-5 substructures. Extraction with petroleum ether, ether, ethanol, and acetone resulted in four fractions for each of DHP-G (C11-C14) and DHP-GS (C21-C24). The antibacterial experiments showed that the fractions with lower molecular weight had relatively strong antibacterial activity. The ether-soluble fractions (C12 of DHP-G and C22 of DHP-GS) had strong antibacterial activities against E. coli and S. aureus. The C12 and C22 fractions were further separated by preparative chromatography, and 10 bioactive compounds (G1-G5 and GS1-GS5) were obtained. The overall antibacterial activities of these 10 compounds was stronger against E. coli than S. aureus. Compounds G1, G2, G3, and GS1, which had the most significant antibacterial activities, contained β-5 substructures. Of these, G1 had the best antibacterial activity. Its inhibition zone diameter was 19.81 ± 0.82 mm, and the minimum inhibition concentration was 56.3 ± 6.20 μg/mL. Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) showed that the antibacterial activity of G1 was attributable to a phenylcoumarin dimer, while the introduction of syringyl units reduced antibacterial activity.
Collapse
Affiliation(s)
- Xin Wei
- Research Institute of Pulp and Paper Engineering, Hubei University of Technology, Wuhan 430068, China; (X.W.); (S.C.)
| | - Sheng Cui
- Research Institute of Pulp and Paper Engineering, Hubei University of Technology, Wuhan 430068, China; (X.W.); (S.C.)
| | - Yimin Xie
- Research Institute of Pulp and Paper Engineering, Hubei University of Technology, Wuhan 430068, China; (X.W.); (S.C.)
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
30
|
Chen X, Dai S, Liu L, Liu P, Ye P, Liao Y, Zhao A, Yang P, Huang N, Chen J. Enhanced Hemocompatibility of Silver Nanoparticles Using the Photocatalytic Properties of Titanium Dioxide. Front Bioeng Biotechnol 2022; 10:855471. [PMID: 35252160 PMCID: PMC8892187 DOI: 10.3389/fbioe.2022.855471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
Silver nanoparticles (AgNPs) are widely used because of their excellent antimicrobial properties. However, the poor hemocompatibility limits the application of AgNPs in blood contact materials. General approaches to improve the hemocompatibility of AgNPs-containing surfaces are to construct barrier layers or co-immobilize anticoagulant biomolecules. But such modification strategies are often cumbersome to prepare and have limited applications. Therefore, this study proposes a simple UV-photo-functionalization strategy to improve the hemocompatibility of AgNPs. We loaded AgNPs onto titanium dioxide (TiO2) nanoparticles to form a composite nanoparticles (Ag@TiO2NPs). Then, UV treatment was performed to the Ag@TiO2NPs, utilizing the diffusible photo-induced anticoagulant properties of TiO2 nanoparticles to enhance the hemocompatibility of AgNPs. After being deposited onto the PU surface, the photo-functionalized Ag@TiO2NPs coating showed excellent antibacterial properties against both Gram-positive/Gram-negative bacteria. Besides, In vitro and ex-vivo experiments demonstrated that the photo-functionalized Ag@TiO2NPs coating had desirable hemocompatibility. This modification strategy can provide a new solution idea to improve the hemocompatibility of metal nanoparticles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ping Yang
- *Correspondence: Ping Yang, ; Nan Huang, ; Jiang Chen,
| | - Nan Huang
- *Correspondence: Ping Yang, ; Nan Huang, ; Jiang Chen,
| | - Jiang Chen
- *Correspondence: Ping Yang, ; Nan Huang, ; Jiang Chen,
| |
Collapse
|
31
|
Lignin-Mediated Silver Nanoparticle Synthesis for Photocatalytic Degradation of Reactive Yellow 4G and In Vitro Assessment of Antioxidant, Antidiabetic, and Antibacterial Activities. Polymers (Basel) 2022; 14:polym14030648. [PMID: 35160637 PMCID: PMC8838823 DOI: 10.3390/polym14030648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
This study explored the potential of abundantly available sodium lignosulfonate (LS) as a reducer and fabricating agent in preparing silver nanoparticles (LS–Ag NPs). The operational conditions were optimized to make the synthesis process simpler, rapid, and eco-friendly. The prepared LS–Ag NPs were analyzed via UV–Vis spectroscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy. Results demonstrated that LS–Ag NPs were of crystalline structure, capped with LS constituents, and spherical in shape with a size of approximately 20 nm. Under optimized conditions, LS–Ag NPs exhibited significant photocatalytic activity in Reactive Yellow 4G degradation. The effects of photocatalyst (LS–Ag NPs) dosage, dye concentration, and its reusability for dye degradation were studied to make the process practically applicable in textile wastewater treatment. Additionally, the synthesized LS–Ag NPs displayed significant free radical scavenging against 2-diphenyl-1-picrylhydrazyl (DPPH) with an IC50 value of (50.2 ± 0.70 µg/mL) and also exhibited antidiabetic activity in terms of inhibition in the activity of carbohydrate-degrading marker enzyme α-glucosidase with an IC50 value of (58.1 ± 0.65 µg/mL). LS–Ag NPs showed substantial antibacterial potential against pathogenic strains, namely E. coli and S. aureus. In conclusion, LS–Ag NPs can be a reliable and eco-friendly material for their possible application in the treatment of dye-containing wastewater and have a great perspective in the biomedical and pharmaceutical sectors.
