1
|
Wang E, Qi Z, Cao Y, Li R, Wu J, Tang R, Gao Y, Du R, Liu M. Gels as Promising Delivery Systems: Physicochemical Property Characterization and Recent Applications. Pharmaceutics 2025; 17:249. [PMID: 40006616 PMCID: PMC11858892 DOI: 10.3390/pharmaceutics17020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Gels constitute a versatile class of materials with considerable potential for applications in both technical and medical domains. Physicochemical property characterization is a critical evaluation method for gels. Common characterization techniques include pH measurement, structural analysis, mechanical property assessment, rheological analysis, and phase transition studies, among others. While numerous research articles report characterization results, few reviews comprehensively summarize the appropriate numerical ranges for these properties. This lack of standardization complicates harmonized evaluation methods and hinders direct comparisons between different gels. To address this gap, it is essential to systematically investigate characterization methods and analyze data from the extensive body of literature on gels. In this review, we provide a comprehensive summary of general characterization methods and present a detailed analysis of gel characterization data to support future research and promote standardized evaluation protocols.
Collapse
Affiliation(s)
- Enzhao Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaoying Qi
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuzhou Cao
- School of Science, National University of Singapore, Singapore 119077, Singapore;
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
| | - Jing Wu
- School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315100, China;
| | - Rongshuang Tang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minchen Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Monika, Meenakshi, Brahma M, Maruthi M, Selvakumar S, Ansari A, Gupta MK. N-Hydroxyalkanamide Based Organo/hydrogels as Novel Scaffolds for pH-Dependent Metronidazole and Theophylline Release. Chem Biodivers 2024; 21:e202400105. [PMID: 38700110 DOI: 10.1002/cbdv.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The traditional delivery of metronidazole and theophylline presents challenges like bitter taste, variable absorption, and side effects. However, gel-based systems offer advantages including enhanced targeted drug delivery, minimized side effects, and improved patient compliance, effectively addressing these challenges. Consequently, a cost-effective synthesis of N-hydroxyalkanamide gelators with varying alkyl chain lengths was achieved in a single-step reaction procedure. These gelators formed self-assembled aggregates in DMSO/water solvent system, resulting in organo/hydrogels at a minimum gelation concentration of 1.5 % w/v. Subsequently, metronidazole and theophylline were encapsulated within the gel core and released through gel-to-sol transition triggered by pH variation at 37 °C, while maintaining the structural-activity relationship. UV-vis spectroscopy was employed to observe the drug release behavior. Furthermore, in vitro cytotoxicity assays revealed cytotoxic effects against A549 lung adenocarcinoma cells, indicating anti-proliferative activity against human lung cancer cells. Specifically, the gel containing theophylline (16HAD+Th) exhibited cytotoxicity on cancerous A549 cells with IC50 values of 19.23±0.6 μg/mL, followed by the gel containing metronidazole (16HAD+Mz) with IC50 values of 23.75±0.7 μg/mL. Moreover, the system demonstrated comparable antibacterial activity against both gram-negative (E. coli) and gram-positive bacteria (S. aureus).
Collapse
Affiliation(s)
- Monika
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Meenakshi
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Mettle Brahma
- Department of Biochemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Sermadurai Selvakumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, Madhya Pradesh, India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| |
Collapse
|
3
|
Chen X, Ouyang H, Zhang Y, Chen C, Nan S, Pu X, Gong T, Zhang ZR, Liu R, Fu Y. Antigen-specific T cell activation through targeted delivery of in-situ generated antigen and calcium ionophore to enhance antitumor immunotherapy. J Control Release 2024; 365:544-557. [PMID: 38052255 DOI: 10.1016/j.jconrel.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Recent advances in adoptive T-cell therapy have delivered impressive therapeutic outcomes by instigating enduring anti-tumor responses. Nonetheless, achieving specific T-cell activation remains a challenge due to several factors. Some cancer cells evade T-cell recognition due to the scarcity of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) presentation. Notably underestimated is the impact of waning T-cell receptor (TCR) expression and the constrained formation of immune synapses (IS) between dendritic cells (DCs) and T cells, impairing T-cell activation. Addressing these complexities, we introduce a pioneering approach featuring the deployment of a gel implant. This implant establishes an on-site antigen reservoir, efficiently targets DCs in lymph nodes, and facilitates calcium ion (Ca2+) delivery. Engineered with controlled swelling, poroelasticity, and resilience, the gel is suitable for surgical implantation. Its ample encapsulation capacity accommodates both photosensitizers and nanoparticles. Upon in situ photothermal irradiation, the gel generates tumor-specific antigens. Furthermore, cationic albumin nanoparticles (cNPs) co-loaded with monophosphoryl lipid A (MPLA) and ionomycin are released, guiding antigens to tumor-draining lymph nodes for DCs maturation. This meticulous process fosters the formation of IS thereby amplifying antigen-specific T-cell activation.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunxiao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Conglin Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Simin Nan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Renhe Liu
- Global Health Drug Discovery Institute, Beijing, China.
