1
|
Shahbazi R, Mirjafary Z, Zarghami N, Saeidian H. Efficient PEGylated magnetic nanoniosomes for co-delivery of artemisinin and metformin: a new frontier in chemotherapeutic efficacy and cancer therapy. Sci Rep 2024; 14:27380. [PMID: 39521852 PMCID: PMC11550824 DOI: 10.1038/s41598-024-78817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Two strategies were employed to modify the performance of the nano-niosome drug delivery system. Initially, the surface of the nano-niosomes underwent modification through the inclusion of polyethylene glycol, thereby altering its properties. Additionally, the core of the nano-niosomes was equipped with Fe3O4 magnetic nanoparticles to impart magnetic characteristics to the system. This study presents the development of PEGylated magnetic nanoniosomes (PMNios) for the co-delivery of artemisinin (ART) and metformin (MET) in cancer therapy, highlighting significant advancements in chemotherapeutic efficacy. The magnetization of the nano-niosomes facilitated the targeted delivery of drugs to specific tissues, while PEGylation improved the bioavailability of the nano-niosomes. These PEGylated magnetic niosomes (PMNios) were then loaded with artemisinin and metformin drugs. The synthesized PMNios were thoroughly evaluated in terms of zeta potential, size, morphology, and entrapment efficiency. The PMNios achieved a drug loading efficiency of 88%. They exhibited an average size of 298 nm, a polydispersity index of 0.32, and a zeta potential of - 19 mV, indicating the complete stability. SEM and TEM images of the PMNios revealed a spherical morphology. Subsequently, the PMNios were compared with other forms of nano-niosomes, including empty niosomes, non-magnetic niosomes, and non-PEGylated niosomes. The encapsulation of the nano-niosomes with magnetic nanoparticles allows for faster delivery of the encapsulated drugs to the tumor site, while PEGylation improved the stability, bioavailability, and controlled release of the PMNios. Furthermore, the in-vitro effectiveness of various formulations of the PMNios against A549, a lung cancer cell line, demonstrated that the PMNios exhibited appropriate toxicity towards cancer cell lines in the presence of an external magnetic field. Gene expression level of Bcl2 were lower for the PMNios-ART-MET system, whereas the level of Bax were higher than the other group. The PMNios-ART-MET system also demonstrated well internalization into the A549 cells and preponderant endocytosis. These findings underscore the novelty and potential of PMNios as a robust platform for the targeted co-delivery of hydrophilic and hydrophobic drugs, promising a new frontier in cancer therapy by enhancing the therapeutic index and minimizing side effects.
Collapse
Affiliation(s)
- Rasoul Shahbazi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
2
|
Hameed H, Sarwar HS, Younas K, Zaman M, Jamshaid M, Irfan A, Khalid M, Sohail MF. Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers. Funct Integr Genomics 2024; 24:177. [PMID: 39340586 DOI: 10.1007/s10142-024-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, 17 Avenue des sciences, 91190, Orsay, France
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maha Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, SBASSE, Lahore University of Management Sciences (LUMS), Lahore, 54000, Pakistan
- Alliant College of Pharmacy and Allied Health Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Kaur B, Chaudhary GR, Kaur G. Cholesterol vs Ergosterol: Influence on the Dynamic and Structural Properties of the Cobalt-Based Metallosomal Bilayer Membrane. Mol Pharm 2024; 21:3643-3660. [PMID: 38885973 DOI: 10.1021/acs.molpharmaceut.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Sterol derivatives are a crucial part of liposomes, as their concentration and nature can induce significant alternations in their characteristic features. For natural liposomal-based (phospholipid-based) studies, the bulk literature is already present depicting the role of the concentration or nature of different sterol derivatives in modulation of membrane properties. However, the studies aiming at evaluating the effect of sterol derivatives on synthetic liposomal assemblies are limited to cholesterol (Chl), and a comparative effect with other sterol derivatives, such as ergosterol (Erg), has never been studied. To fill this research gap, through this work, we intend to provide insights into the concentration-dependent effect of two sterol derivatives (Chl and Erg) on a synthetic liposomal assembly (i.e., metallosomes) prepared via thin film hydration route using a double-tailed metallosurfactant fabricated by modifying cetylpyridinium chloride with cobalt (Co) (i.e., Co:CPC II). The morphological evaluations with cryogenic-transmission electron microscopy (cryo-TEM), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) indicated that metallosomes retained their spherical morphology irrespective of the nature and concentration of sterol derivatives. However, the size, ζ-potential, and lamellar width values were significantly modified with the incorporation of sterol derivatives in a concentration-dependent manner. In-depth studies affirmed that the extent of modulation of the bilayer in terms of hydrophobicity, fluidity, and rigidity was more severe with Chl than Erg. Such differences in the membrane properties lead to their contrasting behavior in the delivery of the broad-spectrum active compound "curcumin". From entrapment to in vitro behavior, the metallosomes demonstrated dissimilar behavior as even though Erg-modified metallosomes (at higher concentrations of Erg) exhibited low entrapment efficiency, they still could easily release >80% of the entrapped drug. In vitro studies conducted with Staphylococcus aureus bacterial cultures further revealed an interesting pattern of activity as the incorporation of Chl reduced the toxicity of the self-assembly, whereas their Erg-modified counterparts yielded slightly augmented toxicity toward these bacterial cells. Furthermore, Chl- and Erg-modified assemblies also exhibited contrasting behavior in their interaction studies with bacterial DNA.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
4
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
5
|
Abdulkareem SJ, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Salmani-Javan E, Toroghi F, Zarghami N. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: potential anti-cancer effect in treatment of lung cancer cells. Daru 2024; 32:133-144. [PMID: 38168007 PMCID: PMC11087397 DOI: 10.1007/s40199-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 μM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 μM and 78.3 μM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.
Collapse
Affiliation(s)
- Salah Jaafar Abdulkareem
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Toroghi
- Research Center for Molecular Medicine, Hamedan University of Medical Science, Hamedan, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
6
|
Firouzi Amandi A, Bahmanyar Z, Dadashpour M, Lak M, Natami M, Döğüş Y, Alem M, Adeli OA. Fabrication of magnetic niosomal platform for delivery of resveratrol: potential anticancer activity against human pancreatic cancer Capan-1 cell. Cancer Cell Int 2024; 24:46. [PMID: 38287318 PMCID: PMC10826113 DOI: 10.1186/s12935-024-03219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Recently, the presence of different nanoparticles (NPs) has developed targeting drug delivery in treatment of cancer cell. Targeted drug delivery systems using NPs have shown great promise in improving the efficacy of intracellular uptake as well as local concentration of therapeutics with minimizing side effects. The current study planned to synthesized resveratrol-loaded magnetic niosomes nanoparticles (RSV-MNIONPs) and evaluate their cytotoxicity activity in pancreatic cancer cells. For this aim, magnetic nanoparticles (MNPs) were synthesized and loaded into niosomes (NIOs) by the thin film hydration technique and then characterized via DLS, FT-IR, TEM, SEM and VSM techniques. Moreover, the cytotoxic activity of the RSV-MNIONPs on the Capan-1 cells line was assessed by the MTT test. The distribution number of RSV-MNIONPs was gained about 80 nm and 95 nm with surface charge of - 14.0 mV by SEM and TEM analysis, respectively. RSV loading efficacy in NIOs was about 85%, and the drug releases pattern displayed a sustained discharge with a maximum amount about 35% and 40%, within 4 h in pH = 7.4 and pH = 5.8, respectively. The cytotoxicity of the RSV-MNIONPs in the presence of an external magnetic field is higher than that of the RSV, indicating enhanced cellular uptake in their encapsulated states. Furthermore, RSV loaded MNNPs were found to induce more cell cycle arrest at the G0/G1 checkpoint than free RSV. Compared with RSV-treated cells, the mRNA expression levels of BAX, Bcl2, FAS, P 53, Cyclin D and hTERT, were significantly changed in cells treated with RSV loaded MNNPs. The niosomes NPs approaches have been widely used to attain higher solubility, improved bioavailability, enhanced stability, and control delivery of RSV. Our formulation displayed antitumor activity and can be considered an appropriate carrier with a great potential for future usage in cancer therapy.
