1
|
Pinho V, Neves-Petersen MT, Machado R, Castro Gomes A. Light Assisted Covalent Immobilization of Proteins for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2406561. [PMID: 39887935 DOI: 10.1002/smll.202406561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/24/2025] [Indexed: 02/01/2025]
Abstract
The covalent immobilization of proteins attracts considerable interest in the biomedical field due to its potential applications in biosensors, recombinant protein purification, and the development of personalized therapeutic carriers. In response to the demand for more cost-effective, time-efficient, and simpler protocols, photo-immobilization emerges as a technique that circumvents the limitations of conventional methods. This approach offers enhanced precision at the nanoscale level and facilitates device reusability, thereby aligning with current sustainability concerns. Photo-immobilization is versatile, as it can be applied to both 2D and 3D substrates. While some methods involve complex protocols using genetically engineered photosensitive linkers, more straightforward techniques rely on amino acid bonds, such as disulfide bonds, for covalent protein bonding. Photo-immobilization can be achieved with both ultraviolet (UV) and visible light. This systematic review examines literature from Scopus, PubMed, and Web of Science, offering insights into relevant studies and considerations for covalent protein immobilization, and presents photochemical approaches applicable to major protein types.
Collapse
Affiliation(s)
- Vanessa Pinho
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
2
|
Lo HL, Lin SY, Ho CJ, Ming-Kung Y, Lu CC. Effect of lyophilized exosomes derived from umbilical cord stem cells on chronic anterior cruciate ligament cell injury. J Orthop Surg Res 2024; 19:554. [PMID: 39252098 PMCID: PMC11382386 DOI: 10.1186/s13018-024-05029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Facilitating the healing process of injured anterior cruciate ligament (ACL) tissue is crucial for patients to safely return to sports. Stem cell derived exosomes have shown positive effects on enhancing the regeneration of injured tendons/ligaments. However, clinical application of exosomes in terms of storage and pre-assembly is challenging. We hypothesized that lyophilized exosomes derived from human umbilical cord stem cells (hUSC-EX) could enhance the cell activity of chronically injured ACL cells. MATERIALS AND METHODS We harvested the 8 weeks injured ACL cells from rabbit under IACUC (No. 110232) approval. The studied exosomes were purified from the culture medium of human umbilical cord stem cells (IRB approval No. A202205014), lyophilized to store, and hydrated for use. We compared exosome treated cells with non-exosome treated cells (control group) from the same rabbits. We examined the cell viability, proliferation, migration capability and gene expression of type I and III collagen, TGFβ, VEGF, and tenogenesis in the 8 weeks injured ACL cells after hUSC-EX treatment. RESULTS After hydration, the average size of hUSC-EX was 84.5 ± 70.6 nm, and the cells tested positive for the Alix, TSG101, CD9, CD63, and CD81 proteins but negative for the α-Tubulin protein. After 24 h of treatment, hUSC-EX significantly improved the cell viability, proliferation and migration capability of 8 weeks injured ACL cells compared to that of no exosome treatment group. In addition, the expression of collagen synthesis, TGFβ, VEGF, and tenogenesis gene were all significantly increased in the 8 weeks injured ACL cells after 24 h hUSC-EX delivery. DISCUSSION Lyophilized exosomes are easily stored and readily usable after hydration, thereby preserving their characteristic properties. Treatment with lyophilized hUSC-EX improved the activity and gene expression of 8 weeks injured ACL cells. CONCLUSION Lyophilized hUSC-EX preserve the characteristics of exosomes and can improve chronically injured (8 weeks) ACL cells. Lyophilized hUSC-EX could serve as effective and safe biomaterials that are ready to use at room temperature to enhance cell activity in patients with partial ACL tears and after remnant preservation ACL reconstruction.