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Cao Z, Chen Y, Bai S, Zheng Z, Liu Y, Gui S, Shan S, Wu J, He N. In situ formation of injectable organogels for punctal occlusion and sustained release of therapeutics: design, preparation, in vitro and in vivo evaluation. Int J Pharm 2023; 638:122933. [PMID: 37030642 DOI: 10.1016/j.ijpharm.2023.122933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The treatment of dry eye mainly includes instillation of cyclosporine A (CsA) nanoemulsion or the use of punctal plugs. Therefore, in this study, a novel injectable in situ organogel plug was developed using CsA as a model drug, stearic acid, injectable soybean oil, and N-methyl-2-pyrrolidinone (NMP) (1.25:10:0.6, w/v/v) as gel materials, to provide a dual mechanism for dry eye treatment. The formulated CsA injectable in situ organogel (CsA-OG) was evaluated in terms of stability, in vitro release, rheology, ocular irritation, punctal occlusion tests, and ocular distribution assessment. In vivo ocular distribution investigations showed that CsA-OG achieved considerably higher Cmax (1.94, 1.92 and 1.97-fold respectively) and AUC0-72h in the cornea, conjunctiva, and sclera (2.49, 2.27 and 2.15-fold respectively) than ciclosporin eye drops (p < 0.05). In vitro model evaluation demonstrated significant decrease in flow flux to 52.78% at 2 min after CsA-OG injection. According to evaluation of the in vivo model, the organogel plug can completely block the lacrimal passages and greatly decrease the lacrimal drainage rate (p < 0.05). The above results suggest that these intracanalicular CsA-OG plugs can offer more extensive clinical applications than existing lacrimal drainage plugs and may act as a drug delivery system.
Collapse
Affiliation(s)
- Ziqin Cao
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yangnan Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaoyun Bai
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China.
| | - Yan Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China
| | - Shuang Shan
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiabao Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China.
| |
Collapse
|
5
|
Wilkinson J, Ajulo D, Tamburrini V, Gall GL, Kimpe K, Holm R, Belton P, Qi S. Lipid based intramuscular long-acting injectables: current state of the art. Eur J Pharm Sci 2022; 178:106253. [DOI: 10.1016/j.ejps.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
|
6
|
l-Lysine-Based Gelators for the Formation of Oleogels in Four Vegetable Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041369. [PMID: 35209157 PMCID: PMC8876487 DOI: 10.3390/molecules27041369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/05/2022]
Abstract
Supramolecular oleogel is a soft material with a three-dimensional structure, formed by the self-assembly of low-molecular-weight gelators in oils; it shows broad application prospects in the food industry, environmental protection, medicine, and other fields. Among all the gelators reported, amino-acid-based compounds have been widely used to form organogels and hydrogels because of their biocompatibility, biodegradation, and non-toxicity. In this study, four Nα, Nε-diacyl-l-lysine gelators (i.e., Nα, Nε-dioctanoyl-l-lysine; Nα, Nε-didecanoyl-l-lysine; Nα, Nε-dilauroyl-l-lysine; and Nα, Nε-dimyristoyl-l-lysine) were synthesized and applied to prepare oleogels in four kinds of vegetable oils. Gelation ability is affected not only by the structure of the gelators but also by the composition of the oils. The minimum gel concentration (MGC) increased with the increase in the acyl carbon-chain length of the gelators. The strongest gelation ability was displayed in olive oil for the same gelator. Rheological properties showed that the mechanical strength and thermal stability of the oleogels varied with the carbon-chain length of the gelators and the type of vegetable oil. The microstructure of oleogels is closely related to the carbon-chain length of gelators, regardless of oil type. The highest oil-binding capacity (OBC) was obtained in soybean oil for all four gelators, and Nα, Nε-dimyristoyl-l-lysine showed the best performance for entrapping oils.