Collapse
Affiliation(s)
- Akram Firouzi Amandi
- Department of Medical Immunology, Facultyof Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahmanyar
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mehrnoosh Lak
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Yusuf Döğüş
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Mahsa Alem
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Omid Ali Adeli
- Department of Pathology, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
7
|
Abtahi NA, Salehi S, Naghib SM, Haghiralsadat F, Edgahi MA, Ghorbanzadeh S, Zhang W. Multi-sensitive functionalized niosomal nanocarriers for controllable gene delivery in vitro and in vivo. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
AbstractMicroRNAs, which can contribute to numerous cellular functions through post-transcriptional silencing, have become well-documented candidates for cancer treatment applications, particularly in chemo-resistant cancers. Herein, several formulations were examined to optimize the essential parameters, and the niosomal formulation consisting of cholesterol:tween-80:DOTAP:PEG with 9:69:15:7 ratio had the best physicochemical parameters including spherical shape, high entrapment efficiency, small diameter (81 ± 0.65 nm), and appropriate positive charge (23 ± 0.64 mV). Here, we aimed to design a system with increased delivery efficiency which was tested by the encapsulation of miR-34a within niosome NPs and assessed the nano-niosomal delivery of miR-34a as a tumor suppressor in MCF-7 human adenocarcinoma cells. The results showed that our novel niosome systems with non-ionic surfactants can successfully eliminate cancer cells by increasing the expression of p53 and reducing the expression of NF-κB. In comparison with the free dispersion of miR-34a, the lysis of a nano-sized delivery system demonstrated a better cytotoxicity effect against cancer cells. Similar results were obtained by performing in vivo test on the 4T1 xenografted Balb/C mouse tumor model and the miR-34a-loaded niosomes displayed a better reduction in tumor size by improving approximately + 13% in tumor inhabitation rate while maintaining the bodyweight close to the first day. Therefore, it is concluded that miR-34a delivery via niosomes has high potential as a tumor suppressor and a reliable procedure for breast cancer treatment.
Graphical Abstract
Collapse
|
8
|
Oucif Khaled MT, Zaater A, Ben Amor I, Zeghoud S, Ben Amor A, Hemmami H, Alnazza Alhamad A. Drug delivery methods based on nanotechnology for the treatment of eye diseases. Ann Med Surg (Lond) 2023; 85:6029-6040. [PMID: 38098602 PMCID: PMC10718325 DOI: 10.1097/ms9.0000000000001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023] Open
Abstract
One of the most difficult tasks among the numerous medication delivery methods is ocular drug delivery. Despite having effective medications for treating ocular illness, we have not yet managed to develop an appropriate drug delivery strategy with the fewest side effects. Nanotechnology has the potential to significantly address the drawbacks of current ocular delivery systems, such as their insufficient therapeutic effectiveness and unfavourable side effects from invasive surgery or systemic exposure. The objective of the current research is to highlight and update the most recent developments in nano-based technologies for the detection and treatment of ocular diseases. Even if more work has to be done, the advancements shown here might lead to brand-new, very practical ocular nanomedicines.
Collapse
Affiliation(s)
- Mohammed Tayeb Oucif Khaled
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Abdelmalekd Zaater
- Department of Agronomy, Faculty of Nature and Life Sciences, University of El Oued, El Oued, Algeria
- Biodiversity laboratory and application of biotechnology in agriculture, University of El Oued, El Oued, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syrian Arab Republic
| |
Collapse
|
9
|
Barani M, Paknia F, Roostaee M, Kavyani B, Kalantar-Neyestanaki D, Ajalli N, Amirbeigi A. Niosome as an Effective Nanoscale Solution for the Treatment of Microbial Infections. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9933283. [PMID: 37621700 PMCID: PMC10447041 DOI: 10.1155/2023/9933283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Numerous disorders go untreated owing to a lack of a suitable drug delivery technology or an appropriate therapeutic moiety, particularly when toxicities and side effects are a major concern. Treatment options for microbiological infections are not fulfilled owing to significant adverse effects or extended therapeutic options. Advanced therapy options, such as active targeting, may be preferable to traditional ways of treating infectious diseases. Niosomes can be defined as microscopic lamellar molecules formed by a mixture of cholesterol, nonionic surfactants (alkyl or dialkyl polyglycerol ethers), and sometimes charge-inducing agents. These molecules comprise both hydrophilic and hydrophobic moieties of varying solubilities. In this review, several pathogenic microbes such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Plasmodium, Leishmania, and Candida spp. have been evaluated. Also, the development of a proper niosomal formulation for the required application was discussed. This review also reviews that an optimal formulation is dependent on several aspects, including the choice of nonionic surfactant, fabrication process, and fabrication parameters. Finally, this review will give information on the effectiveness of niosomes in treating acute microbial infections, the mechanism of action of niosomes in combating microbial pathogens, and the advantages of using niosomes over other treatment modalities.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Shafiei G, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Alizadeh E, Fathi M, Zarghami N. Targeted delivery of silibinin via magnetic niosomal nanoparticles: potential application in treatment of colon cancer cells. Front Pharmacol 2023; 14:1174120. [PMID: 37441534 PMCID: PMC10335571 DOI: 10.3389/fphar.2023.1174120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: In recent years, various nanoparticles (NPs) have been discovered and synthesized for the targeted therapy of cancer cells. Targeted delivery increases the local concentration of therapeutics and minimizes side effects. Therefore, NPs-mediated targeted drug delivery systems have become a promising approach for the treatment of various cancers. As a result, in the current study, we aimed to design silibinin-loaded magnetic niosomes nanoparticles (MNNPs) and investigate their cytotoxicity property in colorectal cancer cell treatment. Methods: MNPs ferrofluids were prepared and encapsulated into niosomes (NIOs) by the thin film hydration method. Afterward, the morphology, size, and chemical structure of the synthesized MNNPs were evaluated using the TEM, DLS, and FT-IR techniques, respectively. Results and Discussion: The distribution number of MNNPs was obtained at about 50 nm and 70 nm with a surface charge of -19.0 mV by TEM and DLS analysis, respectively. Silibinin loading efficiency in NIOs was about 90%, and the drug release pattern showed a controlled release with a maximum amount of about 49% and 70%, within 4 h in pH = 7.4 and pH = 5.8, respectively. To investigate the cytotoxicity effect, HT-29 cells were treated with the various concentration of the drugs for 24 and 48 h and evaluated by the MTT as well as flow cytometry assays. Obtained results demonstrated promoted cell cytotoxicity of silibinin-loaded MNNPs (5-fold decrease in cell viability) compared to pure silibinin (3-fold decrease in cell viability) while had no significant cytotoxic effect on HEK-293 (normal cell line) cells, and the cellular uptake level of MNNPs by the HT-29 cell line was enhanced compared to the control group. In conclusion, silibinin-loaded MNNPs complex can be considered as an efficient treatment approach for colorectal cancer cells.
