1
|
Wei Z, Chen D, Zhang X, Wang L, Yang W. Precise Synthesis of Structurally Diverse Aggregation-Induced Emission-Active Polyacrylates by Cu(0)-Catalyzed SET-LRP with Macromolecular Structure-Correlated Emission. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiqiang Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|
2
|
Facile fabrication of end-functional PLLA with AIEgens via Ugi reaction. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Bao Y. Controlling Molecular Aggregation-Induced Emission by Controlled Polymerization. Molecules 2021; 26:6267. [PMID: 34684848 PMCID: PMC8540238 DOI: 10.3390/molecules26206267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
In last twenty years, the significant development of AIE materials has been witnessed. A number of small molecules, polymers and composites with AIE activity have been synthesized, with some of these exhibiting great potential in optoelectronics and biomedical applications. Compared to AIE small molecules, macromolecular systems-especially well-defined AIE polymers-have been studied relatively less. Controlled polymerization methods provide the efficient synthesis of well-defined AIE polymers with varied monomers, tunable chain lengths and narrow dispersity. In particular, the preparation of single-fluorophore polymers through AIE molecule-initiated polymerization enables the systematic investigation of the structure-property relationships of AIE polymeric systems. Here, the main polymerization techniques involved in these polymers are summarized and the key parameters that affect their photophysical properties are analyzed. The author endeavored to collect meaningful information from the descriptions of AIE polymer systems in the literature, to find connections by comparing different representative examples, and hopes eventually to provide a set of general guidelines for AIE polymer design, along with personal perspectives on the direction of future research.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Liu W, Yang Q, Yang Y, Xing F, Xiao P. PhotoATRP Approach to Poly(methyl methacrylate) with Aggregation-Induced Emission. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenli Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Qizhi Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Yili Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University 601 Huangpu West Avenue, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
5
|
Furukawa M, Nakabayashi K, Mori H. Aggregation‐induced
multicolor luminescent nanoparticles with adaptive and fixed cores derived from brominated
tetraphenylethene‐containing
block copolymer. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masaki Furukawa
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| | | | - Hideharu Mori
- Graduate School of Organic Materials Science Yamagata University Yonezawa Japan
| |
Collapse
|
6
|
Shi B, Lü J, Liu Y, Xiao Y, Lü C. Organic–inorganic nanohybrids based on an AIE luminogen-functional polymer and CdTe/ZnS QDs: morphologies, optical properties, and applications. Polym Chem 2021. [DOI: 10.1039/d1py00308a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dual-emissive organic–inorganic nanohybrid self-assemblies were constructed by binding red-emitting CdTe/ZnS QDs to blue-emitting AIE-active polymeric micelles in water as a fluorescent probe for PA with interesting assembly behaviour.
Collapse
Affiliation(s)
- Bingfeng Shi
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Jianhua Lü
- Narcotics Control School
- Yunnan Police College
- Kunming 650223
- P. R. China
| | - Ying Liu
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yang Xiao
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Changli Lü
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
7
|
|
8
|
Wang X, Qiao X, Yin X, Cui Z, Fu P, Liu M, Wang G, Pan X, Pang X. Visualization of Atom Transfer Radical Polymerization by Aggregation-Induced Emission Technology. Chem Asian J 2020; 15:1014-1017. [PMID: 32012458 DOI: 10.1002/asia.202000071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/21/2023]
Abstract
Aggregation-induced emission (AIE) technology has been demonstrated to be a facile approach for in-situ monitoring atom transfer radical polymerization (ATRP). A series of tertraphenyl ethylene (TPE)-containing α-bromo compounds were synthesized and applied as ATRP initiators. The photoluminescent (PL) emission of the polymerization system is proved to be sensitive to the local viscosity owing to the AIE characteristics of TPE. Linear relationships between the resulting molecular weight Mn and PL intensity were observed in several polymerization systems with different monomers, indicating the variability of this technique. Compared to physical blending, the chemical bonding of the TPE group in the chain end has higher sensitivity and accuracy to the polymer segments and the surrounding environment. This work promoted the combination of the AIE technique and controlled living radical polymerization, and introduced such an optical research platform to the ATRP polymerization process.