Collapse
Affiliation(s)
- Hon Lok Lo
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Yen Lin
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Department of Orthopedics, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jung Ho
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yeh Ming-Kung
- School of Pharmacy, Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Medical University Hospital, No.482, Shanming Rd., Siaogang Dist., Kaohsiung City, 812, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Orthopedics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
4
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
5
|
Kang M, Lee S, Seo JP, Lee EB, Ahn D, Shin J, Paik YK, Jo D. Cell-permeable bone morphogenetic protein 2 facilitates bone regeneration by promoting osteogenesis. Mater Today Bio 2024; 25:100983. [PMID: 38327977 PMCID: PMC10848039 DOI: 10.1016/j.mtbio.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
The use of the FDA-approved osteoinductive growth factor BMP2 is widespread for bone regeneration. However, its clinical application has been hindered by limitations in cell permeability and a short half-life in circulation. To address this issue, we have developed a modified version of BMP2, referred to as Cell Permeable (CP)-BMP2, which possesses improved cell permeability. CP-BMP2 incorporates an advanced macromolecular transduction domain (aMTD) to facilitate transfer across the plasma membrane, a solubilization domain, and recombinant human BMP2. Compared to traditional rhBMP2, CP-BMP2 exhibits enhanced cell permeability, solubility, and bioavailability, and activates Smad phosphorylation through binding to BMP receptor 2. The effectiveness of CP-BMP2 was evaluated in three animal studies focusing on bone regeneration. In the initial study, mice and rabbits with critical-size calvarial defects received subcutaneous (SC) injections of CP-BMP2 and rhBMP2 (7.5 mg/kg, 3 injections per week for 8 weeks).Following 8 weeks of administration, CP-BMP2 demonstrated a remarkable 65 % increase in bone formation in mice when compared to both the vehicle and rhBMP2. Moreover, rabbits exhibited faster bone formation, characterized by a filling pattern originating from the center. In a subsequent study involving injured horses, hind limb bones treated with CP-BMP2 exhibited an 85 % higher bone regeneration rate, as evidenced by Micro-CT results, in contrast to horses treated with the vehicle or rhBMP2 (administered at 150 μg/defect, subcutaneously, once a week for 8 weeks, without a scaffold). These results underscore the potential of CP-BMP2 to facilitate rapid and effective healing. No noticeable adverse effects, such as ectopic bone formation, were observed in any of the studies. Overall, our findings demonstrate that CP-BMP2 holds therapeutic potential as a novel and effective osteogenic agent.
Collapse
Affiliation(s)
- Mingu Kang
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Seokwon Lee
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Jong-pil Seo
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Eun-bee Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Daye Ahn
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Jisoo Shin
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Young-Ki Paik
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul, 03929, South Korea
| |
Collapse
|
6
|
Escobar Jaramillo M, Covarrubias C, Patiño González E, Ossa Orozco CP. Optimization by mixture design of chitosan/multi-phase calcium phosphate/BMP-2 biomimetic scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2024; 152:106423. [PMID: 38290393 DOI: 10.1016/j.jmbbm.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
The modulation of cell behavior during culture is one of the most important aspects of bone tissue engineering because of the necessity for a complex mechanical and biochemical environment. This study aimed to improve the physicochemical properties of chitosan/multi-phase calcium phosphate (MCaP) scaffolds using an optimized mixture design experiment and evaluate the effect of biofunctionalization of the obtained scaffolds with the bone morphogenetic protein BMP-2 on stem cell behavior. The present study evaluated the compressive strength, elastic modulus, porosity, pore diameter, and degradation in simulated body fluids and integrated these responses using desirability. The properties of the scaffolds with the best desirability (18.4% of MCaP) were: compressive strength of 23 kPa, elastic modulus of 430 kPa, pore diameter of 163 μm, porosity of 92%, and degradation of 20% after 21 days. Proliferation and differentiation experiments were conducted using dental pulp stem cells after grafting BMP-2 onto scaffolds via the carbodiimide route. These experiments showed that MCaP promoted cell proliferation and increased alkaline phosphatase activity, whereas BMP-2 enhanced cell differentiation. This study demonstrates that optimizing the composition of a mixture of chitosan and MCaP improves the physicochemical and biological properties of scaffolds, indicating that this solution is viable for application in bone tissue engineering.