Collapse
Affiliation(s)
- Golchin Shafiei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
11
|
Moghassemi S, Dadashzadeh A, Camboni A, Feron O, Azevedo RB, Amorim CA. Photodynamic therapy using OR141-loaded nanovesicles for eradication of leukemic cells from ovarian tissue. Photodiagnosis Photodyn Ther 2022; 40:103139. [PMID: 36198387 DOI: 10.1016/j.pdpdt.2022.103139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
In 2020, the estimated number of new leukemia cases was higher than 30,000 in girls between 0 and 19 years old. Due to cancer treatment, some of these patients may lose both endocrine and reproductive functions. Transplantation of cryopreserved ovarian tissue is not advised after cancer remission because it has a high risk of reintroducing malignant cells in the patient, potentially leading to leukemia recurrence. To safely transplant the ovarian tissue from these patients and restore their fertility, our goal was to develop a photodynamic therapy (PDT) strategy to eliminate leukemia ex vivo. To this end, we designed, optimized, and characterized OR141-loaded niosomes (ORN) to develop the most effective formulation for ex vivo purging ovarian fragments from chronic myelogenous leukemia cells. After establishing the best ORN formulation, the PDT efficiency of optimized ORN was determined for human ovarian stromal cells and acute myeloid leukemia cell line (HL60). Blank niosomes treatment on ovarian stromal cells causes no significant toxicity, showing that the composition of the nanoparticle is not toxic. On the other hand, the in vitro studies showed that while ovarian stromal cells were still viable (82.04 ± 2.79%) after the treatment by 0.5 µM ORN, the same treatment yielded 95.43 ± 3.89% toxicity and cell death in the cancer cells. In conclusion, our results showed that our novel PDT procedure could be a promising strategy to destroy leukemia cells in ovarian tissue fragments allowing safe transplantation in cancer survivors.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Service d'Anatomie Pathologique, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Olivier Feron
- Pôle de Pharmacologie et Thérapeutique, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
12
|
Taheri S, Ahadi Z, Matta CF, Ghanbarzadeh S, Shadman Lakmehsari M. The Effects of the Nature of the Sterol on the Properties and Stability of Niosome Bilayer Vesicles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Niosomes: a novel targeted drug delivery system for cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:240. [PMID: 36175809 DOI: 10.1007/s12032-022-01836-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 10/25/2022]
Abstract
Recently, nanotechnology is involved in various fields of science, of which medicine is one of the most obvious. The use of nanoparticles in the process of treating and diagnosing diseases has created a novel way of therapeutic strategies with effective mechanisms of action. Also, due to the remarkable progress of personalized medicine, the effort is to reduce the side effects of treatment paths as much as possible and to provide targeted treatments. Therefore, the targeted delivery of drugs is important in different diseases, especially in patients who receive combined drugs, because the delivery of different drug structures requires different systems so that there is no change in the drug and its effectiveness. Niosomes are polymeric nanoparticles that show favorable characteristics in drug delivery. In addition to biocompatibility and high absorption, these nanoparticles also provide the possibility of reducing the drug dosage and targeting the release of drugs, as well as the delivery of both hydrophilic and lipophilic drugs by Niosome vesicles. Since various factors such as components, preparation, and optimization methods are effective in the size and formation of niosomal structures, in this review, the characteristics related to niosome vesicles were first examined and then the in silico tools for designing, prediction, and optimization were explained. Finally, anticancer drugs delivered by niosomes were compared and discussed to be a suitable model for designing therapeutic strategies. In this research, it has been tried to examine all the aspects required for drug delivery engineering using niosomes and finally, by presenting clinical examples of the use of these nanocarriers in cancer, its clinical characteristics were also expressed.
Collapse
|
14
|
Witika BA, Bassey KE, Demana PH, Siwe-Noundou X, Poka MS. Current Advances in Specialised Niosomal Drug Delivery: Manufacture, Characterization and Drug Delivery Applications. Int J Mol Sci 2022; 23:ijms23179668. [PMID: 36077066 PMCID: PMC9455955 DOI: 10.3390/ijms23179668] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Development of nanomaterials for drug delivery has received considerable attention due to their potential for achieving on-target delivery to the diseased area while the surrounding healthy tissue is spared. Safe and efficiently delivered payloads have always been a challenge in pharmaceutics. Niosomes are self-assembled vesicular nanocarriers formed by hydration of a non-ionic surfactant, cholesterol or other molecules that combine to form a versatile drug delivery system with a variety of applications ranging from topical delivery to targeted delivery. Niosomes have advantages similar to those of liposomes with regards to their ability to incorporate both hydrophilic and hydrophobic payloads. Moreover, niosomes have simple manufacturing methods, low production cost and exhibit extended stability, consequently overcoming the major drawbacks associated with liposomes. This review provides a comprehensive summary of niosomal research to date, including the types of niosomes and critical material attributes (CMA) and critical process parameters (CPP) of niosomes and their effects on the critical quality attributes (CQA) of the technology. Furthermore, physical characterisation techniques of niosomes are provided. The review then highlights recent applications of specialised niosomes in drug delivery. Finally, limitations and prospects for this technology are discussed.
Collapse
|
15
|
Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology 2022; 20:361. [PMID: 35918688 PMCID: PMC9344723 DOI: 10.1186/s12951-022-01567-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Ocular drug delivery is one of the most challenging endeavors among the various available drug delivery systems. Despite having suitable drugs for the treatment of ophthalmic disease, we have not yet succeeded in achieving a proper drug delivery approach with the least adverse effects. Nanotechnology offers great opportunities to overwhelm the restrictions of common ocular delivery systems, including low therapeutic effects and adverse effects because of invasive surgery or systemic exposure. The present review is dedicated to highlighting and updating the recent achievements of nano-based technologies for ocular disease diagnosis and treatment. While further effort remains, the progress illustrated here might pave the way to new and very useful ocular nanomedicines.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Adv Colloid Interface Sci 2022; 307:102744. [PMID: 35878506 DOI: 10.1016/j.cis.2022.102744] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based nanocarriers are propitious vehicles used for the delivery of bioactive compounds (bioactives). In this area, calcium alginate and sodium alginate are the most promising wall materials because they are nontoxic, comparatively cheap, simple in production, biocompatible and biodegradable. In this review, we have highlighted different alginate-based nanocarriers such as nanoparticles, nanofibers, nanoemulsions, nanocomplexes, and nanohydrogels; also entrapment of different bioactives within alginate nanocarriers and their bioavailability in the gastric environment has been comprehensively discussed. Being biopolymers, alginates can be exploited as emulsifiers/ encapsulants for entrapment and delivery of different bioactives such as vitamins, minerals, essential fatty acids, peptides, essential oils, bioactive oils, polyphenols and carotenoids. Furthermore, the use of alginate-based nanocarriers in combination with other polysaccharides/ emulsifiers was recognized as the most effective and favorable approach for the protection, delivery and sustained release of bioactives.