Collapse
|
7
|
Kilicarslan M, Buke AN. An Overview: The Evaluation of Formation Mechanisms, Preparation Techniques and Chemical and Analytical Characterization Methods of the In Situ Forming Implants. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200616125009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major developments of the last decade is the preparation of in situ implant formulations.
Injectable, biocompatible and/or biodegradable polymer-based in situ implants are classified
differently due to implant formation based on in vivo solid depot or formation mechanisms inducing
liquid form, gel or solid depot. In this review, published studies to date regarding in situ forming implant
systems were compiled and their formation mechanisms, materials and methods used, routes of
administration, chemical and analytical characterizations, quality-control tests and in vitro dissolution
tests were compared in Tables and were evaluated. There are several advantages and disadvantages of
these dosage forms due to the formation mechanism, polymer and solvent type and the ratio used in
formulations and all of these parameters have been discussed separately. In addition, new generation
systems developed to overcome the difficulties encountered in in situ implants have been evaluated.
There are some approved products of in situ implant preparations that can be used for different indications
available on the market and the clinical phase studies nowadays. In vitro and in vivo data obtained
by the analysis of the application of new technologies in many studies evaluated in this review showed
that the number of approved drugs to be used for various indications would increase in the future.
Collapse
Affiliation(s)
- Muge Kilicarslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| | - Ayse Nur Buke
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| |
Collapse
|
8
|
Yadav E, Khatana AK, Sebastian S, Gupta MK. DAP derived fatty acid amide organogelators as novel carrier for drug incorporation and pH-responsive release. NEW J CHEM 2021. [DOI: 10.1039/d0nj04611f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Low-molecular mass fatty acid amide gelators were synthesized using 2,6-diaminopyridine as a linker and alkyl chains of varying lengths. The prepared organogel-elusions are able to trap and release ibuprofen molecule without changing its structure and activity.
Collapse
Affiliation(s)
- Eqvinshi Yadav
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Anil Kumar Khatana
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Sharol Sebastian
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Manoj K. Gupta
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| |
Collapse
|
9
|
Hu B, Yan H, Sun Y, Chen X, Sun Y, Li S, Jing Y, Li H. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:266-275. [PMID: 31851842 DOI: 10.1080/21691401.2019.1699833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Organogels are excellent drug carrier for controlled release. Organogels based on amino acid derivatives has been widely used in the area of drug delivery. In this study, a series of the organogel system based on amino acid derivatives gelators was designed and prepared to investigate the structure-property correlation in organogels. To investigate the factors that influence the property of drug release, we varied the formulation in the organogels: gelator structure, gelator concentration, volume of antigelation solvent, and drug loading. Through the Box-Behnken tests, the optimum organogel formulation in vitro was obtained. The self-healing properties of the organogel have been utilised for injection of a model lipophilic risperidone in situ, and sustained release of the drug has been studied over about one week in vivo. In conclusion, the gelation ability of gelators could be adjusted by the gelator structure. Gel property is related with the whole composition of the formulation. As drug carrier, the drug release property of organogels is affected by multiple factors. Our investigation of the gel release property will play a theoretical guiding role in the application in the in situ drug delivery system.
Collapse
Affiliation(s)
- Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Haipeng Yan
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, P. R. China
| | - Yanping Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Xi Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Yujuan Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, P. R. China
| |
Collapse
|
10
|
Tsuge A, Matsumoto S, Hashimura D, Araki K. Development of novel aromatic ambidextrous gelators based on molecular design. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Dai Z, Li Y, Yan Y, Wan R, Ran Q, Lu W, Qiao B, Li H. Evaluation of the internal fixation effect of nano-calcium-deficient hydroxyapatite/poly-amino acid composite screws for intraarticular fractures in rabbits. Int J Nanomedicine 2018; 13:6625-6636. [PMID: 30425478 PMCID: PMC6201990 DOI: 10.2147/ijn.s173358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective To evaluate the internal fixation effect of nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) composite screws in the intraarticular fracture model. Materials and methods A total of 35 New Zealand White rabbits were used in a bilateral femoral intercondylar fracture model and randomly divided into two groups. n-CDHA/PAA screws were used in the experimental group, and medical metal screws were used in the control group. The fracture condition, range of motion, and the screw push-out strength were assessed, and an arthroscopic examination of knee joint was performed at 4, 8, and 12 weeks after surgery. The biodegradation of the n-CDHA/PAA screws in vivo was tested through weighing, and changes in screw structure were assessed by X-ray diffraction at 12 weeks after surgery. Results The general situation of all animals was good and showed no incision infection and dehiscence after surgery. X-ray scanning showed that significant callus growth was present in both groups at 4 weeks after surgery, and there was no significant difference (P>0.05) in the Lane-Sandhu score between the experimental and control groups at all time points after surgery. There were no statistically significant differences (P>0.05) in the range of motion and Oswestry Arthroscopy Score of arthroscopic examination of the knee joints between the two groups. The screw push-out strength of the control group was stronger than that of the experimental group at 4 weeks after surgery (P<0.05), but after that, there was no significant difference between the groups (P>0.05). The degradation tests showed that the n-CDHA/PAA screws degraded gradually after implantation, and the weight loss rate was approximately 16% at 12 weeks after surgery. The X-ray diffraction results showed that the crystal structure of the outer surface of the n-CDHA/PAA screw has changed at 12 weeks after surgery. Conclusion The n-CDHA/PAA screw is an effective and safe implant as a potential internal fixation device for an intercondylar fracture of the femur, and its internal fixation effect was similar to that of medical metal screw.