Collapse
Affiliation(s)
- Mateo Escobar Jaramillo
- Grupo de Investigación en Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia.
| | - Cristian Covarrubias
- Laboratorio de Nanobiomateriales, Universidad de, Chile, Santiago de Chile, Chile
| | - Edwin Patiño González
- Grupo de Bioquímica Estructural de Macromoléculas, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Claudia Patricia Ossa Orozco
- Grupo de Investigación en Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia
| |
Collapse
|
7
|
Wen X, Liu Y, Xi F, Zhang X, Kang Y. Micro-arc oxidation (MAO) and its potential for improving the performance of titanium implants in biomedical applications. Front Bioeng Biotechnol 2023; 11:1282590. [PMID: 38026886 PMCID: PMC10662315 DOI: 10.3389/fbioe.2023.1282590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Titanium (Ti) and its alloys have good biocompatibility, mechanical properties and corrosion resistance, making them attractive for biomedical applications. However, their biological inertness and lack of antimicrobial properties may compromise the success of implants. In this review, the potential of micro-arc oxidation (MAO) technology to create bioactive coatings on Ti implants is discussed. The review covers the following aspects: 1) different factors, such as electrolyte, voltage and current, affect the properties of MAO coatings; 2) MAO coatings affect biocompatibility, including cytocompatibility, hemocompatibility, angiogenic activity, corrosion resistance, osteogenic activity and osseointegration; 3) antibacterial properties can be achieved by adding copper (Cu), silver (Ag), zinc (Zn) and other elements to achieve antimicrobial properties; and 4) MAO can be combined with other physical and chemical techniques to enhance the performance of MAO coatings. It is concluded that MAO coatings offer new opportunities for improving the use of Ti and its alloys in biomedical applications, and some suggestions for future research are provided.
Collapse
Affiliation(s)
- Xueying Wen
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fangquan Xi
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Xingwan Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Yuanyuan Kang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
8
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
9
|
Wu Y, Liu J, Kang L, Tian J, Zhang X, Hu J, Huang Y, Liu F, Wang H, Wu Z. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon 2023; 9:e17718. [PMID: 37456029 PMCID: PMC10344715 DOI: 10.1016/j.heliyon.2023.e17718] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
With the ability to produce components with complex and precise structures, additive manufacturing or 3D printing techniques are now widely applied in both industry and consumer markets. The emergence of tissue engineering has facilitated the application of 3D printing in the field of biomedical implants. 3D printed implants with proper structural design can not only eliminate the stress shielding effect but also improve in vivo biocompatibility and functionality. By combining medical images derived from technologies such as X-ray scanning, CT, MRI, or ultrasonic scanning, 3D printing can be used to create patient-specific implants with almost the same anatomical structures as the injured tissues. Numerous clinical trials have already been conducted with customized implants. However, the limited availability of raw materials for printing and a lack of guidance from related regulations or laws may impede the development of 3D printing in medical implants. This review provides information on the current state of 3D printing techniques in orthopedic implant applications. The current challenges and future perspectives are also included.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieying Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lin Kang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingjing Tian
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueyi Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jin Hu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fuze Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| |
Collapse
|
10
|
Calazans Neto JV, Reis ACD, Valente MLDC. Osseointegration in additive-manufactured titanium implants: A systematic review of animal studies on the need for surface treatment. Heliyon 2023; 9:e17105. [PMID: 37484223 PMCID: PMC10361303 DOI: 10.1016/j.heliyon.2023.e17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