Collapse
|
17
|
Xiao X, Wu X, Yu Z, He J. Incorporation of the Sterol from Camellia Oil Deodorant Distillate into vitamin C Liposomes: Vesicle Characteristics, Stability, Release, and Bioavailability. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Nazaripour E, Mosazadeh F, Rahimi SS, Alijani HQ, Isaei E, Borhani F, Iravani S, Ghasemi M, Akbarizadeh MR, Azizi E, Sharifi F, Haghighat M, Hadizadeh S, Moghadam MD, Abdollahpour-Alitappeh M, Khatami M. Ferromagnetic nickel (II) oxide (NiO) nanoparticles: biosynthesis, characterization and their antibacterial activities. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-021-01042-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Sargazi S, Hosseinikhah SM, Zargari F, Chauhana NPS, Hassanisaadi M, Amani S. pH-responsive cisplatin-loaded niosomes: synthesis, characterization, cytotoxicity study and interaction analyses by simulation methodology. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Cisplatin (Cis) is an effective cytotoxic agent, but its administration has been challenged by kidney problems, reduced immunity system, chronic neurotoxicity, and hemorrhage. To address these issues, pH-responsive non-ionic surfactant vesicles (niosomes) by Span 60 and Tween 60 derivatized by cholesteryl hemisuccinate (CHEMS), a pH-responsive agent, and Ergosterol (helper lipid), were developed for the first time to deliver Cis. The drug was encapsulated in the niosomes with a high encapsulation efficiency of 89%. This system provided a responsive release of Cis in pH 5.4 and 7.4, thereby improving its targeted anticancer drug delivery. The noisome bilayer model was studied by molecular dynamic simulation containing Tween 60, Span 60, Ergosterol, and Cis molecules to understand the interactions between the loaded drug and noisome constituents. We found that the platinum and chlorine atoms in Cis are critical factors in distributing the drug between water and bilayer surface. Finally, the lethal effect of niosomal Cis was investigated on the MCF7 breast cancer cell line using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results from morphology monitoring and cytotoxic assessments suggested a better cell-killing effect for niosomal Cis than standard Cis. Together, the synthesis of stimuli-responsive niosomes could represent a promising delivery strategy for anticancer drugs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases , Zahedan University of Medical Sciences , Zahedan 9816743463, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farshid Zargari
- Pharmacology Research Center , Zahedan University of Medical Sciences , Zahedan 9816743463, Iran ; Department of Chemistry, Faculty of Science , University of Sistan and Baluchestan , Zahedan 98135674, Iran
| | - Narendra Pal Singh Chauhana
- Department of Chemistry, Faculty of Science , Bhupal Nobles’ university , Udaipur , 313002, Rajasthan , India
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection , Shahid Bahonar University of Kerman , Postal Code: 7618411764, Kerman, Iran
| | - Soheil Amani
- Department of chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan , Iran
| |
Collapse
|
20
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|
21
|
Arshad R, Fatima I, Sargazi S, Rahdar A, Karamzadeh-Jahromi M, Pandey S, Díez-Pascual AM, Bilal M. Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3330. [PMID: 34947679 PMCID: PMC8708502 DOI: 10.3390/nano11123330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022]
Abstract
In the fight against cancer, early diagnosis is critical for effective treatment. Traditional cancer diagnostic technologies, on the other hand, have limitations that make early detection difficult. Therefore, multi-functionalized nanoparticles (NPs) and nano-biosensors have revolutionized the era of cancer diagnosis and treatment for targeted action via attaching specified and biocompatible ligands to target the tissues, which are highly over-expressed in certain types of cancers. Advancements in multi-functionalized NPs can be achieved via modifying molecular genetics to develop personalized and targeted treatments based on RNA interference. Modification in RNA therapies utilized small RNA subunits in the form of small interfering RNAs (siRNA) for overexpressing the specific genes of, most commonly, breast, colon, gastric, cervical, and hepatocellular cancer. RNA-conjugated nanomaterials appear to be the gold standard for preventing various malignant tumors through focused diagnosis and delivering to a specific tissue, resulting in cancer cells going into programmed death. The latest advances in RNA nanotechnology applications for cancer diagnosis and treatment are summarized in this review.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan;
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | | | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
| |
Collapse
|
22
|
Bazi Alahri M, Arshadizadeh R, Raeisi M, Khatami M, Sadat Sajadi M, Kamal Abdelbasset W, Akhmadeev R, Iravani S. Theranostic applications of metal–organic frameworks (MOFs)-based materials in brain disorders: Recent advances and challenges. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Rehman A, Feng J, Qunyi T, Korma SA, Assadpour E, Usman M, Han W, Jafari SM. Pesticide-loaded colloidal nanodelivery systems; preparation, characterization, and applications. Adv Colloid Interface Sci 2021; 298:102552. [PMID: 34717205 DOI: 10.1016/j.cis.2021.102552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022]
Abstract
The fast developments in pesticide-loaded nanodelivery systems over the last decade have inspired many companies and research organizations to highlight potential applications by employing encapsulation approaches in order to protect the agricultural crops. This approach is being used to retard the indiscriminate application of conventional pesticides, as well as, to make ensure the environmental safety. This article shed light on the potential of colloidal delivery systems, particularly controlled releasing profiles of several pesticides with enhanced stability and improved solubility. Colloidal nanodelivery systems, being efficient nanoformulations, have the ability to boost up the pest-control competence for prolonged intervals thru averting the early degradation of active ingredients under severe ecofriendly circumstances. This work is thus aimed to provide critical information on the meaningful role of nanocarriers for loading of pesticides. The smart art of pesticide-loaded nanocarriers can be more fruitful owing to the use of lower amount of active ingredients with improved efficiency along with minimizing the pesticide loss. Also, the future research gaps regarding nano-pesticide formulations, such as role of nanomaterials as active ingredients are discussed briefly. In addition, this article can deliver valuable information to the readers while establishing novel pesticide-loaded nanocarriers for a wide range of applications in the agriculture sectors.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Tong Qunyi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, 114 El-Zeraa Road, Zagazig 44511, Sharkia, Egypt; School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense E-32004, Spain
| | - Muhammad Usman
- Beijing Advance Innovation center for Food Nutrition and Human Health, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Wen Han
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
24
|
Barani M, Sargazi S, Hajinezhad MR, Rahdar A, Sabir F, Pardakhty A, Zargari F, Anwer MK, Aboudzadeh MA. Preparation of pH-Responsive Vesicular Deferasirox: Evidence from In Silico, In Vitro, and In Vivo Evaluations. ACS OMEGA 2021; 6:24218-24232. [PMID: 34568700 PMCID: PMC8459436 DOI: 10.1021/acsomega.1c03816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 06/13/2023]
Abstract