Collapse
|
32
|
Li S, Zhang Y, Ma X, Qiu S, Chen J, Lu G, Jia Z, Zhu J, Yang Q, Chen J, Wei Y. Antimicrobial Lignin-Based Polyurethane/Ag Composite Foams for Improving Wound Healing. Biomacromolecules 2022; 23:1622-1632. [PMID: 35104104 DOI: 10.1021/acs.biomac.1c01465] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial materials are an urgent need for modern wound care in the clinic. Although traditional polyurethane foams have proven to be clinically valuable for wound treatment, their petroleum-originated preparation and bioinert nature have restricted their efficacy in biomedical applications. Here, we propose a simple one-step foaming method to prepare lignin-based polyurethane foams (LPUFs) in which fully biobased polyether polyols partially replace traditional petroleum-based raw materials. The trace amount of phenolic hydroxyl groups (about 4 mmol) in liquefied lignin acts as a direct reducing agent and capping agent to silver ions (less than 0.3 mmol), in situ forming silver nanoparticles (Ag NPs) within the LPUF skeleton. This newly proposed lignin polyurethane/Ag composite foam (named as Ag NP-LPUF) shows improved mechanical, thermal, and antibacterial properties. It is worth mentioning that the Ag NP-LPUF exhibits more than 99% antibacterial rate against Escherichia coli within 1 h and Staphylococcus aureus within 4 h. Evaluations in mice indicate that the antimicrobial composite foams can effectively promote wound healing of full-thickness skin defects. As a proof of concept, this antibacterial and biodegradable foam exhibits significant potential for clinical translation in wound care dressings.
Collapse
Affiliation(s)
- Shuqi Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Yansheng Zhang
- University of Chinese Academy of Sciences, Beijing, Beijing 100039, China.,Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing, Beijing 100039, China
| | - Shihui Qiu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Chen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Guangming Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhen Jia
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qiu Yang
- Ningbo New Material Testing and Evaluation Center Co., Ltd., Ningbo 315201, China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Sol-Gel Co-Precipitation Synthesis, Anticoagulant and Anti-Platelet Activities of Copper-Doped Nickel Manganite Nanoparticles. Gels 2021; 7:gels7040269. [PMID: 34940329 PMCID: PMC8701332 DOI: 10.3390/gels7040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Copper-substituted nickel manganites Ni(1−x)CuxMn2O4 (Ni-TCE-NPs) were produced by co-precipitation route (sol–gel) at room temperature. Ni(1−x)CuxMn2O4-Bio (NCB) NPs were studied by powder X-ray diffraction technique, scanning electron microscopy and Raman spectroscopy. XRD spectra authenticated the copper-doped nickel manganites’ formation with particle size 23–28 nm. A significant decrease in the lattice parameter confirmed the doping of copper ions into the nickel manganites. Microscopy (SEM) was used to estimate the grain size, shape and uniformity, revealing the non-uniform agglomerated polygon and plate-like microstructure. The NCB-NPs showed anticoagulant activity by enhancing the coagulation time of citrated plasma of human beings. NCB-NPs with x = 0.35 and 0.45 have increased clotting time from control 133 ± 4 s to 401 ± 7 s and 3554 ± 80 s, respectively, and others around 134 s. Additionally NCB-NPs with x = 0.35, 0.45 inhibited the platelet aggregation by 80% and 92%, while remaining inhibited with only 30%. NCB-NPs did not show hemolytic activity in RBC cells intimate its non-toxic nature. Finally, NCB-NPs were non-toxic and known to exhibit anti-blood-clotting and antiplatelet activities, which can be used in the field of biomedical applications, especially as antithrombotic agents.