The objective of the systematic review is to find an answer to a question: "Do surface treatments on titanium implants produced by additive manufacturing improve osseointegration, compared to untreated surfaces?". This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA 2020) and was registered in the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42022321351). Searches were performed in PubMed, Scopus, Science Direct, Embase, and Google Scholar databases on March 22nd, 2022. Articles were chosen in 2 steps by 2 blinded reviewers based on previously selected inclusion criteria: articles in animals that addressed the influence of surface treatments on osseointegration in implants produced by additive manufacturing. Articles were excluded that (1) did not use titanium surface, 2) that did not evaluate surface treatments, 3) that did not described osseointegration, 4) Studies with only in vitro analyses, clinical studies, systematic reviews, book chapters, short communications, conference abstracts, case reports and personal opinions.). 1003 articles were found and, after applying the eligibility criteria, 17 were used for the construction of this review. All included studies found positive osseointegration results from performing surface treatments on titanium. The risk of bias was analyzed using the SYRCLE assessment tool. Surface treatments are proposed to promote changes in the microstructure and composition of the implant surface to favor the adhesion of bone cells responsible for osseointegration. It is observed that despite the benefits generated by the additive manufacturing process in the microstructure of the implant surface, surface treatments are still indispensable, as they can promote more suitable characteristics for bone-implant integration. It can be concluded that the surface treatments evaluated in this systematic review, performed on implants produced by additive manufacturing, optimize osseointegration, as it allows the creation of a micro-nano-textured structure that makes the surface more hydrophilic and allows better contact bone-implant.
Collapse
Affiliation(s)
| | | | - Mariana Lima da Costa Valente
- Corresponding author. Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, FORP-USP. Av. Do Café, s/n, 14040Ribeirão Preto, Brazil.
| |
Collapse
|
11
|
Chen H, Feng R, Xia T, Wen Z, Li Q, Qiu X, Huang B, Li Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023; 9:gels9050423. [PMID: 37233014 DOI: 10.3390/gels9050423] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Although titanium and titanium alloys have become the preferred materials for various medical implants, surface modification technology still needs to be strengthened in order to adapt to the complex physiological environment of the human body. Compared with physical or chemical modification methods, biochemical modification, such as the introduction of functional hydrogel coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides, or nucleotides on the surface of the implants, so that they can directly participate in biological processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the biological activity on the surface of the implants. This review begins with a look at common substrate materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen, gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide, polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel coating (electrochemical method, sol-gel method and layer-by-layer self-assembly method) are introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis, macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize the latest research progress and point out the future research direction. After searching, no previous relevant literature reporting this information was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
12
|
Bi Z, Shi X, Liao S, Li X, Sun C, Liu J. Strategies of immobilizing BMP-2 with 3D-printed scaffolds to improve osteogenesis. Regen Med 2023; 18:425-441. [PMID: 37125508 DOI: 10.2217/rme-2022-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The management and definitive treatment of critical-size bone defects in severe trauma, tumor resection and congenital malformation are troublesome for orthopedic surgeons and patients worldwide without recognized good treatment strategies. Researchers and clinicians are working to develop new strategies to treat these problems. This review aims to summarize the techniques used by additive manufacturing scaffolds loaded with BMP-2 to promote osteogenesis and to analyze the current status and trends in relevant clinical translation. Optimize composite scaffold design to enhance bone regeneration through printing technology, material selection, structure design and loading methods of BMP-2 to advance the clinical therapeutic bone repair field.