pH-sensitive nanocarriers can effectively deliver anticancer drugs to tumors and reduce the adverse effects of conventional chemotherapy. In this light, we prepared a novel pH-responsive deferasirox (DFX)-loaded vesicle and comprehensively performed in silico, in vitro, and in vivo studies to examine the properties of the newly synthesized formulation. Physiochemical assessment of the developed formulations showed that they have an average size (107 ± 2 nm), negative zeta potential (-29.1 ± 1.5 mV), high encapsulation efficiency (84.2 ± 2.6%), and a pH-responsive release. Using the molecular dynamics simulation, the structural and dynamic properties of ergosterol-containing niosomes (ST60/Ergo) in the presence of DFX molecules were analyzed and showed a good interaction between DFX and vesicle components. Cytotoxic assessment showed that niosomal DFX exhibited a greater cytotoxic effect than free DFX in both human cancer cells (MCF-breast cancer and Hela cervical cancer) and induced evident morphological features of apoptotic cell death. No marked difference between the ability of free and niosomal DFX was found in activating caspase-3 in Hela cells. Eight weeks of intraperitoneal administrations of free DFX at three doses caused a significant increase in serum biochemical parameters and liver lipid peroxidation. Treatment with 5 mg/kg dose of niosomal DFX caused a significant increase in serum creatinine (P < 0.05); however, other parameters remained unchanged. On the other hand, administration of niosomal DFX at the highest dose (10 mg/kg) significantly increased serum creatinine (P < 0.05), BUN, and serum liver enzymes compared to the control rats (P < 0.001). Based on the results, the application of pH-responsive DFX-loaded niosomes, as a novel drug delivery platform, may yield promising results in cancer treatment.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical
Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Saman Sargazi
- Cellular
and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohammad Reza Hajinezhad
- Basic
Veterinary Science Department, Veterinary Faculty, University of Zabol, Zabol 9861335856, Iran
| | - Abbas Rahdar
- Department
of Physics, University of Zabol, Zabol 9861335856, Iran
| | - Fakhara Sabir
- Faculty
of Pharmacy, Institute of Pharmaceutical Technology and Regulatory
Affairs, University of Szeged, Eötvös u. 6, Szeged H-6720, Hungary
| | - Abbas Pardakhty
- Pharmaceutics
Research Center, Nauropharmacology Research Institute, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farshid Zargari
- Pharmacology
Research Center, Zahedan University of Medical
Sciences, Zahedan 9816743463, Iran
- Department
of Chemistry, Faculty of Science, University
of Sistan and Baluchestan, Zahedan 98135674, Iran
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - M. Ali Aboudzadeh
- CNRS, University Pau & Pays Adour,
E2S UPPA, Institut des Sciences
Analytiques et de Physico-Chimie pour l’Environnement et les
Matériaux, IPREM, UMR5254, 64000 Pau, France
| |
Collapse
|
25
|
Simulation, In Vitro, and In Vivo Cytotoxicity Assessments of Methotrexate-Loaded pH-Responsive Nanocarriers. Polymers (Basel) 2021; 13:polym13183153. [PMID: 34578054 PMCID: PMC8471936 DOI: 10.3390/polym13183153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, pH-responsive niosomal methotrexate (MTX) modified with ergosterol was prepared for potential anticancer application. The prepared formulation had a size of 176.7 ± 3.4 nm, zeta potential of −31.5 ± 2.6 mV, EE% of 76.9 ± 2.5%, and a pH-responsive behavior in two different pHs (5.4 and 7.4). In-silico evaluations showed that MTX intended to make a strong hydrogen bond with Span 60 compartments involving N2 and O4 atoms in glutamic acid and N7 atom in pteridine ring moieties, respectively. The cytotoxic effects of free and pH-MTX/Nio were assessed against MCF7 and HUVECs. Compared with free MTX, we found significantly lower IC50s when MCF7 cells were treated with niosomal MTX (84.03 vs. 9.464 µg/mL after 48 h, respectively). Moreover, lower cell killing activity was observed for this formulation in normal cells. The pH-MTX/Nio exhibited a set of morphological changes in MCF7 cells observed during cell death. In-vivo results demonstrated that intraperitoneal administration of free MTX (2 mg/kg) after six weeks caused a significant increase in serum blood urea nitrogen (BUN), serum creatinine, and serum malondialdehyde (MDA) levels of rats compared to the normal control rats. Treatment with 2 and 4 mg/kg doses of pH-MTX/Nio significantly increased serum BUN, serum creatinine, and serum lipid peroxidation. Still, the safety profile of such formulations in healthy cells/tissues should be further investigated.
Collapse
|
26
|
Yu C, Heidari Majd M, Shiri F, Shahraki S, Karimi P. The role of folic acid in inducing of apoptosis by zinc(II) complex in ovary and cervix cancer cells. Mol Divers 2021; 26:1545-1555. [PMID: 34417716 DOI: 10.1007/s11030-021-10293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
Herein, the synthesis, structure, binding affinity, cytotoxicity, and apoptotic properties of the new Zn(II) complex composed of folic acid and bipyridine ligands are reported. Because folic acid has the ability to target cancer cells directly, so it can play a role in targeted drug delivery of the complex and be useful to distinguish normal cells from cancerous. After characterization of Zinc complex utilizing FTIR, EA, and NMR, the results of MTT assay were shown that viability levels of two FR-positive cell lines (HeLa and Ovcar-3) are dependent on time and concentration of [Zn(bpy)FA], whereas, did not show a significant effect on FR-negative cell lines (A549). Also, Real-time PCR revealed that the presence of FA can influence the expression of apoptosis in cervical carcinoma HeLa cells while cisplatin alone doesn't have the ability to trigger apoptosis. Furthermore, the experimental results were evaluated using pharmacophore modeling and molecular docking analysis. Finally, the stability of the Zn(II) complex was surveyed using quantum mechanical studies.
Collapse
Affiliation(s)
- Chuanrong Yu
- Department of Gynecology and Obstetrics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, China
| | - Mostafa Heidari Majd
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| | - Fereshteh Shiri
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Somaye Shahraki
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Pouya Karimi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
27
|
Abbaszadeh-Goudarzi K, Nematollahi MH, Khanbabaei H, Nave HH, Mirzaei HR, Pourghadamyari H, Sahebkar A. Targeted Delivery of CRISPR/Cas13 as a Promising Therapeutic Approach to Treat SARS-CoV-2. Curr Pharm Biotechnol 2021; 22:1149-1155. [PMID: 33038909 DOI: 10.2174/1389201021666201009154517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022]
Abstract
On a worldwide scale, the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to extensive damage to the health system as well as the global economy. Hitherto, there has been no approved drug or vaccine for this disease. Therefore, the use of general antiviral drugs is at the first line of treatment, though complicated with limited effectiveness and systemic side effects. Given the pathophysiology of the disease, researchers have proposed various strategies not only to find a more specific therapeutic way but also to reduce the side effects. One strategy to accomplish these goals is to use CRISPR/Cas13 system. Recently, a group of scientists has used the CRISPR/Cas13 system, which is highly effective in eliminating the genome of RNA viruses. Due to the RNA nature of the coronavirus genome, it seems that this system can be effective against the disease. The main challenge regarding the application of this system is to deliver it to the target cells efficiently. To solve this challenge, it seems that using virosomes with protein S on their membrane surface can be helpful. Studies have shown that protein S interacts with its specific receptor in target cells named Angiotensin-Converting Enzyme 2 (ACE2). Here, we propose if CRISPR/Cas13 gene constructs reach the infected cells efficiently using a virosomal delivery system, the virus genome will be cleaved and inactivated. Considering the pathophysiology of the disease, an important step to implement this hypothesis is to embed protein S on the membrane surface of virosomes to facilitate the delivery of gene constructs to the target cells.