Collapse
|
34
|
Shu F, Jiang B, Yuan Y, Li M, Wu W, Jin Y, Xiao H. Biological Activities and Emerging Roles of Lignin and Lignin-Based Products─A Review. Biomacromolecules 2021; 22:4905-4918. [PMID: 34806363 DOI: 10.1021/acs.biomac.1c00805] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bioactive substances, displaying excellent biocompatibility, chemical stability, and processability, could be extensively applied in biomedicine and tissue engineering. In recent years, plant-based bioactive substances such as flavonoids, vitamins, terpenes, and lignin have received considerable attention due to their human health benefits and pharmaceutical/medical applications. Among them is lignin, an amorphous biomacromolecule mainly derived from the combinatorial radical coupling of three phenylpropane units (p-hydroxypenyl, guaiacyl, and syringyl) during lignification. Lignin possesses intrinsic bioactivities (antioxidative, antibacterial, anti-UV activities, etc.) against phytopathogens. Lignin also enhances the plant resistance (adaptability) against environmental stresses. The abundant structural features of lignin offer other significant bioactivities including antitumor and antivirus bioactivities, regulation of plant growth, and enzymatic hydrolysis of cellulose. This Review reports the latest research results on the bioactive potential of lignin and lignin-based substances in biomedicine, agriculture, and biomass conversion. Moreover, the interfacial reactions and bonding mechanisms of lignin with biotissue/cells and other constituents were also discussed, aiming at promoting the conversion or evolution of lignin from industrial wastes to value-added bioactive materials.
Collapse
Affiliation(s)
- Fan Shu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.,Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Mohan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.,Joint International Research Lab of Lignocellulosic Functional Materials, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| |
Collapse
|
35
|
Tran NT, Nguyen TTT, Ha D, Nguyen TH, Nguyen NN, Baek K, Nguyen NT, Tran CK, Tran TTV, Le HV, Nguyen DM, Hoang D. Highly Functional Materials Based on Nano-Lignin, Lignin, and Lignin/Silica Hybrid Capped Silver Nanoparticles with Antibacterial Activities. Biomacromolecules 2021; 22:5327-5338. [PMID: 34807571 DOI: 10.1021/acs.biomac.1c01250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rice husk is one of the most abundant biomass resources in the world, yet it is not effectively used. This study focuses on the sustainably rice-husk-extracted lignin, nano-lignin (n-Lignin), lignin-capped silver nanoparticles (LCSN), n-Lignin-capped silver nanoparticles (n-LCSN), and lignin-capped silica-silver nanoparticles (LCSSN), and using them for antibacterial activities. The final n-Lignin-based products had a sphere-like structure, of which the size varied between 50 and 80 nm. We found that while n-Lignin and lignin were less effective against Escherichia coli than against Staphylococcus aureus, n-Lignin/lignin-based hybrid materials, i.e., n-LCSN, LCSN, and LCSSN, were better against E. coli than against S. aureus. Interestingly, the antimicrobial behaviors of n-LCSNs could be further improved by decreasing the size of n-Lignin. Considering the facile, sustainable, and eco-friendly method that we have developed here, it is promising to use n-Lignin/lignin-based materials as highly efficient antimicrobials without environmental concerns.