Collapse
Affiliation(s)
- Zhiguo Bi
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Xiaotong Shi
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Shiyu Liao
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Xiao Li
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Chao Sun
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Jianguo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| |
Collapse
|
13
|
Lu CC, Ho CJ, Chen SJ, Liu ZM, Chou PPH, Ho ML, Tien YC. Anterior cruciate ligament remnant preservation attenuates apoptosis and enhances the regeneration of hamstring tendon graft. Bone Joint Res 2023; 12:9-21. [PMID: 36617435 PMCID: PMC9872040 DOI: 10.1302/2046-3758.121.bjr-2021-0434.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the tendon graft remain unclear. We hypothesized that the co-culture of remnant cells and bone marrow stromal cells (BMSCs) decreases apoptosis and enhances the activity of the hamstring tendons and tenocytes, thus aiding ACL reconstruction. METHODS The ACL remnant, bone marrow, and hamstring tendons were surgically harvested from rabbits. The apoptosis rate, cell proliferation, and expression of types I and III collagen, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and tenogenic genes (scleraxis (SCX), tenascin C (TNC), and tenomodulin (TNMD)) of the hamstring tendons were compared between the co-culture medium (ACL remnant cells (ACLRCs) and BMSCs co-culture) and control medium (BMSCs-only culture). We also evaluated the apoptosis, cell proliferation, migration, and gene expression of hamstring tenocytes with exposure to co-culture and control media. RESULTS Compared to BMSCs-only culture medium, the co-culture medium showed substantially decreased early and late apoptosis rates, attenuation of intrinsic and extrinsic apoptotic pathways, and enhanced proliferation of the hamstring tendons and tenocytes. In addition, the expression of collagen synthesis, TGF-β, VEGF, and tenogenic genes in the hamstring tendons and tenocytes significantly increased in the co-culture medium compared to that in the control medium. CONCLUSION In the presence of ACLRCs and BMSCs, the hamstring tendons and tenocytes significantly attenuated apoptosis and enhanced the expression of collagen synthesis, TGF-β, VEGF, and tenogenic genes. This in vitro study suggests that the ACLRCs mixed with BMSCs could aid regeneration of the hamstring tendon graft during ACL reconstruction.Cite this article: Bone Joint Res 2023;12(1):9-21.
Collapse
Affiliation(s)
- Cheng-Chang Lu
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jung Ho
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jung Chen
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Miao Liu
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Paul P-H. Chou
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan,Orthopedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Yin-Chun Tien. E-mail:
| |
Collapse
|
14
|
Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:183. [PMID: 36614523 PMCID: PMC9821663 DOI: 10.3390/ma16010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
To fix the bone in orthopedics, it is almost always necessary to use implants. Metals provide the needed physical and mechanical properties for load-bearing applications. Although widely used as biomedical materials for the replacement of hard tissue, metallic implants still confront challenges, among which the foremost is their low biocompatibility. Some of them also suffer from excessive wear, low corrosion resistance, infections and shielding stress. To address these issues, various coatings have been applied to enhance their in vitro and in vivo performance. When merged with the beneficial properties of various bio-ceramic or polymer coatings remarkable bioactive, osteogenic, antibacterial, or biodegradable composite implants can be created. In this review, bioactive and high-performance coatings for metallic bone implants are systematically reviewed and their biocompatibility is discussed. Updates in coating materials and formulations for metallic implants, as well as their production routes, have been provided. The ways of improving the bioactive coating performance by incorporating bioactive moieties such as growth factors, osteogenic factors, immunomodulatory factors, antibiotics, or other drugs that are locally released in a controlled manner have also been addressed.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Margarita D. Apostolova
- Medical and Biological Research Lab., “Roumen Tsanev” Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
15
|
Wu HY, Lin YH, Lee AKX, Kuo TY, Tsai CH, Shie MY. Combined Effects of Polydopamine-Assisted Copper Immobilization on 3D-Printed Porous Ti6Al4V Scaffold for Angiogenic and Osteogenic Bone Regeneration. Cells 2022; 11:cells11182824. [PMID: 36139399 PMCID: PMC9497129 DOI: 10.3390/cells11182824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have demonstrated that biological compounds and trace elements such as dopamine (DA) and copper ions (Cu) could be modified onto the surfaces of scaffolds using a one-step immersion process which is simple, inexpensive and, most importantly, non-cytotoxic. The development and emergence of 3D printing technologies such as selective laser melting (SLM) have also made it possible for us to fabricate bone scaffolds with precise structural designs using metallic compounds. In this study, we fabricated porous titanium scaffolds (Ti) using SLM and modified the surface of Ti with polydopamine (PDA) and Cu. There are currently no other reported studies with such a combination for osteogenic and angiogenic-related applications. Results showed that such modifications did not affect general appearances and microstructural characteristics of the porous Ti scaffolds. This one-step immersion modification allowed us to modify the surfaces of Ti with different concentrations of Cu ions, thus allowing us to fabricate individualized scaffolds for different clinical scenarios. The modification improved the hydrophilicity and surface roughness of the scaffolds, which in turn led to promote cell behaviors of Wharton’s jelly mesenchymal stem cells. Ti itself has high mechanical strength, therefore making it suitable for surgical handling and clinical applications. Furthermore, the scaffolds were able to release ions in a sustained manner which led to an upregulation of osteogenic-related proteins (bone alkaline phosphatase, bone sialoprotein and osteocalcin) and angiogenic-related proteins (vascular endothelial growth factor and angiopoietin-1). By combining additive manufacturing, Ti6Al4V scaffolds, surface modification and Cu ions, the novel hybrid 3D-printed porous scaffold could be fabricated with ease and specifically benefited future bone regeneration in the clinic.