Collapse
Affiliation(s)
| | - Mohammad H Nematollahi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein H Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S. Nanotechnology in Bladder Cancer: Diagnosis and Treatment. Cancers (Basel) 2021; 13:2214. [PMID: 34063088 PMCID: PMC8125468 DOI: 10.3390/cancers13092214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the second most common cancer of the urinary tract in men and the fourth most common cancer in women, and its incidence rises with age. There are many conventional methods for diagnosis and treatment of BC. There are some current biomarkers and clinical tests for the diagnosis and treatment of BC. For example, radiotherapy combined with chemotherapy and surgical, but residual tumor cells mostly cause tumor recurrence. In addition, chemotherapy after transurethral resection causes high side effects, and lack of selectivity, and low sensitivity in sensing. Therefore, it is essential to improve new procedures for the diagnosis and treatment of BC. Nanotechnology has recently sparked an interest in a variety of areas, including medicine, chemistry, physics, and biology. Nanoparticles (NP) have been used in tumor therapies as appropriate tools for enhancing drug delivery efficacy and enabling therapeutic performance. It is noteworthy, nanomaterial could be reduced the limitation of conventional cancer diagnosis and treatments. Since, the major disadvantages of therapeutic drugs are their insolubility in an aqueous solvent, for instance, paclitaxel (PTX) is one of the important therapeutic agents utilized to treating BC, due to its ability to prevent cancer cell growth. However, its major problem is the poor solubility, which has confirmed to be a challenge when improving stable formulations for BC treatment. In order to reduce this challenge, anti-cancer drugs can be loaded into NPs that can improve water solubility. In our review, we state several nanosystem, which can effective and useful for the diagnosis, treatment of BC. We investigate the function of metal NPs, polymeric NPs, liposomes, and exosomes accompanied therapeutic agents for BC Therapy, and then focused on the potential of nanotechnology to improve conventional approaches in sensing.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
29
|
|
30
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
31
|
Leishmanicidal activities of biosynthesized BaCO 3 (witherite) nanoparticles and their biocompatibility with macrophages. Bioprocess Biosyst Eng 2021; 44:1957-1964. [PMID: 33934243 DOI: 10.1007/s00449-021-02576-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was cost-effective and greener synthesis of barium carbonate (BaCO3 or witherite) nanoparticles with economic importance, and to evaluate their therapeutic potentials and biocompatibility with immune cells. Barium carbonate nanoparticles were biosynthesized using black elderberry extract in one step with non-toxic precursors and simple laboratory conditions; their morphologies and specific structures were analyzed using field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The therapeutic capabilities of these nanoparticles on the immune cells of murine macrophages J774 and promastigotes Leishmania tropica were evaluated. BaCO3 nanoparticles with IC50 = 46.6 µg/mL were more effective than negative control and glucantium (positive control) in reducing promastigotes (P < 0.01). Additionally, these nanoparticles with a high value of cytotoxicity concentration 50% (CC50) were less toxic to macrophage cells than glucantime; however, they were significantly different at high concentrations compared to the negative control.
Collapse
|
32
|
Arshad R, Pal K, Sabir F, Rahdar A, Bilal M, Shahnaz G, Kyzas GZ. A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Abstract
Cardiovascular diseases (CVDs) are the world’s leading cause of mortality and represent a large contributor to the costs of medical care. Although tremendous progress has been made for the diagnosis of CVDs, there is an important need for more effective early diagnosis and the design of novel diagnostic methods. The diagnosis of CVDs generally relies on signs and symptoms depending on molecular imaging (MI) or on CVD-associated biomarkers. For early-stage CVDs, however, the reliability, specificity, and accuracy of the analysis is still problematic. Because of their unique chemical and physical properties, nanomaterial systems have been recognized as potential candidates to enhance the functional use of diagnostic instruments. Nanomaterials such as gold nanoparticles, carbon nanotubes, quantum dots, lipids, and polymeric nanoparticles represent novel sources to target CVDs. The special properties of nanomaterials including surface energy and topographies actively enhance the cellular response within CVDs. The availability of newly advanced techniques in nanomaterial science opens new avenues for the targeting of CVDs. The successful application of nanomaterials for CVDs needs a detailed understanding of both the disease and targeting moieties.
Collapse
|
34
|
Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, Kang M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. BIOSENSORS 2021; 11:97. [PMID: 33810621 PMCID: PMC8066896 DOI: 10.3390/bios11040097] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Retinoblastoma is a rare type of cancer, and its treatment, as well as diagnosis, is challenging, owing to mutations in the tumor-suppressor genes and lack of targeted, efficient, cost-effective therapy, exhibiting a significant need for novel approaches to address these concerns. For this purpose, nanotechnology has revolutionized the field of medicine with versatile potential capabilities for both the diagnosis, as well as the treatment, of retinoblastoma via the targeted and controlled delivery of anticancer drugs via binding to the overexpressed retinoblastoma gene. Nanotechnology has also generated massive advancements in the treatment of retinoblastoma based on the use of surface-tailored multi-functionalized nanocarriers; overexpressed receptor-based nanocarriers ligands (folate, galactose, and hyaluronic acid); lipid-based nanocarriers; and metallic nanocarriers. These nanocarriers seem to benchmark in mitigating a plethora of malignant retinoblastoma via targeted delivery at a specified site, resulting in programmed apoptosis in cancer cells. The effectiveness of these nanoplatforms in diagnosing and treating intraocular cancers such as retinoblastoma has not been properly discussed, despite the increasing significance of nanomedicine in cancer management. This article reviewed the recent milestones and future development areas in the field of intraocular drug delivery and diagnostic platforms focused on nanotechnology.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Mahmood Barani
- Department of Chemistry, ShahidBahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
35
|
Rahdar A, Hajinezhad MR, Sargazi S, Zaboli M, Barani M, Baino F, Bilal M, Sanchooli E. Biochemical, Ameliorative and Cytotoxic Effects of Newly Synthesized Curcumin Microemulsions: Evidence from In Vitro and In Vivo Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:817. [PMID: 33806829 PMCID: PMC8004644 DOI: 10.3390/nano11030817] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is known to exhibit antioxidant and tissue-healing properties and has recently attracted the attention of the biomedical community for potential use in advanced therapies. This work reports the formulation and characterization of oil-in-water F127 microemulsions to enhance the bioavailability of curcumin Microemulsions showed a high encapsulation efficiency and prolonged release. To investigate the interactions of curcumin with one unit of the polymeric chain of surfactant F127, ethyl butyrate, and sodium octanoate, as well as the interaction between ethyl butyrate and one unit of the F127 polymer chain, the Density Functional Theory (DFT) calculations at the M06-2X level of theory, were performed in water solution. The MTT assay was used to assess the cytotoxicity of free and encapsulated curcumin on non-malignant and malignant cell lines. Combination effects were calculated according to Chou-Talalay's principles. Results of in vitro studies indicated that MCF7 and HepG2 cells were more sensitive to curcumin microemulsions. Moreover, a synergistic relationship was observed between curcumin microemulsions and cisplatin in all affected fractions of MCF7 and HepG2 cells (CI < 0.9). For in vivo investigation, thioacetamide-intoxicated rats received thioacetamide (100 mg/kg Sc) followed by curcumin microemulsions (30 mg/kg Ip). Thioacetamide-intoxicated rats showed elevated serum liver enzymes, blood urea nitrogen (BUN), and creatinine levels, and a significant reduction in liver superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.05). Curcumin microemulsions reduced liver enzymes and serum creatinine and increased the activity of antioxidant enzymes in thioacetamide-treated rats in comparison to the untreated thioacetamide-intoxicated group. Histopathological investigations confirmed the biochemical findings. Overall, the current results showed the desirable hepatoprotective, nephroprotective, and anti-cancer effects of curcumin microemulsions.
Collapse
Affiliation(s)
- Abbas Rahdar
- Department of Physics, University of Zabol, P.O. Box. 98613-35856, Zabol, Iran;
| | - Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, P.O. Box. 98613-35856, Zabol, Iran;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Maryam Zaboli
- Department of Chemistry, University of Birjand, Birjand 97174-34765, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Esmael Sanchooli
- Department of Chemistry, University of Zabol, P.O. Box. 98613-35856, Zabol, PIran;
| |
Collapse
|
36
|
Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021; 26:1770. [PMID: 33809917 PMCID: PMC8004199 DOI: 10.3390/molecules26061770] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.
Collapse
Affiliation(s)
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8954, Iran;
| | | | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
37
|
Hosseinikhah SM, Barani M, Rahdar A, Madry H, Arshad R, Mohammadzadeh V, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. Int J Mol Sci 2021; 22:3092. [PMID: 33803502 PMCID: PMC8002885 DOI: 10.3390/ijms22063092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 761691411, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-9861, Iran
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
38
|
Maurer V, Altin S, Ag Seleci D, Zarinwall A, Temel B, Vogt PM, Strauß S, Stahl F, Scheper T, Bucan V, Garnweitner G. In-Vitro Application of Magnetic Hybrid Niosomes: Targeted siRNA-Delivery for Enhanced Breast Cancer Therapy. Pharmaceutics 2021; 13:394. [PMID: 33809700 PMCID: PMC8002368 DOI: 10.3390/pharmaceutics13030394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Even though the administration of chemotherapeutic agents such as erlotinib is clinically established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly improved using RNA interference (RNAi) mechanisms for a combinational therapy. However, the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core. A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the application of an external magnetic field enhanced the internalization of siRNA, therefore increasing the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a cost-effective commercialization and can be considered as a promising candidate for future siRNA delivery agents.