Collapse
Affiliation(s)
- Nhat Thong Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Trang Thi Thu Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Dat Ha
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thu Hien Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Ngan Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kangkyun Baek
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang 37673, Korea
| | - Ngoc Thuy Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Cong Khanh Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thi Thanh Van Tran
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hieu Van Le
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Dang Mao Nguyen
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44306 Nantes, France
| | - DongQuy Hoang
- University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.,Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
36
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
37
|
Pathayappurakkal Mohanan D, Pathayappurakkal Mohan N, Selvasudha N, Thekkilaveedu S, Kandasamy R. Facile fabrication and structural elucidation of lignin based macromolecular green composites for multifunctional applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Nandakumar Selvasudha
- School of Pharmacy Sri Balaji Vidyapeeth Deemed University Puducherry Tamil Nadu India
| | - Saranya Thekkilaveedu
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), University College of Engineering Anna University Tiruchirapalli Tamil Nadu India
| | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), University College of Engineering Anna University Tiruchirapalli Tamil Nadu India
| |
Collapse
|
38
|
Fabricating Antibacterial and Antioxidant Electrospun Hydrophilic Polyacrylonitrile Nanofibers Loaded with AgNPs by Lignin-Induced In-Situ Method. Polymers (Basel) 2021; 13:polym13050748. [PMID: 33670863 PMCID: PMC7957607 DOI: 10.3390/polym13050748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/02/2022] Open
Abstract
Concerning the environmental hazards owing to the chemical-based synthesis of silver nanoparticles (AgNPs), this study aimed to investigate the possibility of synthesizing AgNPs on the surface of polyacrylonitrile (PAN) nanofibers utilizing biomacromolecule lignin. SEM observations revealed that the average diameters of the produced nanofibers were slightly increased from ~512 nm to ~673 nm due to several factors like-swellings that happened during the salt treatment process, surface-bound lignin, and the presence of AgNPs. The presence of AgNPs was validated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The amount of synthesized AgNPs on PAN nanofibers was found to be dependent on both precursor silver salt and reductant lignin concentration. Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectra confirm the presence of lignin on PAN nanofibers. Although the X-ray diffraction pattern did not show any AgNPs band, the reduced intensity of the stabilized PAN characteristics bands at 2θ = 17.28° and 29.38° demonstrated some misalignment of PAN polymeric chains. The water contact angle (WCA) of hydrophobic PAN nanofibers was reduced from 112.6 ± 4.16° to 21.4 ± 5.03° for the maximum AgNPs coated specimen. The prepared membranes exhibited low thermal stability and good swelling capacity up to 20.1 ± 0.92 g/g and 18.05 ± 0.68 g/g in distilled water and 0.9 wt% NaCl solution, respectively. Coated lignin imparts antioxidant activity up to 78.37 ± 0.12% at 12 h of incubation. The resultant nanofibrous membranes showed a proportional increase in antibacterial efficacy with the rise in AgNPs loading against both Gram-positive S. aureus and Gram-negative E. coli bacterial strains by disc diffusion test (AATCC 147-1998). Halos for maximum AgNPs loading was calculated to 18.89 ± 0.15 mm for S. aureus and 21.38 ± 0.17 mm for E. coli. An initial burst release of silver elements within 24 h was observed in the inductively coupled plasma-atomic emission spectrometry (ICP-AES) test, and the release amounts were proportionally expansive with the increase in Ag contents. Our results demonstrated that such types of composite nanofibers have a strong potential to be used in biomedicine.
Collapse
|
39
|
Turunc E, Kahraman O, Binzet R. Green synthesis of silver nanoparticles using pollen extract: Characterization, assessment of their electrochemical and antioxidant activities. Anal Biochem 2021; 621:114123. [PMID: 33549546 DOI: 10.1016/j.ab.2021.114123] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/19/2022]
Abstract
In the present study, a simple, cheaply and environmental friendly method was evaluated for the synthesis of silver nanoparticle via Cupressus sempervirens L. (CSPE) pollen extract as reducing and stabilizing agent. Various parameters such as volume of CSPE, temperature and reaction time on AgNPs formation were investigated spectrophotometrically to optimize reaction conditions. The electrochemical behavior of the biosynthesized AgNPs were investigated by cyclic voltammetry and square wave voltammetry techniques. An electrosensor based on AgNPs modified glassy carbon electrode were constructed and tested on electro reduction of hydrogen peroxide in phosphate buffer medium. The prepared electrosensor could detect the H2O2 in the range of 5.0 μM - 2.5 mM with a detection limit of 0.23 μM. In addition, the antioxidant activity of biosynthesized AgNPs were evaluated against DPPH free radical. Results obtained from the antioxidant study suggested that CSPE mediated AgNPs exhibit a good antioxidant effect.