Collapse
Affiliation(s)
- Hsi-Yao Wu
- School of Dentistry, China Medical University, Taichung 406040, Taiwan
| | - Yen-Hong Lin
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
| | - Alvin Kai-Xing Lee
- Department of Education, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ting-You Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung 406040, Taiwan
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22967979 (ext. 3700)
| |
Collapse
|
16
|
Wang R, Ni S, Ma L, Li M. Porous construction and surface modification of titanium-based materials for osteogenesis: A review. Front Bioeng Biotechnol 2022; 10:973297. [PMID: 36091459 PMCID: PMC9452912 DOI: 10.3389/fbioe.2022.973297] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Titanium and titanium alloy implants are essential for bone tissue regeneration engineering. The current trend is toward the manufacture of implants from materials that mimic the structure, composition and elasticity of bones. Titanium and titanium alloy implants, the most common materials for implants, can be used as a bone conduction material but cannot promote osteogenesis. In clinical practice, there is a high demand for implant surfaces that stimulate bone formation and accelerate bone binding, thus shortening the implantation-to-loading time and enhancing implantation success. To avoid stress shielding, the elastic modulus of porous titanium and titanium alloy implants must match that of bone. Micro-arc oxidation technology has been utilized to increase the surface activity and build a somewhat hard coating on porous titanium and titanium alloy implants. More recently, a growing number of researchers have combined micro-arc oxidation with hydrothermal, ultrasonic, and laser treatments, coatings that inhibit bacterial growth, and acid etching with sand blasting methods to improve bonding to bone. This paper summarizes the reaction at the interface between bone and implant material, the porous design principle of scaffold material, MAO technology and the combination of MAO with other technologies in the field of porous titanium and titanium alloys to encourage their application in the development of medical implants.
Collapse
Affiliation(s)
- Rui Wang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
| | - Shilei Ni
- Department of Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Ma
- Department of Fever Clinic, The Second Hospital of Jilin University, Changchun, China
| | - Meihua Li
- Department of Stomatology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Meihua Li,
| |
Collapse
|
17
|
Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3150. [PMID: 35591484 PMCID: PMC9104688 DOI: 10.3390/ma15093150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
This review addresses the different aspects of the use of titanium and its alloys in the production of dental implants, the most common causes of implant failures and the development of improved surfaces capable of stimulating osseointegration and guaranteeing the long-term success of dental implants. Titanium is the main material for the development of dental implants; despite this, different surface modifications are studied aiming to improve the osseointegration process. Nanoscale modifications and the bioactivation of surfaces with biological molecules can promote faster healing when compared to smooth surfaces. Recent studies have also pointed out that gradual changes in the implant, based on the microenvironment of insertion, are factors that may improve the integration of the implant with soft and bone tissues, preventing infections and osseointegration failures. In this context, the understanding that nanobiotechnological surface modifications in titanium dental implants improve the osseointegration process arouses interest in the development of new strategies, which is a highly relevant factor in the production of improved dental materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste-Cetene, Av. Prof. Luiz Freire, 01, Cidade Universitária, Recife CEP 50740-545, PE, Brazil; (R.C.S.S.); (A.A.); (A.N.A.); (C.L.M.-M.); (I.R.S.A.); (L.R.L.S.); (N.F.V.)