Collapse
Affiliation(s)
- Zhenyu Dai
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China,
| | - Yue Li
- Department of Clinical Laboratory, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of China,
| | - Ruijie Wan
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China,
| | - Qiang Ran
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China,
| | - Weizhong Lu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China,
| | - Bo Qiao
- Department of Orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hong Li
- College of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of China,
| |
Collapse
|
12
|
Hu B, Sun W, Li H, Sui H, Li S. Systematic modifications of amino acid-based organogelators for the investigation of structure-property correlations in drug delivery system. Int J Pharm 2018; 547:637-647. [DOI: 10.1016/j.ijpharm.2018.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
|
13
|
Hu B, Sun W, Yang B, Li H, Zhou L, Li S. Application of Solvent Parameters for Predicting Organogel Formation. AAPS PharmSciTech 2018; 19:2288-2300. [PMID: 29845502 DOI: 10.1208/s12249-018-1074-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022] Open
Abstract
Solvents, accounting the majority of the organogel system, have a tremendous impact on the characteristics of gels. To date, there is a large variety of organogel systems; relatively few have been investigated in the field of structure-solvent correlation. Here, a series of solvent parameters were applied to explore the role of solvent effect on network forming and gel property, intending to build the connection between the precise solvent parameter and gel property. Among the solvent parameters, Kamlet-Taft Parameters and Hansen solubility parameters can distinguish specific types of intermolecular interactions, which could correlate solvent parameter with the gel property. From an analysis of the morphologies obtained from POM and SEM, the gelator structure has an impact on its self-assembly. For possible conformations, the gelators were investigated through XRD. The investigation of solvent-property relationship will provide a theoretical basis for controllable drug delivery implants.
Collapse
|
14
|
Xu M, Mou Y, Hu M, Dong W, Su X, Wu R, Zhang P. Evaluation of micelles incorporated into thermosensitive hydrogels for intratumoral delivery and controlled release of docetaxel: A dual approach for in situ treatment of tumors. Asian J Pharm Sci 2018; 13:373-382. [PMID: 32104411 PMCID: PMC7032140 DOI: 10.1016/j.ajps.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 05/13/2018] [Indexed: 12/19/2022] Open
Abstract
The in situ gelling hybrid hydrogel system has been reported to effectively concentrate chemotherapeutic drugs at the tumor site and sustain their release for a long period. DTX-micelles (docetaxel-loaded mixed micelles) are able to increase the solubility of DTX in water, and then a high drug loading rate of hydrogels can be achieved by encapsulating the docetaxel-loaded mixed micelles into the hydrogels. The thermosensitive nature of DTX-MM-hydrogels (thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles) can accelerate the formation of a depot of this drug-loaded system at the site of administration. Therefore, the hydrogels provide a much slower release compared with DTX-micelles and DTX-injection. An in vivo retention study has demonstrated that the DTX-MM-hydrogels can prolong the drug retention time and in vivo trials have shown that the DTX-MM-hydrogels have a higher antitumor efficacy and systemic safety. In conclusion, the DTX-MM-hydrogels prepared in this study have considerable potential as a drug delivery system, with higher tumor inhibition effects and are less toxic to normal tissues.
Collapse
Affiliation(s)
- Meng Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Mingming Hu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wenxiang Dong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xitong Su
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Rongxia Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|