Collapse
Affiliation(s)
- Ersan Turunc
- Advanced Technology Applied and Research Center, Mersin University, Mersin, 33343, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey.
| | - Oskay Kahraman
- Department of Biology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey.
| | - Riza Binzet
- Department of Biology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
40
|
Wang Y, Li Z, Yang D, Qiu X, Xie Y, Zhang X. Microwave-mediated fabrication of silver nanoparticles incorporated lignin-based composites with enhanced antibacterial activity via electrostatic capture effect. J Colloid Interface Sci 2021; 583:80-88. [PMID: 32977194 DOI: 10.1016/j.jcis.2020.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Lignin has been considered as a green carrier with excellent biocompatibility for the biomedical applications in drug release, tissue engineering, etc. In this study, silver nanoparticles (AgNPs) incorporated quaternized lignin (QAL) composites (Ag@QAL) were synthesized in-situ with the assistance of the microwave radiation. The positive charged QAL, not only serves as reductive and stabilizing carriers, but also endows with electrostatic effect toward negatively charged Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), resulting in greatly enhanced antibacterial activity. It is worth mentioning that Ag@QAL exhibits the highest antibacterial activity, which causes 3.72 log10 (>99.9%) and 5.29 log10 (>99.999%) CFU/ml reduction against E. coli and S. aureus respectively after contacting for only 5 min. Furthermore, due to the strong interaction between Ag@QAL and Ag+/AgNPs, bacteria can be captured and co-precipitated by Ag@QAL fastly in 30 min with almost none silver ions detected in the supernatant, which prevents Ag+ leaking with extremely low toxicity to the biological environment. This concept of electrostatic capture effect induced antibacterial activity enhancement and environmentally benign features may provide new insights into the design of highly effective antibacterial agents in a sustainable manner.
Collapse
Affiliation(s)
- Yalin Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Zhixian Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China.
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China.
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Yuanxiang Xie
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Xing Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| |
Collapse
|
41
|
Pang Y, Chen Z, Zhao R, Yi C, Qiu X, Qian Y, Lou H. Facile synthesis of easily separated and reusable silver nanoparticles/aminated alkaline lignin composite and its catalytic ability. J Colloid Interface Sci 2020; 587:334-346. [PMID: 33370659 DOI: 10.1016/j.jcis.2020.11.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
Green synthesis of silver nanoparticles (AgNPs) has received increasing attention. In this study, AgNPs were prepared through in-situ reduction by aminated alkaline lignin (AAL). Compared with alkaline lignin (AL), AAL exhibited stronger reduction capacity (increased by 36%) due to the introduced amine groups and better water solubility. Moreover, the coordination effect of amine groups on AAL improved the binding force between lignin and AgNPs. The content of AgNPs in AgNPs/AAL composite were 2.4 times higher than that in AgNPs/AL, such content could be further increased through increasing the reduction pH or prolonging the heating time. The results of XPS, XRD and TEM showed that the AgNPs were spherical and monodisperse with an average particle size about 17 nm. Additionally, the size of AgNPs was affected by the amination degree of lignin. AgNPs/AAL exhibited good catalytic performance for the reduction of 4-nitrophenol to 4-aminophenol, and this compound could be easily recovered and reused for at least eight cycles.
Collapse
Affiliation(s)
- Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Zhengsong Chen
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Rubin Zhao
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Conghua Yi
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Qian
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
42
|
Schneider WDH, Dillon AJP, Camassola M. Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications. Biotechnol Adv 2020; 47:107685. [PMID: 33383155 DOI: 10.1016/j.biotechadv.2020.107685] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 02/02/2023]
Abstract
Strategies to take advantage of residual lignin from industrial processes are well regarded in the field of green chemistry and biotechnology. Quite recently, researchers transformed lignin into nanomaterials, such as nanoparticles, nanofibers, nanofilms, nanocapsules and nanotubes, attracting increasing attention from the scientific community. Lignin nanoparticles are seen as green way to use high-value renewable resources for application in different fields because recent studies have shown they are non-toxic in reasonable concentrations (both in vitro and in vivo assays), inexpensive (a waste generated in the biorefinery, for example, from the bioethanol platform) and potentially biodegradable (by fungi and bacteria in nature). Promising studies have tested lignin nanoparticles for antioxidants, UV-protectants, heavy metal absorption, antimicrobials, drugs carriers, gene delivery systems, encapsulation of molecules, biocatalysts, supercapacitors, tissue engineering, hybrid nanocomposites, wound dressing, and others. These nanoparticles can be produced from distinct lignin types and by different chemical/physical/biological methods, which will result in varied characteristics for their morphology, shape, size, yield and stability. Therefore, taking into account that the theme "lignin nanoparticles" is a trending topic, this present review is emerging and has the discuss the current status, covering from concepts, the formation mechanism, synthesis methods and applications, to the future perspectives and challenges linked to lignin-based nanomaterials, aiming at the viability and commercialization of this biotechnological product.