| |
Collapse
|
18
|
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, Che Z, Liu T, Liu H, Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810880. [PMID: 35433652 PMCID: PMC9008764 DOI: 10.3389/fbioe.2022.810880] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023] Open
Abstract
At present, bone nonunion and delayed union are still difficult problems in orthopaedics. Since the discovery of bone morphogenetic protein (BMP), it has been widely used in various studies due to its powerful role in promoting osteogenesis and chondrogenesis. Current results show that BMPs can promote healing of bone defects and reduce the occurrence of complications. However, the mechanism of BMP in vivo still needs to be explored, and application of BMP alone to a bone defect site cannot achieve good therapeutic effects. It is particularly important to modify implants to carry BMP to achieve slow and sustained release effects by taking advantage of the nature of the implant. This review aims to explain the mechanism of BMP action in vivo, its biological function, and how BMP can be applied to orthopaedic implants to effectively stimulate bone healing in the long term. Notably, implantation of a system that allows sustained release of BMP can provide an effective method to treat bone nonunion and delayed bone healing in the clinic.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhenjia Che
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tengyue Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| | - Lanfeng Huang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| |
Collapse
|
19
|
Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system’. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00190-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022; 10:850110. [PMID: 35299643 PMCID: PMC8921557 DOI: 10.3389/fbioe.2022.850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
With the development of three-dimensional (3D) printed technology, 3D printed alloy implants, especially titanium alloy, play a critical role in biomedical fields such as orthopedics and dentistry. However, untreated titanium alloy implants always possess a bioinert surface that prevents the interface osseointegration, which is necessary to perform surface modification to enhance its biological functions. In this article, we discuss the principles and processes of chemical, physical, and biological surface modification technologies on 3D printed titanium alloy implants in detail. Furthermore, the challenges on antibacterial, osteogenesis, and mechanical properties of 3D-printed titanium alloy implants by surface modification are summarized. Future research studies, including the combination of multiple modification technologies or the coordination of the structure and composition of the composite coating are also present. This review provides leading-edge functionalization strategies of the 3D printed titanium alloy implants.
Collapse
Affiliation(s)
- Xiao Sheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
21
|
Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021; 9:783816. [PMID: 34950645 PMCID: PMC8691702 DOI: 10.3389/fbioe.2021.783816] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.
Collapse
Affiliation(s)
- Xiaoxuan Lu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zichen Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kehui Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Zuo W, Yu L, Lin J, Yang Y, Fei Q. Properties improvement of titanium alloys scaffolds in bone tissue engineering: a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1259. [PMID: 34532396 PMCID: PMC8421948 DOI: 10.21037/atm-20-8175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Owing to their excellent biocompatibility and corrosion-resistant properties, titanium (Ti) (and its alloy) are essential artificial substitute biomaterials for orthopedics. However, flaws, such as weak osteogenic induction ability and higher Young's modulus, have been observed during clinical application. As a result, short- and long-term postoperative follow-up has found that several complications have occurred. For decades, scientists have exerted efforts to compensate for these deficiencies. Different modification methods have been investigated, including changing alloy contents, surface structure transformation, three-dimensional (3D) structure transformation, coating, and surface functionalization technologies. The cell-surface interaction effect and imitation of the natural 3D bone structure are the two main mechanisms of these improved methods. In recent years, significant progress has been made in materials science research methods, including thorough research of titanium alloys of different compositions, precise surface pattern control technology, controllable 3D structure construction technology, improvement of coating technologies, and novel concepts of surface functionalization. These improvements facilitate the possibility for further research in the field of bone tissue engineering. Although the underlying mechanism is still not fully understood, these studies still have some implications for clinical practice. Therefore, for the direction of further research, it is beneficial to summarize these studies according to the basal method used. This literature review aimed to classify these technologies, thereby providing beginners with a preliminary understanding of the field.
Collapse
Affiliation(s)
- Weiyang Zuo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingjia Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jisheng Lin
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Cleemput S, Huys SEF, Cleymaet R, Cools W, Mommaerts MY. Additively manufactured titanium scaffolds and osteointegration - meta-analyses and moderator-analyses of in vivo biomechanical testing. Biomater Res 2021; 25:18. [PMID: 34112248 PMCID: PMC8191027 DOI: 10.1186/s40824-021-00216-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction Maximizing osteointegration potential of three-dimensionally-printed porous titanium (3DPPT) is an ongoing focus in biomaterial research. Many strategies are proposed and tested but there is no weighted comparison of results. Methods We systematically searched Pubmed and Embase to obtain two pools of 3DPPT studies that performed mechanical implant-removal testing in animal models and whose characteristics were sufficiently similar to compare the outcomes in meta-analyses (MAs). We expanded these MAs to multivariable meta-regressions (moderator analysis) to verify whether statistical models including reported scaffold features (e.g., “pore-size”, “porosity”, “type of unit cell”) or post-printing treatments (e.g., surface treatments, adding agents) could explain the observed differences in treatment effects (expressed as shear strength of bone-titanium interface). Results “Animal type” (species of animal in which the 3DPPT was implanted) and “type of post-treatment” (treatment performed after 3D printing) were moderators providing statistically significant models for differences in mechanical removal strength. An interaction model with covariables “pore-size” and “porosity” in a rabbit subgroup analysis (the most reported animal model) was also significant. Impact of other moderators (including “time” and “location of implant”) was not statistically significant. Discussion/conclusion Our findings suggest a stronger effect from porosity in a rat than in a sheep model. Additionally, adding a calcium-containing layer does not improve removal strength but the other post-treatments do. Our results provide overview and new insights, but little narrowing of existing value ranges. Consequent reporting of 3DPPT characteristics, standardized comparison, and expression of porosity in terms of surface roughness could help tackle these existing dilemmas. Graphical abstract ![]()
Collapse
Affiliation(s)
- Simon Cleemput
- Doctoral School of Life Sciences and Medicine, Vrije Universiteit Brussel, 1090, Brussels, Belgium. .,European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090, Brussels, Belgium.
| | - Stijn E F Huys
- Engineering Science, Department of Mechanical Engineering, Section of Biomechanics, Catholic University of Leuven, 3000, Leuven, Belgium
| | - Robbert Cleymaet
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Wilfried Cools
- Interfaculty Center Data processing and Statistics, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Maurice Y Mommaerts
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| |
Collapse
|
24
|
Qu M, Wang C, Zhou X, Libanori A, Jiang X, Xu W, Zhu S, Chen Q, Sun W, Khademhosseini A. Multi-Dimensional Printing for Bone Tissue Engineering. Adv Healthc Mater 2021; 10:e2001986. [PMID: 33876580 PMCID: PMC8192454 DOI: 10.1002/adhm.202001986] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Indexed: 02/05/2023]
Abstract
The development of 3D printing has significantly advanced the field of bone tissue engineering by enabling the fabrication of scaffolds that faithfully recapitulate desired mechanical properties and architectures. In addition, computer-based manufacturing relying on patient-derived medical images permits the fabrication of customized modules in a patient-specific manner. In addition to conventional 3D fabrication, progress in materials engineering has led to the development of 4D printing, allowing time-sensitive interventions such as programed therapeutics delivery and modulable mechanical features. Therapeutic interventions established via multi-dimensional engineering are expected to enhance the development of personalized treatment in various fields, including bone tissue regeneration. