1
|
Asadi Haris S, Adhami S, Abouali M, Coskun S, Yuksel R. Mitigating Zinc Dendrite Formation and Parasitic Side Reactions in Aqueous Zn-Ion Batteries Via Laser-Assisted Carbonization of Cu-PANI Films on Zn Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410051. [PMID: 39654334 DOI: 10.1002/smll.202410051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Indexed: 01/23/2025]
Abstract
Aqueous zinc-ion batteries (ZIBs) are gaining attraction for large-scale energy storage systems due to their high safety, significant capacity, cost-effectiveness, and environmental friendliness. On the other hand, the development of aqueous ZIBs is restricted by the limited practical application of zinc (Zn) because of the high reactivity of Zn in aqueous electrolytes, which results in the severe dendrite growth and parasitic side reactions such as hydrogen evolution reaction (HER). In this study, heteroatom-doped carbon porous surface modification by laser-assisted carbonization of copper (Cu) doped polyaniline (PANI) is designed and fabricated on top of the Zn metal anode (c-Cu-PANI/Zn). The c-Cu-PANI surface-modified Zn anodes exhibit high electrochemical stability and performance during the Zn plating-stripping cycles and suppress the dendrite formation. The symmetrical cell and half-cell with the c-Cu-PANI/Zn anodes exhibit stable cycles for 6000 h and 100% Coulombic efficiency for 2500 cycles, respectively. Moreover, the c-Cu-PANI/Zn║V2O5 cell delivers a high specific capacity of 319 mAh g-1 at 0.2 A g-1, which is significantly higher than that of the bare Zn║V2O5 cell (240 mAh g-1). It is believed that applying c-Cu-PANI as a surface modification can enhance the stability and reversibility of the Zn anodes, therefore accelerating the commercialization of ZIBs.
Collapse
Affiliation(s)
- Somayeh Asadi Haris
- Department of Chemistry, Faculty of Science, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
| | - Sadaf Adhami
- Department of Chemistry, Faculty of Science, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
| | - Maryam Abouali
- Department of Chemistry, Faculty of Science, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
| | - Sahin Coskun
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
- Nanoscience and Nanotechnology, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
- Advanced Materials Technologies Application and Research Center (IMATEK), Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
| | - Recep Yuksel
- Department of Chemistry, Faculty of Science, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
- Nanoscience and Nanotechnology, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
- Advanced Materials Technologies Application and Research Center (IMATEK), Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Türkiye
| |
Collapse
|
2
|
Sharma KP, Shin M, Kim K, Woo K, Awasthi GP, Yu C. Copper nanoparticles/polyaniline/molybdenum disulfide composite as a nonenzymatic electrochemical glucose sensor. Heliyon 2023; 9:e21272. [PMID: 38076125 PMCID: PMC10709213 DOI: 10.1016/j.heliyon.2023.e21272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/16/2024] Open
Abstract
A Cu@Pani/MoS2 nanocomposite was successfully synthesized via combined in-situ oxidative polymerization and hydrothermal reaction and applied to an electrochemical nonenzymatic glucose sensor. The morphology of the prepared Cu@Pani/MoS2 nanocomposite was characterized using FE-SEM and Cs-STEM, and electrochemical analysis was performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry techniques. Electrostatic interaction between Cu@Pani and MoS2 greatly enhanced the charge dispersion, electrical conductivity, and stability, resulting in excellent electrochemical performance. The Cu@Pani/MoS2 was used as an electrocatalyst to detect glucose in an alkaline medium. The proposed glucose sensor exhibited a sensitivity, detection limit, and wide linear range of 69.82 μAmM-1cm-2, 1.78 μM, and 0.1-11 mM, respectively. The stability and selectivity of the Cu@Pani/MoS2 composite for glucose compared to that of the potential interfering species, as well as its ability to determine the glucose concentration in diluted human serum samples at a high recovery percentage, demonstrated its viability as a nonenzymatic glucose sensor.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Kyong Kim
- Department of Rehabilitation Engineering, Daegu Hanny University, Gyeongsan, Gyeongsangbuk-do, 38609, Republic of Korea
| | - Kyungmin Woo
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
3
|
Medjili C, Lakhdari N, Lakhdari D, Berchi A, Osmani N, Laourari I, Vasseghian Y, Berkani M. Synthesis of novel PANI/PVA-NiCu composite material for efficient removal of organic dyes. CHEMOSPHERE 2023; 313:137427. [PMID: 36455660 DOI: 10.1016/j.chemosphere.2022.137427] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The present work aims the synthesis of a novel, low cost, and environmentally friendly PANI/PVA-CuNi composite by chemical oxidative polymerization of aniline monomer and polyvinyl alcohol (PVA) as film matrix; several percentages of copper (Cu) and Nickel (Ni) were used. UV-Visible spectroscopy, FTIR, SEM-EDX, and TGA were used to characterize the nanocomposites. While PANI/PVA-CuNi nanocomposites were investigated in adsorption experiments of methylene blue (MB) under different controlled conditions (time reaction, adsorbent dosage, initial dye concentration, stirring speed, temperature, and pH of the medium) also various kinetic models were employed to evaluate the efficiency of the adsorption. The results revealed that the10 mg of PANI/PVA-Cu50Ni50 and PANI/PVA-Ni composites Catalyst removed (94% and 93% of methylene blue in 180 min respectively at 10-5 M initial concentration of dye, pH of 13, stirring speed of 150 rpm, the temperature of 301 k. the kinetics data were properly fitted with the pseudo second-order model with a correlation coefficient of 0.98262 and 0.95881 using PANI/PVA-Cu50Ni50 and PANI/PVA-Ni, respectively.