Collapse
Affiliation(s)
- Willian Daniel Hahn Schneider
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, 95070-560 Caxias do Sul, RS, Brazil.
| | - Aldo José Pinheiro Dillon
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, 95070-560 Caxias do Sul, RS, Brazil
| | - Marli Camassola
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Francisco Getúlio Vargas Street, 1130, 95070-560 Caxias do Sul, RS, Brazil
| |
Collapse
|
43
|
García DA, Mendoza L, Vizuete K, Debut A, Arias MT, Gavilanes A, Terencio T, Ávila E, Jeffryes C, Dahoumane SA. Sugar-Mediated Green Synthesis of Silver Selenide Semiconductor Nanocrystals under Ultrasound Irradiation. Molecules 2020; 25:E5193. [PMID: 33171592 PMCID: PMC7664687 DOI: 10.3390/molecules25215193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
Silver selenide (Ag2Se) is a promising nanomaterial due to its outstanding optoelectronic properties and countless bio-applications. To the best of our knowledge, we report, for the first time, a simple and easy method for the ultrasound-assisted synthesis of Ag2Se nanoparticles (NPs) by mixing aqueous solutions of silver nitrate (AgNO3) and selenous acid (H2SeO3) that act as Ag and Se sources, respectively, in the presence of dissolved fructose and starch that act as reducing and stabilizing agents, respectively. The concentrations of mono- and polysaccharides were screened to determine their effect on the size, shape and colloidal stability of the as-synthesized Ag2Se NPs which, in turn, impact the optical properties of these NPs. The morphology of the as-synthesized Ag2Se NPs was characterized by transmission electron microscopy (TEM) and both α- and β-phases of Ag2Se were determined by X-ray diffraction (XRD). The optical properties of Ag2Se were studied using UV-Vis spectroscopy and its elemental composition was determined non-destructively using scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS). The biological activity of the Ag2Se NPs was assessed using cytotoxic and bactericidal approaches. Our findings pave the way to the cost-effective, fast and scalable production of valuable Ag2Se NPs that may be utilized in numerous fields.
Collapse
Affiliation(s)
- Daniela Armijo García
- School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí 100650, Ecuador;
| | - Lupe Mendoza
- School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí 100650, Ecuador;
| | - Karla Vizuete
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.); (M.T.A.); (A.G.)
| | - Alexis Debut
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.); (M.T.A.); (A.G.)
| | - Marbel Torres Arias
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.); (M.T.A.); (A.G.)
| | - Alex Gavilanes
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.); (M.T.A.); (A.G.)
| | - Thibault Terencio
- School of Chemical Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí 100650, Ecuador; (T.T.); (E.Á.)
| | - Edward Ávila
- School of Chemical Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí 100650, Ecuador; (T.T.); (E.Á.)