Collapse
Affiliation(s)
- Viktor Maurer
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Selin Altin
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Didem Ag Seleci
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Ajmal Zarinwall
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bilal Temel
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
| | - Peter M. Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Frank Stahl
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Thomas Scheper
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Georg Garnweitner
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
39
|
Qindeel M, Barani M, Rahdar A, Arshad R, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Urinary Tract Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:546. [PMID: 33671511 PMCID: PMC7926703 DOI: 10.3390/nano11020546] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
The diagnosis and treatment of urinary tract infections (UTIs) remain challenging due to the lack of convenient assessment techniques and to the resistance to conventional antimicrobial therapy, showing the need for novel approaches to address such problems. In this regard, nanotechnology has a strong potential for both the diagnosis and therapy of UTIs via controlled delivery of antimicrobials upon stable, effective and sustained drug release. On one side, nanoscience allowed the production of various nanomaterial-based evaluation tools as precise, effective, and rapid procedures for the identification of UTIs. On the other side, nanotechnology brought tremendous breakthroughs for the treatment of UTIs based on the use of metallic nanoparticles (NPs) for instance, owing to the antimicrobial properties of metals, or of surface-tailored nanocarriers, allowing to overcome multidrug-resistance and prevent biofilm formation via targeted drug delivery to desired sites of action and preventing the development of cytotoxic processes in healthy cells. The goal of the current study is therefore to present the newest developments for the diagnosis and treatment of UTIs based on nanotechnology procedures in relation to the currently available techniques.
Collapse
Affiliation(s)
- Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.Q.); (R.A.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg, Germany
| |
Collapse
|
40
|
Liu Q, Xu J, Liao K, Tang N. Oral Bioavailability Improvement of Tailored Rosuvastatin Loaded Niosomal Nanocarriers to Manage Ischemic Heart Disease: Optimization, Ex Vivo and In Vivo Studies. AAPS PharmSciTech 2021; 22:58. [PMID: 33502651 DOI: 10.1208/s12249-021-01934-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Rosuvastatin is an efficient antihyperlipidemic agent; however, being a BCS class II molecule, it shows poor oral bioavailability of < 20%. The present study focused on the improvement of oral bioavailability of rosuvastatin using tailored niosomes. The niosomes were prepared by film hydration method and sonication using cholesterol and Span 40. The Box-Behnken design (BBD) was applied to optimize the size (98 nm) and the entrapment efficacy (77%) of the niosomes by selecting cholesterol at 122 mg, Span 40 at 0.52%, and hydration time at 29.88 min. The transmission electron microscopy image showed spherical shape niosomes with smooth surface without aggregation. The ex vivo intestinal permeability studies showed significant improvement in the rosuvastatin permeation (95.5% after 2 h) using niosomes in comparison to the rosuvastatin suspension (40.1% after 2 h). The in vivo pharmacokinetic parameters in the rat model confirmed the improvement in the oral bioavailability with optimized rosuvastatin loaded niosomes (relative bioavailability = 2.01) in comparison to the rosuvastatin suspension, due to high surface area of niosomes and its lymphatic uptake via transcellular route. In conclusion, the optimized rosuvastatin loaded niosomes offers a promising approach to improve the oral bioavailability of rosuvastatin.
Collapse
|
41
|
Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci 2020; 266:118914. [PMID: 33340527 DOI: 10.1016/j.lfs.2020.118914] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
To overcome the drawbacks of conventional delivery, this review spotlights a number of nanoscale drug delivery systems, including nanoparticles, liposomes, nano micelles, branched dendrimers, nanocapsules, and nanostructured lipid formulations for the targeted therapy of ovarian cancer. These nanoformulations offer numerous advantages to promote therapeutic drug delivery such as nontoxicity, biocompatibility, good biodegradability, increased therapeutic impact than free drugs, and non-inflammatory effects. Importantly, the development of specific ligands functionalized nanoformulations enable preferential targeting of ovarian tumors and eventually amplify the therapeutic potential compared to nonfunctionalized counterparts. Ovarian cancer is typically identified by biomarker assessment such as CA125, HE4, Mucin 1, and prostatic. There is, nevertheless, a tremendous demand for less costly, faster, and compact medical tools, both for timely detection and ovarian cancer control. This paper explored multiple types of tumor marker-based on nanomaterial biosensors. Initially, we mention different forms of ovarian cancer biomarkers involving CA125, human epididymis protein 4 (HE4), mucin 1 (MUC1), and prostate. It is accompanied by a brief description of new nanotechnology methods for diagnosis. Nanobiosensors for evaluating ovarian cancer biomarkers can be categorized based on electrochemical, optical, paper-based, giant magnetoresistive, and lab-on-a-chip devices.
Collapse
|
42
|
Abstract
Brain tumors, especially glioblastoma, remain the most aggressive form of all the cancers because of inefficient diagnosis and profiling. Nanostructures, such as metallic nanostructures, silica nano-vehicles, quantum dots, lipid nanoparticles (NPs) and polymeric NPs, with high specificity have made it possible to permeate the blood–brain barrier (BBB). NPs possess optical, magnetic and photodynamic properties that can be exploited by surface modification, bio composition, contrast agents’ encapsulation and coating by tumor-derived cells. Hence, nanotechnology has brought on a revolution in the field of diagnosis and imaging of brain tumors and cancers. Recently, nanomaterials with biomimetic functions have been introduced to efficiently cross the BBB to be engulfed by deep skin tumors and cancer malignancies for imaging. The review focuses on nanotechnology-based diagnostic and imaging approaches for exploration in brain tumors and cancers. Moreover, the review also summarizes a few strategies to image glioblastoma and cancers by multimodal functional nanocomposites for more precise and accurate clinical diagnosis. Their unique physicochemical attributes, including nanoscale sizes, larger surface area, explicit structural features and ability to encapsulate diverse molecules on their surface, render nanostructured materials as excellent nano-vehicles to cross the blood–brain barrier and convey drug molecules to their target region. This review sheds light on the current progress of various kinds of nanomaterials, such as liposomes, nano-micelles, dendrimers, carbon nanotubes, carbon dots and NPs (gold, silver and zinc oxide NPs), for efficient drug delivery in the treatment and diagnosis of brain cancer.
