Dubey SK, Parab S, Achalla VPK, Narwaria A, Sharma S, Jaswanth Gowda BH, Kesharwani P. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts.
JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022;
33:1531-1554. [PMID:
35404217 DOI:
10.1080/09205063.2022.2065408]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
There has been a growing interest in the scientific community to explore the complete potential of phytoconstituents, herbal or plant-based ingredients owing to a range of benefits they bring along. The herbal plants accommodate many phytoconstituents that are responsible for various activities such as anti-oxidant, antimicrobial, anticancer, anti-inflammatory, anti-allergic, hepatoprotective, etc. However, these phytoconstituents are highly sensitive to several environmental and physiological factors such as pH, oxygen, heat, temperature, humidity, stomach acid, enzymes, and light. Hence, there is need for the development of a drug delivery system that can protect the phytoconstituents from both internal and external conditions. In this regard, a microparticulate drug delivery system is considered amongst the ideal choice owing to its small size, ability to protect the environment-sensitive active constituents, in achieving sustained drug delivery, targeted drug delivery, protection of the drug from physiological conditions, minimizing drug-related side effects, etc.
Collapse