| | - Clayton Jeffryes
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical & Biomolecular Engineering, Lamar University, Beaumont, TX 77710, USA;
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech, San Miguel de Urcuquí 100650, Ecuador;
| |
Collapse
|
44
|
Nandish SKM, Kengaiah J, Ramachandraiah C, Chandramma, Shivaiah A, Santhosh SM, Thirunavukkarasu, Sannaningaiah D. Flaxseed Cysteine Protease Exhibits Strong Anticoagulant, Antiplatelet, and Clot-Dissolving Properties. BIOCHEMISTRY (MOSCOW) 2020; 85:1113-1126. [PMID: 33050855 DOI: 10.1134/s0006297920090102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we purified and characterized flaxseed cysteine protease (FSCP) with strong anticoagulant, antiplatelet, and clot-dissolving properties. The enzyme was purified to homogeneity by a combination of gel permeation and ion-exchange column chromatography techniques. The purity of the enzyme was evaluated by SDS-PAGE, RP-HPLC, and MALDI-TOF. FSCP was observed as a single band of approximately 160 kDa in SDS-PAGE under reducing and non-reducing conditions. The exact molecular mass of FSCP was found to be 168 kDa by MALDI-TOF spectrometry. The CD spectra of FSCP revealed the presence of 25.6% helices, 25.8% turns, and 48% random coils with no beta-sheet structures. FSCP hydrolyzed both casein and gelatin with a specific activity of 3.5 and 4.2 unit/mg min respectively. The proteolytic activity of FSCP was completely abolished by iodoacetic acid (IAA), suggesting FSCP is a cysteine protease. The pH optimum for the proteolytic activity of FSCP was pH 6.0; the temperature optimum was 30°C. FSCP exhibited strong anticoagulant effect in both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) by extending the clotting time from 222 to 1100 s and from 256 to 1210 s, respectively. FSCP degraded human fibrinogen and fibrin clots. The products of fibrinogen degradation by thrombin and FSCP were different. Furthermore, FSCP inhibited aggregation of washed platelets triggered by ADP, epinephrine, thrombin, collagen, arachidonic acid, and platelet activating factor (PAF). FSCP was found to be nontoxic as it did not damage the membrane of red blood cells (RBCs) and did not induce hemorrhage and edema in experimental mice.
Collapse
Affiliation(s)
- S K M Nandish
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - J Kengaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - Ch Ramachandraiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - Chandramma
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - A Shivaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India
| | - S M Santhosh
- Department of Medicinal Biochemistry and Microbiology (IMBM), Uppsala Biomedical Centre, Uppsala, 75237, Sweden
| | - Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, Tamil Nadu, 605014, India
| | - D Sannaningaiah
- Department of Studies and Research in Biochemistry and Centre for Bioscience and Innovation, Tumkur University, Tumkur, 572103, India.
| |
Collapse
|
45
|
Synthesis, Characterization, and Antimicrobial Properties of Sparfloxacin-Mediated Noble Metal Nanoparticles. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the current research finding was to synthesize, characterize and antibacterial evaluation of sparfloxacin-mediated noble metal nanoparticles. Noble metal [silver (Ag), and gold (Au)] nanoparticles (NPs), mediated with fluoroquinolone, an anti-bacterial drug [Sparfloxacin, (Sp)], was synthesized by a facile and convenient procedure. Formulated Ag-Sp NPs, and Au-Sp NPs exhibited stability against variation in pH, NaCl solution, temperature, and time. The structural topographies of Ag-Sp, and Au-Sp NPs were determined by fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM) atomic force microscopy (AFM), and energy dispersive X-ray (EDX). UV-Vis revealed the formulation of NPs by showing typical surface Plasmon absorption maxima at 410 nm for Ag-Sp NPs and 555 nm for Au-Sp NPs. The AFM and SEM analysis ascertained stable mono dispersed Ag-Sp NPs and Au-Sp NPs in the size range of 40-50 nm, and 70-80 nm, respectively. Ag-Sp, and Au-Sp NPs exhibited antibacterial traits against Bacillus subtilis, Staphylococcus aureus, and Klebsiella pneumonia, showing a zone of inhibition (ZOI) ranging from 20±0.98 mm to 24±0.94 mm (Ag-Sp NPs), and 22±0.79 mm to 26±0.92 mm (Au-Sp NPs) at dose of 3 mg/mL.
Collapse
|
46
|
Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers (Basel) 2020; 12:polym12092112. [PMID: 32957433 PMCID: PMC7570389 DOI: 10.3390/polym12092112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
This research endeavor aims to develop polyvinyl alcohol (PVA) based films capable of blends with silver nanoparticles (Ag-NPs) for improved antibacterial properties and good mechanical strength to widen its scope in the field of wound dressing and bandages. This study reports synthesis of propylamine-substituted PVA (PA-PVA), Ag-NPs via chemical and green methods (starch capping) and their blended films in various proportions. Employment of starch-capped Ag-NPs as nanofillers into PVA films has substantially improved the above-mentioned properties in the ensuing nanocomposites. Synthesis of PA-PVA, starch-capped Ag-NPs and blended films were well corroborated with UV/Vis spectroscopy, FTIR, NMR, XRD and SEM analysis. Synthesized Ag-NPs were of particle shape and have an average size 20 nm and 40 nm via green and chemical synthesis, respectively. The successful blending of Ag-NPs was yielded up to five weight per weight into PA-PVA film as beyond this self-agglomeration of Ag-NPs was observed. Antibacterial assay has shown good antimicrobial activities by five weight per weight Ag-NPs(G)-encapsulated into PA-PVA blended film, i.e., 13 mm zone inhibition against Escherichia coli and 11 mm zone inhibition against Staphylococcus aureus. Physical strength was measured in the terms of young's modulus via tensile stress-strain curves of blended films. The five weight per weight Ag-NPs(G)/PA-PVA blend film showed maximum tensile strength 168.2 MPa while three weight per weight Ag-NPs(G)/PVA blend film showed highest values for ultimate strain 297.0%. Ag-NPs embedment into PA-PVA was resulted in strong and ductile film blend than pristine PA-PVA film due to an increase in hydrogen bonding. These good results of five weight per weight Ag-NPs(G)/PA-PVA product make it a potent candidate for wound dressing application in physically active body areas.
Collapse
|
47
|
Budnyak TM, Slabon A, Sipponen MH. Lignin-Inorganic Interfaces: Chemistry and Applications from Adsorbents to Catalysts and Energy Storage Materials. CHEMSUSCHEM 2020; 13:4344-4355. [PMID: 32096608 PMCID: PMC7540583 DOI: 10.1002/cssc.202000216] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Indexed: 05/05/2023]
Abstract
Lignin is one the most fascinating natural polymers due to its complex aromatic-aliphatic structure. Phenolic hydroxyl and carboxyl groups along with other functional groups provide technical lignins with reactivity and amphiphilic character. Many different lignins have been used as functional agents to facilitate the synthesis and stabilization of inorganic materials. Herein, the use of lignin in the synthesis and chemistry of inorganic materials in selected applications with relevance to sustainable energy and environmental fields is reviewed. In essence, the combination of lignin and inorganic materials creates an interface between soft and hard materials. In many cases it is either this interface or the external lignin surface that provides functionality to the hybrid and composite materials. This Minireview closes with an overview on future directions for this research field that bridges inorganic and lignin materials for a more sustainable future.
Collapse
Affiliation(s)
- Tetyana M. Budnyak
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16CSE-106 91StockholmSweden
| | - Adam Slabon
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16CSE-106 91StockholmSweden
| | - Mika H. Sipponen
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16CSE-106 91StockholmSweden
| |
Collapse
|
48
|
Liu R, Dai L, Xu C, Wang K, Zheng C, Si C. Lignin-Based Micro- and Nanomaterials and their Composites in Biomedical Applications. CHEMSUSCHEM 2020; 13:4266-4283. [PMID: 32462781 DOI: 10.1002/cssc.202000783] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Indexed: 05/13/2023]
Abstract
Lignin, as the most abundant aromatic renewable biopolymer in nature, has long been regarded as waste and simply discarded from the pulp and paper industry. In recent years, with many breakthroughs in lignin chemistry, pretreatment, and processing techniques, a lot of the inherent bioactivities of lignin, including antioxidant activities, antimicrobial activities, biocompatibilities, optical properties, and metal-ion chelating and redox activities, have been discovered and this has opened a new field not only for lignin-based materials but also for biomaterials. In this Review, the biological activities of lignin and drug/gene delivery and bioimaging applications of various types of lignin-based material are summarized. In addition, the challenges and limitations of lignin-based materials encountered during the development of biomedical applications are also discussed.
Collapse
Affiliation(s)
- Rui Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, 20500, Finland
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
| | - Chunlin Xu
- Johan Gadolin Process Chemistry Centre, Laboratory of Natural Materials Technology, Åbo Akademi University, Turku, 20500, Finland
| | - Kai Wang
- International Medicine Centre, Tianjin Hospital, 506 Jiefang South Road, Tianjin, 300211, China
| | - Chunyang Zheng
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin, 300384, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13th Avenue, TEDA, Tianjin, 300457, China
| |
Collapse
|
49
|
Dolinska J, Holdynski M, Ambroziak R, Modrzejewska-Sikorska A, Milczarek G, Pisarek M, Opallo M. The medium effect on electrodissolution of adsorbed or suspended Ag nanoparticles. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Synthesis, radical scavenging, and antimicrobial activities of core–shell Au/Ni microtubes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|