Collapse
|
43
|
Nikazar S, Barani M, Rahdar A, Zoghi M, Kyzas GZ. Photo‐ and Magnetothermally Responsive Nanomaterials for Therapy, Controlled Drug Delivery and Imaging Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.202002978] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sohrab Nikazar
- Chemical Engineering Faculty Engineering College, University of Tehran Tehran P.O. Box:14155-6455 Iran
| | - Mahmood Barani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science University of Zabol 538-98615 Zabol Iran
| | - Maryam Zoghi
- Chemical Engineering Faculty Engineering College, University of Tehran Tehran P.O. Box:14155-6455 Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala 65404 Greece
| |
Collapse
|
44
|
Taherimehr Z, Zaboli M, Torkzadeh-Mahani M. New insight into the molecular mechanism of the trehalose effect on urate oxidase stability. J Biomol Struct Dyn 2020; 40:1461-1471. [PMID: 33000700 DOI: 10.1080/07391102.2020.1828167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Urate oxidase (EC 1.7.3.3) is a key enzyme in the purine metabolism which is applied in the treatment of gout and also, as a diagnostic reagent for uric acid detection. In the current study, the trehalose (TRE) effects as an additive on the structural stability and function of uricase were investigated. For recombinant expression of UOX in E. coli BL21 cells, firstly the coding sequence was subcloned into the pET-28a vector and after induction with IPTG, the recombinant UOX was purified by affinity chromatography using a Ni-NTA agarose column. To specify the trehalose effects on the urate oxidase (UOX) structure, optimum pH, optimum temperature, kinetic and thermodynamic parameters and also, the intrinsic fluorescence of UOX in the absence and presence of trehalose were examined. The UOX half-life is 24.32 min at 40 °C, whereas the UOX-TRE has a higher half-life (32.09 min) at this temperature. Generally, our findings confirm that trehalose has a protective effect on the enzyme structure. Optimum pH and temperature were 9 and 25 °C, respectively for both the naked and treated enzymes and their activity retained 42.18 and 64.80%, respectively after 48 h of incubation at room temperature. Also, theoretical results indicate that the random coil of the enzyme was converted to α-helix and β-sheet in the presence of trehalose which may preserve the integrity of the active site of the enzyme and increased the enzymatic activity. The MD simulation results indicated greater stability of the uricase structure in the presence of trehalose.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Taherimehr
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman-Iran, Iran
| | - Maryam Zaboli
- Department of chemistry, Faculty of science, University of Birjand, Birjand, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman-Iran, Iran
| |
Collapse
|
45
|
Cheng TM, Li R, Kao YCJ, Hsu CH, Chu HL, Lu KY, Changou CA, Chang CC, Chang LH, Tsai ML, Mi FL. Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111064. [DOI: 10.1016/j.msec.2020.111064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
|
46
|
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1696. [PMID: 32872181 PMCID: PMC7559844 DOI: 10.3390/nano10091696] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The fabrication and development of nanomaterials for the treatment of prostate cancer have gained significant appraisal in recent years. Advancements in synthesis of organic and inorganic nanomaterials with charge, particle size, specified geometry, ligand attachment etc have resulted in greater biocompatibility and active targeting at cancer site. Despite all of the advances made over the years in discovering drugs, methods, and new biomarkers for cancer of the prostate (PCa), PCa remains one of the most troubling cancers among people. Early on, effective diagnosis is an essential part of treating prostate cancer. Prostate-specific antigen (PSA) or serum prostate-specific antigen is the best serum marker widely accessible for diagnosis of PCa. Numerous efforts have been made over the past decade to design new biosensor-based strategies for biomolecules detection and PSA miniaturization biomarkers. The growing nanotechnology is expected to have a significant effect in the immediate future on scientific research and healthcare. Nanotechnology is thus predicted to find a way to solve one of the most and long-standing problem, "early cancer detection". For early diagnosis of PCa biomarkers, different nanoparticles with different approaches have been used. In this review, we provide a brief description of the latest achievements and advances in the use of nanoparticles for PCa biomarker diagnosis.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
47
|
Mohammadi M, Jafari SM, Hamishehkar H, Ghanbarzadeh B. Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Ilhan-Ayisigi E, Ulucan F, Saygili E, Saglam-Metiner P, Gulce-Iz S, Yesil-Celiktas O. Nano-vesicular formulation of propolis and cytotoxic effects in a 3D spheroid model of lung cancer. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3525-3535. [PMID: 32239766 DOI: 10.1002/jsfa.10400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/29/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Propolis exhibits therapeutic properties due to the presence of phenolic acids, esters, and flavonoids. The scope of this study was to develop a nano-vesicular formulation and establish a three-dimensional (3D) spheroid model in which lung cancer is recapitulated. RESULTS Niosome vesicles doped with galangin-rich propolis extract were synthesized by the ether injection method using a cholesterol : surfactant mass ratio of 1 : 3 at 40 °C for 1 h. Formulated niosomes were administered to 3D lung cancer spheroid model and the cytotoxicity was compared with that of a two-dimensional (2D) setting. The galangin content was determined as 86 μg mg-1 propolis extract by ultra-performance liquid chromatography (UPLC). The particle size of loaded niosome was 151 ± 2.84 nm with a polydispersity index (PDI) of about 0.232, and an encapsulation efficiency of 70% was achieved. CONCLUSION The decrease in cell viability and the scattering in the 3D spheroids of A549 lung cancer cells treated with propolis-loaded niosomes were notable, indicating a profound cytotoxic effect and suggesting that they can be utilized as an effective nano-vesicle. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
- Genetic and Bioengineering Department, Faculty of Engineering and Architecture, Ahi Evran University, Kirsehir, Turkey
| | - Fulden Ulucan
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Turkey
| | - Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
| | - Sultan Gulce-Iz
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Turkey
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Turkey
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Turkey
| |
Collapse
|
49
|
Torkzadeh‐Mahani M, Zaboli M, Barani M, Torkzadeh‐Mahani M. A combined theoretical and experimental study to improve the thermal stability of recombinant D‐lactate dehydrogenase immobilized on a novel superparamagnetic Fe3O4NPs@metal–organic framework. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5581] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mahdieh Torkzadeh‐Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced Technology Kerman‐Iran Iran
| | - Maryam Zaboli
- Department of Chemistry, Faculty of ScienceUniversity of Birjand Birjand Iran
| | - Mahmood Barani
- Department of ChemistryShahid Bahonar University of Kerman Kerman Iran
| | - Masoud Torkzadeh‐Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced Technology Kerman‐Iran Iran
| |
Collapse
|
50
|
Barani M, Mirzaei M, Torkzadeh-Mahani M, Lohrasbi-Nejad A, Nematollahi MH. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110975. [PMID: 32487392 DOI: 10.1016/j.msec.2020.110975] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Hydrophobin-1 (HFB-1) found on the surface of fungal spores, plays a role in the lack of antigen recognition by the host immune system. The present study aimed to evaluate the potential application of HFB-1 for the delivery of doxorubicin (Dox) into different cell lines. Coating the surface of niosomes (Nio) with HFB-1 leads to the hypothesis that this protein can confer protection against in vivo immune-system recognition and prevent the immune response. Thus, HFB-1 could become a promising alternative to polyethylene glycol (PEG). Here, HFB-1-coated niosome loaded with doxorubicin (Dox) based on Span 40, Tween 40 and cholesterol was prepared and compared with the PEG-coated niosome. Physicochemical characteristics of the prepared formulations in terms of size, zeta potential, polydispersity index (PDI), morphology, entrapment efficiency (EE), and release rate were evaluated at different pH levels (2, 5.2, and 7.4). In the end, the in vitro cytotoxicity assay was performed on four different cancer cell lines namely A549, MDA-MB-231, C6 and PC12 in addition to one control cell line (3 T3) to ensure the formulation's selectivity against cancer cells. Results showed that the niosomes coated with HFB-1 presented better size distribution, higher EE, more sustained release profile, enhanced biocompatibility and improved anticancer effects as compared to the PEG-coated niosomes. Interestingly, the viability percentage of the control cell line was higher than different cancer cells when treated with the formulations, which indicates the higher selectivity of the formulation against cancer cells. In conclusion, loading the niosomes with Dox and coating them with HFB-1 enhanced their efficacy and selectivity toward cancer cells, presenting a promising drug delivery system for sustained drug release in cancer treatment.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Mirzaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, School of Medicine, University of Medical Sciences, Kerman, Iran
| |
Collapse
|