Collapse
Affiliation(s)
- Chahinaz Medjili
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga 16014, Algiers, Algeria; Laboratoire d'élaboration de Nouveaux Matériaux et leur Caractérisation (ENMC), Université Sétif-1, Algeria.
| | - Abderrahmane Berchi
- Laboratoire d'énergétique et d'électrochimie du solide, Département de génie des procédés, Faculté de Technologie, UFA. Sétif 1, Sétif, 19000, Algeria
| | - Nadjet Osmani
- Nuclear Research Center of Birine, BP 180, Ain Oussera, 17200, Djelfa, Algeria
| | - Ines Laourari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
4
|
Latypova LR, Usmanova GS, Vasilova LY, Zorin VV, Mustafin AG. Synthesis and characterization of N-substituted polyanilines and polyindoles and their antibacterial activity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Electroconductive green metal‐polyaniline nanocomposites: synthesis and application in sensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Stamenović U, Davidović S, Petrović S, Leskovac A, Stoiljković M, Vodnik V. Antimicrobial and biological effects of polyaniline/polyvinylpyrrolidone nanocomposites loaded with silver nanospheres/triangles. NEW J CHEM 2021. [DOI: 10.1039/d1nj02729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Ag–PANI/PVP nanocomposites were prepared using in situ integration of AgNPs during oxidative aniline polymerization, accelerated by the presence of PVP, which as well minimized the risk of particle agglomeration and macroscopic precipitation.
Collapse
Affiliation(s)
- Una Stamenović
- Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia
- University of Belgrade
- 11001 Belgrade
- Serbia
| | - Slađana Davidović
- Faculty of Technology and Metallurgy
- University of Belgrade
- Karnegijeva 4
- 11000 Belgrade
- Serbia
| | - Sandra Petrović
- Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia
- University of Belgrade
- 11001 Belgrade
- Serbia
| | - Andreja Leskovac
- Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia
- University of Belgrade
- 11001 Belgrade
- Serbia
| | - Milovan Stoiljković
- Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia
- University of Belgrade
- 11001 Belgrade
- Serbia
| | - Vesna Vodnik
- Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia
- University of Belgrade
- 11001 Belgrade
- Serbia
| |
Collapse
|
7
|
Montanheiro TLDA, Ribas RG, Montagna LS, Menezes BRCD, Schatkoski VM, Rodrigues KF, Thim GP. A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1869-1893. [PMID: 32579490 DOI: 10.1080/09205063.2020.1781527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoparticles (NPs) have been studied for a wide variety of applications, due to the elevated surface area and outstanding properties. Several types of NPs are available nowadays, each one with particular characteristics and challenges. Bionanocomposites, especially composed by polymer matrices, are gaining attention in the biomedical field. Although, several studies have shown the potential of adding NPs into these materials, some investigation is still needed until their clinical use for in vivo application is consummated. Besides that, is essential to evaluate whether the addition of nanoparticles changes the matrix property. In this review, we summarize the latest advances concerning polymeric bionanocomposites incorporated with organic (polymeric, cellulosic, carbon-based), and inorganic (metallic, magnetics, and metal oxide) NPs.
Collapse
Affiliation(s)
- Thaís Larissa do Amaral Montanheiro
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Renata Guimarães Ribas
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Larissa Stieven Montagna
- Technology Laboratory of Polymers and Biopolymers (TecPBio), Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Beatriz Rossi Canuto de Menezes
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Vanessa Modelski Schatkoski
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Karla Faquine Rodrigues
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Gilmar Patrocínio Thim
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
8
|
Máková V, Holubová B, Tetour D, Brus J, Řezanka M, Rysová M, Hodačová J. (1 S,2 S)-Cyclohexane-1,2-diamine-based Organosilane Fibres as a Powerful Tool Against Pathogenic Bacteria. Polymers (Basel) 2020; 12:polym12010206. [PMID: 31947556 PMCID: PMC7023662 DOI: 10.3390/polym12010206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
An urgent need to find an effective solution to bacterial resistance is pushing worldwide research for highly effective means against this threat. Newly prepared hybrid organosilane fibres consisting of a (1S,2S)-cyclohexane-1,2-diamine derivative, interconnected in the fibre network via covalent bonds, were fully characterised via different techniques, including FTIR, TGA-FTIR, SEM-EDS, and solid-state NMR. Fibrous samples were successfully tested against two types of pathogenic bacterial strains, namely Staphylococcus aureus, and Pseudomonas aeruginosa. The obtained results, showing >99.9% inhibition against Staphylococcus aureus and Pseudomonas aeruginosa in direct contact compared to the control, may help particularly in case of infections, where there is an urgent need to treat the infection in direct contact. From this point of view, the above-mentioned fibrous material may find application in wound healing. Moreover, this new material has a positive impact on fibroblasts viability.
