1
|
Feng S, Lei N, Peng X, Wei X, Luo Y, Pu X, Yu X. Mangiferin- and GNPs/ECPP-loaded platform of UH with dual bi-directional dynamic modulation of stem cells/macrophages and osteoblasts/osteoclasts for the prevention of aseptic loosening. J Mater Chem B 2025; 13:695-710. [PMID: 39620621 DOI: 10.1039/d4tb02079k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Aseptic inflammation and osteolysis triggered by the phagocytosis of implant wear particles by macrophages are important reasons for aseptic loosening (AL) in total joint replacement, which ultimately leads to implant failure. Therefore, the development of implants with long-term effectiveness in preventing AL is a pressing issue. In contrast to the conventional idea of reducing the occurrence of AL through anti-inflammatory treatment, we prepared implants based on a novel concept: to prevent AL by returning the dynamic balance of osteogenesis/osteolysis through dynamic modulation, which is expected to completely resolve the problem of AL. In this study, a natural polyphenol, mangiferin (MAN), and a composite filler (GNPs/ECPP) were loaded into ultrahigh-molecular-weight polyethylene (UH) to construct a hip implant component with the ability to prevent AL. This modified implant was able to improve the oxidation resistance and wear resistance of implants, which could reduce the production of wear particles, recruit BMSCs as well as promote their proliferation/osteogenic differentiation and inhibit macrophage activity and RANKL-induced macrophage osteoclast differentiation in vitro. These effects suggest that this modified implant has achieved the dual bi-directional dynamic modulation of stem cells/macrophages and osteoblasts/osteoclasts for the prevention of aseptic loosening. Notably, in vivo experiments for implantation of wear-particle-coated titanium rods demonstrated that wear particles from the prepared implant significantly promoted the osseointegration capacity of implanted prosthesis (titanium rod) and effectively inhibited peri-prosthesis osteolysis. This work provides a new concept and presents a promising way for the development of durable implant components with long-term protection against AL.
Collapse
Affiliation(s)
- Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
2
|
Fernández-Villa D, Aguilar MR, Rojo L. Europium-tannic acid nanocomplexes devised for bone regeneration under oxidative or inflammatory environments. J Mater Chem B 2024; 12:7153-7170. [PMID: 38952270 DOI: 10.1039/d4tb00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Europium ions (Eu3+) are gaining attention in the field of regenerative medicine due to increasing evidence of their osteogenic properties. However, inflammatory and oxidative environments present in many bone diseases, such as osteoporosis or rheumatoid arthritis, are known to hinder this regenerative process. Herein, we describe a straightforward synthetic procedure to prepare Eu3+-tannic acid nanocomplexes (EuTA NCs) with modulable physicochemical characteristics, as well as antioxidant, anti-inflammatory, and osteogenic properties. EuTA NCs were rationally synthesized to present different contents of Eu3+ on their structure to evaluate the effect of the cation on the biological properties of the formulations. In all the cases, EuTA NCs were stable in distilled water at physiological pH, had a highly negative surface charge (ζ ≈ -25.4 mV), and controllable size (80 < Dh < 160 nm). In vitro antioxidant tests revealed that Eu3+ complexation did not significantly alter the total radical scavenging activity (RSA) of TA but enhanced its ability to scavenge H2O2 and ferrous ions, thus improving its overall antioxidant potential. At the cellular level, EuTA NCs reduced the instantaneous toxicity of high concentrations of free TA, resulting in better antioxidant (13.3% increase of RSA vs. TA) and anti-inflammatory responses (17.6% reduction of nitric oxide production vs. TA) on cultures of H2O2- and LPS-stimulated macrophages, respectively. Furthermore, the short-term treatment of osteoblasts with EuTA NCs was found to increase their alkaline phosphatase activity and their matrix mineralization capacity. Overall, this simple and tunable platform is a potential candidate to promote bone growth in complex environments by simultaneously targeting multiple pathophysiological mechanisms of disease.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| |
Collapse
|
3
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
4
|
Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regen Biomater 2023; 10:rbad083. [PMID: 37808955 PMCID: PMC10551240 DOI: 10.1093/rb/rbad083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.
Collapse
Affiliation(s)
- Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jia Ma
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
5
|
Han J, Park S, Kim JE, Park B, Hong Y, Lim JW, Jeong S, Son H, Kim HB, Seonwoo H, Jang KJ, Chung JH. Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration. ACS Biomater Sci Eng 2023; 9:968-977. [PMID: 36701173 DOI: 10.1021/acsbiomaterials.2c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing a scaffold for efficient and functional bone regeneration remains challenging. To accomplish this goal, a "scaffold-on-a-chip" device was developed as a platform to aid with the evaluation process. The device mimics a microenvironment experienced by a transplanted bone scaffold. The device contains a circular space at the center for scaffold insert and microfluidic channel that encloses the space. Such a design allows for monitoring of cell behavior at the blood-scaffold interphase. MC3T3-E1 cells were cultured with three different types of scaffold inserts to test its capability as an evaluation platform. Cellular behaviors, including migration, morphology, and osteogenesis with each scaffold, were analyzed through fluorescence images of live/dead assay and immunocytochemistry. Cellular behaviors, such as migration, morphology, and osteogenesis, were evaluated. The results revealed that our platform could effectively evaluate the osteoconductivity and osteoinductivity of scaffolds with various properties. In conclusion, our proposed platform is expected to replace current in vivo animal models as a highly relevant in vitro platform and can contribute to the fundamental study of bone regeneration.
Collapse
Affiliation(s)
- Jinsub Han
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangbae Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Byeongjoo Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Yeonggeol Hong
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea
| | - Jae Woon Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Jeong
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyunmok Son
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hoon Seonwoo
- Department of Convergent Biosystems Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Korea.,Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Fu M, Li J, Liu M, Yang C, Wang Q, Wang H, Chen B, Fu Q, Sun G. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction. Int J Nanomedicine 2023; 18:1875-1895. [PMID: 37051313 PMCID: PMC10084881 DOI: 10.2147/ijn.s399487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Background Immune responses and osteogenesis differentiation induced by implants are crucial for bone tissue regeneration. Consideration of only one of those properties is not sufficient. To investigate the synergistic actions, we designed alginate/graphene oxide/sericin/nanohydroxyapatite (Alg/GO/Ser/nHAP) nanocomposite hydrogels with both osteoimmunomodulatory and osteoinductive activities. This study aimed to explore the effect of hydrogel with osteoimmunomodulatory properties on promoting osteogenesis of bone marrow stem cells (BMSCs). Methods Alg/GO/Ser/nHAP nanocomposite hydrogel was fabricated and was characterized by SEM, FTIR, XRD, stress-strain, rheology, swelling and degradation. After the impact of sericin on M2 macrophage polarization was identified, the BMSCs viability and adhesion were evaluated by CCK8 assay, live/dead staining, cytoskeleton staining. The cell osteogenic differentiation was observed by ALP/ARS staining, immunofluorescence staining, RT-PCR, and Western blotting, respectively. Rat cranial defect model was used to assess osteoimmunomodulatory effects of scaffolds in vivo by micro‑computed tomographic, histological, and immunohistochemical analyses after 8 weeks of healing. Results In vitro experiments revealed that the hydrogel presented desirable mechanical strength, stability, porosity, and biocompatibility. Significantly, sericin and nHAP appeared to exert synergistic effects on bone regeneration. Sericin was observed to inhibit the immune response by inducing macrophage M2-type polarization to create a positive osteoimmune microenvironment, contributing to improving osseointegration at the bone-implant interface to promote osteogenesis. However, the osteogenic differentiation in rat BMSCs was further enhanced by combining nHAP and sericin in the nanocomposite hydrogel. Eventually, the hydrogel was implanted into the rat cranial defect model, assisting in the reduction of local inflammation and efficient bone regeneration. Conclusion The nanocomposite hydrogel stimulated bone formation by the synergistic effects of immunomodulation of macrophage polarization by sericin and direct osteogenic induction by nHAP, demonstrating that such a scaffold that modulates the osteoimmune microenvironment to promote osteogenesis is a promising approach for the development of bone tissue engineering implants in the future.
Collapse
Affiliation(s)
- Mei Fu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jun Li
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qidong Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hongrui Wang
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, People’s Republic of China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qingge Fu
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, People’s Republic of China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Correspondence: Guixin Sun; Qingge Fu, Email ;
| |
Collapse
|
7
|
Korotkov SM, Sobol KV, Novozhilov AV, Nesterov VP. Effect of Eu3+ on Calcium-Dependent Processes in Vertebrate Myocardium. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
9
|
The experimental and theoretical investigation of Sm/Mg co-doped hydroxyapatites. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Cetin Genc C, Yilmaz HD, Karaca B, Kiran F, Arslan YE. Nano-hydroxyapatite incorporated quince seed mucilage bioscaffolds for osteogenic differentiation of human adipose-derived mesenchymal stem cells. Int J Biol Macromol 2022; 195:492-505. [PMID: 34921891 DOI: 10.1016/j.ijbiomac.2021.12.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
In this study, the therapeutic hydrocolloid quince seed mucilage (QSM) from Cydonia oblonga Miller fruit is enriched with needle-like nano-hydroxyapatite (nHAp) crystals to fabricate a novel biomimetic osteogenic bioscaffold. The molecular weight (Mw) of water-based extracted QSM was measured with GPC (8.67 × 105 g/mol), and the composite blend was prepared at a ratio of 1:1 (w/w) QSMaq and nHAp. The porous bioscaffolds were manufactured by the freeze-drying method, and evaluated in-depth with advanced analyses. The XRD, ATR-FTIR, SEM-EDX, and elemental mapping analyses revealed a uniform coated semi-crystalline structure with no covalent bindings between QSM and nHAp. Moreover, due to the hydrocolloid backbone, a supreme swelling ratio (w/w, 6523 ± 190%) with suitable pore size (208.12 ± 99.22 μm) for osteogenic development was obtained. Further, the cytocompatible bioscaffolds were evaluated for osteogenic differentiation in vitro using human adipose-derived mesenchymal stem cells (hAMSCs). The immuno/histochemical (I/HC) staining revealed that the cells with the spherical morphology invaded the pores of the prepared bioscaffolds. Also, relatively early up-regulated osteogenic markers were observed by the qRT-PCR analyses. Overall, it is believed that the QSM-nHAp bioscaffolds might be favorable in non-load bearing applications, especially in the cranio-maxillofacial region, due to their regenerative, bendable, and durable features.
Collapse
Affiliation(s)
- Cigdem Cetin Genc
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Hilal Deniz Yilmaz
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Burak Karaca
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey.
| |
Collapse
|
11
|
Effects of scandium chloride on osteogenic and adipogenic differentiation of mesenchymal stem cells. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
13
|
Huang Y, Zhai X, Ma T, Zhang M, Pan H, Weijia Lu W, Zhao X, Sun T, Li Y, Shen J, Yan C, Du Y. Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Hurle K, Maia F, Ribeiro V, Pina S, Oliveira J, Goetz-Neunhoeffer F, Reis R. Osteogenic lithium-doped brushite cements for bone regeneration. Bioact Mater 2021; 16:403-417. [PMID: 35415287 PMCID: PMC8965853 DOI: 10.1016/j.bioactmat.2021.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- K. Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Corresponding author.
| | - F.R. Maia
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - V.P. Ribeiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - S. Pina
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J.M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - F. Goetz-Neunhoeffer
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - R.L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author. 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
| |
Collapse
|
15
|
Li B, Lei Y, Hu Q, Li D, Zhao H, Kang P. Porous copper- and lithium-doped nano-hydroxyapatite composite scaffold promotes angiogenesis and bone regeneration in the repair of glucocorticoids-induced osteonecrosis of the femoral head. Biomed Mater 2021; 16. [PMID: 34492640 DOI: 10.1088/1748-605x/ac246e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Glucocorticoids-induced osteonecrosis of the femoral head (GIONFH) is a common refractory disease. In the present study, we aimed to synthesize the nano-hydroxyapatite-copper-lithium (Cu-Li-nHA) composite porous scaffold to promote osteogenesis and angiogenesis functions to repair GIONFH by regulating the Wnt/β-catenin and HIF-1α/VEGF pathways. The physicochemical property of the scaffold was characterized and their osteogenic and angiogenic effects were tested through a serial of experimentsin vitroandin vivo. Results showed that 0.25% Cu-Li-nHA scaffolds possessed the highest mechanical and biocompatibilityin vitro. Then the 0.25% Cu-Li-nHA scaffolds significantly enhanced the new bone formation on defects in GIONFH rabbitsin vivo. Moreover, the scaffold could increase the expression of osteogenic and angiogenic factors along with the activation of factors in Wnt/β-catenin and HIF-1α/VEGF pathwaysin vitroandin vivo. In conclusion, the 0.25% Cu-Li-nHA scaffold could improve the osteogenesis and angiogenesis by upregulating the Wnt/β-catenin and HIF-1α/VEGF pathways which benefited to repair the GIONFH in rabbit models.
Collapse
Affiliation(s)
- Bohua Li
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Yan Lei
- Arts College of Sichuan University, Chengdu 610041, People's Republic of China
| | - Qinsheng Hu
- Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Donghai Li
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Haiyan Zhao
- Department of Orthopedics, The First Hospital of Lanzhou University, 1# West Donggang Road, Lanzhou 730000, People's Republic of China
| | - Pengde Kang
- Department of Orthopedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| |
Collapse
|
16
|
Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, Guo M, Zhang P. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B 2021; 9:6691-6702. [PMID: 34382634 DOI: 10.1039/d1tb01080h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydroxyapatite (HA) is the most commonly used orthopedic implant material. In recent years, the emergence of cationic doped hydroxyapatite has revealed more possibilities for the biological application of HA. Conventional HA does not promote new bone formation because of its poor osteoinductive activity, and has a similar density to that of bone, leading to difficulty in distinguishing both via imaging. Magnesium ions are useful for regulating the cellular behavior and promoting bone regeneration. Ba ion related compounds, such as BaSO4, have a strong X-ray shielding effect. In this study, Ba/Mg@HA was synthesized to prepare Ba/Mg@HA/PLGA composites, and we aimed to investigate if Ba/Mg@HA/PLGA composites enhanced bone repair on osteoblasts and tibial defects, as well as the X-ray and CT imaging ability of bone implants in rats. The in vitro experimental results showed that the Ba/Mg@HA/PLGA composites significantly improved the attachment and osteogenic differentiation of MC3T3-E1 cells. These include the promotion of mineral deposition, enhancement of alkaline phosphatase activity, upregulation of OCN and COL-1 gene expression, and increase in COL-1 and OCN protein expression in a time- and concentration-dependent manner. The in vivo experimental results showed that the Ba/Mg@HA/PLGA composites significantly increased the rate of bone defect healing and the expression of BMP-2 and COL-1 in the bones of rats. X-ray and CT imaging results showed that the Ba/Mg@HA/PLGA composites enhanced the X-ray imaging ability. These findings indicate that the Ba/Mg@HA/PLGA composites can effectively promote bone formation and improve the X-ray and CT imaging abilities to a certain extent.
Collapse
Affiliation(s)
- Xiangji Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun 130033, Jilin, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu C, Pan L, Liu C, Liu W, Li Y, Cheng X, Jian X. Enhancing Tissue Adhesion and Osteoblastic Differentiation of MC3T3-E1 Cells on Poly(aryl ether ketone) by Chemically Anchored Hydroxyapatite Nanocomposite Hydrogel Coating. Macromol Biosci 2021; 21:e2100078. [PMID: 34146384 DOI: 10.1002/mabi.202100078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/19/2021] [Indexed: 11/08/2022]
Abstract
Tissue adhesion to bone implant and osteoblastic differentiation are the key factors to achieve poly(aryl ether ketone) (PAEK) implant osseointegration. However, physical interaction of implant with tissue and hydroxyapatite coating suffers from slow implant tissue integration and lack of long-term stability. In this study, a novel poly(phthalazinone ether sulfone ketone) containing allyl groups (APPBAESK) is coated onto PPBESK sheet for reacting with the allyl groups of the hydrogel coating to enhance its stability. N-Succinimidyl (NHS)-ester activated group and nano-hydroxyapatite (nano-HA) are introduced into the hydrogel synthesized from gelatin methacrylate (GelMA) and acrylic acid to construct a nanocomposite hydrogel coating on PPBESK which is a promising PAEK implant material. The hydrophilicity of the PPBESK sheet is improved by the hydrogel coating. The chemical components of the nanocomposite hydrogel coating are confirmed by X-ray photoelectron spectroscope, Attenuated total reflection infrared, and X-ray powder diffraction. The tissue shear adhesion strength of the hydrogel coating toward pig skin is enhanced due to the synergism of NHS-ester activated group and nano-HA. The osteogenic differentiation of MC3T3-E1 preosteoblasts is promoted by nano-HA in nanocomposite hydrogel coating. Therefore, the bifunctional nanocomposite hydrogel coating provides a great application prospect in the surface modification of PAEK implants in bone tissue engineering.
Collapse
Affiliation(s)
- Chengde Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Liang Pan
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wentao Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yizheng Li
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
18
|
Wiatrak B, Sobierajska P, Szandruk-Bender M, Jawien P, Janeczek M, Dobrzynski M, Pistor P, Szelag A, Wiglusz RJ. Nanohydroxyapatite as a Biomaterial for Peripheral Nerve Regeneration after Mechanical Damage-In Vitro Study. Int J Mol Sci 2021; 22:ijms22094454. [PMID: 33923239 PMCID: PMC8123185 DOI: 10.3390/ijms22094454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxyapatite has been used in medicine for many years as a biomaterial or a cover for other biomaterials in orthopedics and dentistry. This study characterized the physicochemical properties (structure, particle size and morphology, surface properties) of Li+- and Li+/Eu3+-doped nanohydroxyapatite obtained using the wet chemistry method. The potential regenerative properties against neurite damage in cultures of neuron-like cells (SH-SY5Y and PC12 after differentiation) were also studied. The effect of nanohydroxyapatite (nHAp) on the induction of repair processes in cell cultures was assessed in tests of metabolic activity, the level of free oxygen radicals and nitric oxide, and the average length of neurites. The study showed that nanohydroxyapatite influences the increase in mitochondrial activity, which is correlated with the increase in the length of neurites. It has been shown that the doping of nanohydroxyapatite with Eu3+ ions enhances the antioxidant properties of the tested nanohydroxyapatite. These basic studies indicate its potential application in the treatment of neurite damage. These studies should be continued in primary neuronal cultures and then with in vivo models.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (M.S.-B.); (P.J.); (A.S.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
- Correspondence: (P.S.); (R.J.W.); Tel.: +48-(071)-3954-274 (P.S.); +48-(071)-3954-159 (R.J.W.)
| | - Marta Szandruk-Bender
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (M.S.-B.); (P.J.); (A.S.)
| | - Paulina Jawien
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (M.S.-B.); (P.J.); (A.S.)
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wrocław, Poland; (M.J.); (P.P.)
| | - Maciej Dobrzynski
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Patrycja Pistor
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wrocław, Poland; (M.J.); (P.P.)
| | - Adam Szelag
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.W.); (M.S.-B.); (P.J.); (A.S.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
- Correspondence: (P.S.); (R.J.W.); Tel.: +48-(071)-3954-274 (P.S.); +48-(071)-3954-159 (R.J.W.)
| |
Collapse
|
19
|
Physico-Chemical Properties and In Vitro Antifungal Evaluation of Samarium Doped Hydroxyapatite Coatings. COATINGS 2020. [DOI: 10.3390/coatings10090827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite (HAp) and samarium doped hydroxyapatite, Ca10−xSmx(PO4)6(OH)2, xSm = 0.05, (5SmHAp), coatings were prepared by sol-gel process using the dip coating method. The stability of 5SmHAp suspension was evaluated by ultrasound measurements. Fourier transform infrared spectroscopy (FTIR) was used to examine the optical characteristics of HAp and 5SmHAp nanoparticles in suspension and coatings. The FTIR analysis revealed the presence of the functional groups specific to the structure of hydroxyapatite in the 5SmHAp suspensions and coatings. The morphology of 5SmHAp nanoparticles in suspension was evaluated by transmission electron microscopy (TEM). Moreover, scanning electron microscope (SEM) was used to evaluate the morphology of nanoparticle in suspension and the morphology of the surface on the coating. The SEM and TEM studies on 5SmHAp nanoparticles in suspension showed that our samples consist of nanometric particles with elongated morphology. The SEM micrographs of HAp and 5SmHAp coatings pointed out that the coatings are continuous and homogeneous. The surface morphology of the 5SmHAp coatings was also assessed by Atomic Force Microscopy (AFM) studies. The AFM results emphasized that the coatings presented the morphology of a uniformly deposited layer with no cracks and fissures. The crystal structure of 5SmHAp coating was characterized by X-ray diffraction (XRD). The surface composition of 5SmHAp coating was analyzed by X-ray photoelectron spectroscopy (XPS). The XRD and XPS analysis shown that the Sm3+ ions have been incorporated into the 5SmHAp synthesized material. The antifungal properties of the 5SmHAp suspensions and coatings were studied using Candida albicans ATCC 10231 (C. albicans) fungal strains. The quantitative results of the antifungal assay showed that colony forming unity development was inhibited from the early phase of adherence in the case of both suspensions and coatings. Furthermore, the adhesion, cell proliferation and biofilm formation of the C. albicans were also investigated by AFM, SEM and Confocal Laser Scanning Microscopy (CLSM) techniques. The results highlighted that the C. albicans adhesion and cell development was inhibited by the 5SmHAp coatings. Moreover, the data also revealed that the 5SmHAp coatings were effective in stopping the biofilm formation on their surface. The toxicity of the 5SmHap was also investigated in vitro using HeLa cell line.
Collapse
|
20
|
Steckiewicz KP, Inkielewicz-Stepniak I. Modified Nanoparticles as Potential Agents in Bone Diseases: Cancer and Implant-Related Complications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E658. [PMID: 32244745 PMCID: PMC7221902 DOI: 10.3390/nano10040658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Materials sized 1-100 nm are the nanotechnology's field of interest. Because of the unique properties such as the ability to penetrate biological barriers and a high surface to volume ratio, nanoparticles (NPs) are a powerful tool to be used in medicine and industry. This review discusses the role of nanotechnology in bone-related issues: osteosarcoma (bone cancer), the biocompatibility of the implants and implant-related infections. In cancer therapy, NPs can be used as (I) cytotoxic agents, (II) drug delivery platforms and (III) in thermotherapy. In implant-related issues, NPs can be used as (I) antimicrobial agents and (II) adjuvants to increase the biocompatibility of implant surface. Properties of NPs depend on (I) the type of NPs, (II) their size, (III) shape, (IV) concentration, (V) incubation time, (VI) functionalization and (VII) capping agent type.
Collapse
Affiliation(s)
| | - Iwona Inkielewicz-Stepniak
- Chair and Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, ul. Dębinki 1, 80-211 Gdansk, Poland;
| |
Collapse
|
21
|
Sobierajska P, Wiglusz RJ. Influence of Li+ ions on the physicochemical properties of nanocrystalline calcium–strontium hydroxyapatite doped with Eu3+ ions. NEW J CHEM 2019. [DOI: 10.1039/c9nj03003d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study, nanocrystalline Ca–Sr hydroxyapatites structurally modified with Li+ ions as well as co-doped with Eu3+ ions were prepared as biomaterials showing both regenerative and therapeutic functions.
Collapse
Affiliation(s)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research
- PAS
- 50-422 Wroclaw
- Poland
| |
Collapse
|