Collapse
Affiliation(s)
- Xin Wang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Xiuzhe Yin
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, No.100 of Kexue Avenue, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Huang Z, Chen Y, Wang R, Zhou C, Liu X, Mao L, Yuan J, Tao L, Wei Y. An acrylate AIE-active dye with a two-photon fluorescent switch for fluorescent nanoparticles by RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Adv 2020; 10:5704-5711. [PMID: 35497448 PMCID: PMC9049524 DOI: 10.1039/c9ra10430e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023] Open
Abstract
Recently, AIE-active fluorescent materials have attracted extensive investigation due to their significant applications in the fields of memory devices, photomodulation, information displays, sensors, and biological imaging. In this contribution, a novel acrylate AIE-active dye of TPMA was successfully synthesized by Suzuki coupling and acylation reaction, and belongs to the monoclinic crystal system and P21/c space group from the crystal structure analysis, and its fluorescence intensity was stronger with an obvious red shift of emission wavelength as compared with the reported TPB dye. Moreover, the obtained TPMA dye exhibits multi-stimuli-responsivity and a two-photon fluorescent switch with excellent reversibility in the solid state. Subsequently, the corresponding fluorescent polymers of PEG-TM were successfully fabricated via RAFT polymerization of TPMA and PEGMA with a molecular weight of about 25 000 (M n) and narrow polydispersity index (PDI). From 1H NMR analysis, when the feeding ratio of TPMA increased to 32.2% from 19.2%, the molar fraction of TPMA in PEG-TM polymers accordingly increased to 32.8% from 19.5%. In water solution, the as-prepared PEG-TM1 polymers would self-assemble into fluorescent organic nanoparticles (FONs) with diameters ranging from 150 to 250 nm, and their maximum emission wavelength presented at 518 nm with obvious AIE phenomena. Moreover, the as-synthesized PEG-TM polymers have prospective application in biological imaging due to their good fluorescence, high water solubility and excellent biocompatibility.
Collapse
Affiliation(s)
- Zengfang Huang
- School of Materials & Food Engineering, Zhongshan Institute, University of Electronic Science & Technology of China Zhongshan 528402 P. R. China
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Yali Chen
- School of Materials & Food Engineering, Zhongshan Institute, University of Electronic Science & Technology of China Zhongshan 528402 P. R. China
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Runze Wang
- School of Materials & Food Engineering, Zhongshan Institute, University of Electronic Science & Technology of China Zhongshan 528402 P. R. China
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Chaoyue Zhou
- School of Materials & Food Engineering, Zhongshan Institute, University of Electronic Science & Technology of China Zhongshan 528402 P. R. China
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science & Technology of China Chengdu 610054 P. R. China
| | - Liucheng Mao
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University Beijing 100084 P. R. China
| | - Jinying Yuan
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University Beijing 100084 P. R. China
| | - Lei Tao
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University Beijing 100084 P. R. China
| | - Yen Wei
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
10
|
Tavakoli J, Laisak E, Gao M, Tang Y. AIEgen quantitatively monitoring the release of Ca2+ during swelling and degradation process in alginate hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109951. [DOI: 10.1016/j.msec.2019.109951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022]
|
11
|
Wang CG, Oh XY, Liu X, Goto A. Self-Catalyzed Living Radical Polymerization Using Quaternary-Ammonium-Iodide-Containing Monomers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chen-Gang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xin Yi Oh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xu Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
12
|
Zhang H, Sun Y, Zhou T, Yu Q, Yang Z, Cai Z, Cang H. Poly(2-oxazoline)-based nanoparticles with aggregation-induced emission (AIE) for targeted cell imaging. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Huaihong Zhang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Tao Zhou
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Qing Yu
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhenqing Yang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhaosheng Cai
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Hui Cang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
13
|
Zhou S, Zhao H, Feng R, Ding L, Li Z, Deng C, He Q, Liu Y, Song B, Li Y. Application of amphiphilic fluorophore-derived nanoparticles to provide contrast to human embryonic stem cells without affecting their pluripotency and to monitor their differentiation into neuron-like cells. Acta Biomater 2018; 78:274-284. [PMID: 30071352 DOI: 10.1016/j.actbio.2018.07.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 01/20/2023]
Abstract
Fluorogenic labeling is a potential technique in biology that allows for direct detection and tracking of cells undergoing various biological processes. Compared to traditional genetic modification approaches, labeling cells with nanoparticles has advantages, especially for the additional safety they provide by avoiding genomic integration. However, it remains a challenge to determine whether nanoparticles interfere with cell traits and provide long-lasting signals in living cells. We employed an amphiphilic fluorophore-derived nanoparticle (denoted by TPE-11) bearing a tetraphenylethene (TPE) moiety and two ionic heads; this nanoparticle has an aggregation-induced emission (AIE) effect and the ability to self-assemble. TPE-11 exhibited the property of higher or longer fluorescence intensities in cell imaging than the other two nanomaterials under the same conditions. We used this nanomaterial to label human embryonic stem (hES) cells and monitor their differentiation. Treatment with low concentrations of TPE-11 (8.0 μg/mL) resulted in high-intensity labeling of hES cells, and immunostaining analysis and teratoma formation assays showed that at this concentration, their pluripotency remained unaltered. TPE-11 nanoparticles allowed for long-term monitoring of hES cell differentiation into neuron-like cells; remarkably, strong nanoparticle signals were detected throughout the nearly 40-day differentiation process. Thus, these results demonstrate that the TPE-11 nanoparticle has excellent biocompatibility for hES cells and is a potential fluorogen for labeling and tracking the differentiation of human pluripotent stem cells. STATEMENT OF SIGNIFICANCE This study uses a nanoparticle-based approach to label human embryonic stem (hES) cells and monitor their differentiation. hES cells are distinguished by two distinctive properties: the state of their pluripotency and the potential to differentiate into various cell types. Thus, these cells will be useful as a source of cells for transplantation or tissue engineering applications. We noticed the effect of aggregation-induced emission, and the ability to self-assemble could enhance the persistence of signals. Treatment with low concentrations of TPE-11 nanoparticles showed high-intensity labeling of hES cells, and immunostaining analysis and teratoma formation assays showed that at this concentration, their pluripotency remained unaltered. Additionally, these nanoparticles allowed for long-term monitoring of hES cell differentiation into neuron-like cells lasting for 40 days.
Collapse
Affiliation(s)
- Shixin Zhou
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongxi Zhao
- Tangdu Hospital of the Fourth Military Medical University, Xi'an, China
| | - Ruopeng Feng
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Lan Ding
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiqiang Li
- Department of Diagnostic Ultrasound, Peking University Third Hospital, Beijing, China
| | - Changwen Deng
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Yinan Liu
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Bo Song
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yang Li
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
14
|
Liu S, Cheng Y, Zhang H, Qiu Z, Kwok RTK, Lam JWY, Tang BZ. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene‐Containing Agents with Aggregation‐Induced Emission Characteristics. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Yanhua Cheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Zijie Qiu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ryan T. K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science and Division of Biomedical Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- HKUST-Shenzhen Research Institute No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- NFSC Center for Luminescence from Molecular Aggregates SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| |
Collapse
|
15
|
Liu S, Cheng Y, Zhang H, Qiu Z, Kwok RTK, Lam JWY, Tang BZ. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission Characteristics. Angew Chem Int Ed Engl 2018; 57:6274-6278. [PMID: 29633451 DOI: 10.1002/anie.201803268] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 12/24/2022]
Abstract
A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yanhua Cheng
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zijie Qiu
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,HKUST-Shenzhen Research Institute, No.9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China.,NFSC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
16
|
Tian X, Ding J, Zhang B, Qiu F, Zhuang X, Chen Y. Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications. Polymers (Basel) 2018; 10:E318. [PMID: 30966354 PMCID: PMC6415088 DOI: 10.3390/polym10030318] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Reversible addition-fragmentation chain transfer (RAFT) is considered to be one of most famous reversible deactivation radical polymerization protocols. Benefiting from its living or controlled polymerization process, complex polymeric architectures with controlled molecular weight, low dispersity, as well as various functionality have been constructed, which could be applied in wide fields, including materials, biology, and electrology. Under the continuous research improvement, main achievements have focused on the development of new RAFT techniques, containing fancy initiation methods (e.g., photo, metal, enzyme, redox and acid), sulfur-free RAFT system and their applications in many fields. This review summarizes the current advances in major bright spot of novel RAFT techniques as well as their potential applications in the optoelectronic field, especially in the past a few years.
Collapse
Affiliation(s)
- Xiangyu Tian
- Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Junjie Ding
- Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Feng Qiu
- The State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China.
| | - Xiaodong Zhuang
- The State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China.
- Center for Advancing Electronics Dresden (CFAED) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Yu Chen
- Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|