Collapse
Affiliation(s)
- Veronika Máková
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (B.H.); (M.Ř.)
- Correspondence: ; Tel.: +420-485-353-863
| | - Barbora Holubová
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (B.H.); (M.Ř.)
| | - David Tetour
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (D.T.); (J.H.)
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic;
| | - Michal Řezanka
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic; (B.H.); (M.Ř.)
| | - Miroslava Rysová
- Department of Nanomaterials and Informatics, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Jana Hodačová
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (D.T.); (J.H.)
| |
Collapse
|
9
|
Swar S, Máková V, Horáková J, Kejzlar P, Parma P, Stibor I. A comparative study between chemically modified and copper nanoparticle immobilized Nylon 6 films to explore their efficiency in fighting against two types of pathogenic bacteria. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Jayaramudu T, Varaprasad K, Pyarasani RD, Reddy KK, Kumar KD, Akbari-Fakhrabadi A, Mangalaraja RV, Amalraj J. Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films. Int J Biol Macromol 2019; 128:499-508. [PMID: 30699337 DOI: 10.1016/j.ijbiomac.2019.01.145] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.
Collapse
Affiliation(s)
- Tippabattini Jayaramudu
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile.
| | - Kokkarachedu Varaprasad
- Centre de Investigacion de Polimeros Avanzados, CIPA, avenida Collao 1202, Edificio de Laoratorios, Concepcion, Chile
| | - Radha D Pyarasani
- Vicerrectoria de Investigacion y Postgrado, Universidad Catolica del Maule, 3460000 Talca, Chile
| | - K Koteshwara Reddy
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile
| | - Kanderi Dileep Kumar
- Dept. of Microbiology, Sri Krishnadevaraya University, Ananthapuramu 515003, Andhra Pradesh, India
| | - A Akbari-Fakhrabadi
- Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Beauchef, 851 Santiago, Chile
| | - R V Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion 407-0409, Chile
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile.
| |
Collapse
|
11
|
Benetti G, Cavaliere E, Brescia R, Salassi S, Ferrando R, Vantomme A, Pallecchi L, Pollini S, Boncompagni S, Fortuni B, Van Bael MJ, Banfi F, Gavioli L. Tailored Ag-Cu-Mg multielemental nanoparticles for wide-spectrum antibacterial coating. NANOSCALE 2019; 11:1626-1635. [PMID: 30644952 DOI: 10.1039/c8nr08375d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bactericidal nanoparticle coatings are very promising for hindering the indirect transmission of pathogens through cross-contaminated surfaces. The challenge, limiting their employment in nosocomial environments, is the ability of tailoring the coating's physicochemical properties, namely, composition, cytotoxicity, bactericidal spectrum, adhesion to the substrate, and consequent nanoparticles release into the environment. We have engineered a new family of nanoparticle-based bactericidal coatings comprising Ag, Cu, and Mg and synthesized by a green gas-phase technique. These coatings present wide-spectrum bactericidal activity on both Gram-positive and Gram-negative reference strains and tunable physicochemical properties of relevance in view of their "on-field" deployment. The link between material and functional properties is rationalized based on a multidisciplinary and multitechnique approach. Our results pave the way for engineering biofunctional, fully tunable nanoparticle coatings, exploiting an arbitrarily wide number of elements in a straightforward, eco-friendly, high-throughput, one-step process.
Collapse
Affiliation(s)
- Giulio Benetti
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy. luca.gavioli@unicatt and Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Emanuele Cavaliere
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy. luca.gavioli@unicatt
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| | - Sebastian Salassi
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Riccardo Ferrando
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - André Vantomme
- Institute for Nuclear and Radiation Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Lucia Pallecchi
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Simona Pollini
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Largo Brambilla 1, 50134 Firenze, Italy
| | - Selene Boncompagni
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Beatrice Fortuni
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Margriet J Van Bael
- Laboratory of Solid State Physics and Magnetism, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Francesco Banfi
- FemtoNanoOptics group, Universitė de Lyon, Institut Lumière Matière (iLM), Université Lyon 1 and CNRS, 10 rue Ada Byron, 69622 Villeurbanne, France
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy. luca.gavioli@unicatt
| |
Collapse
|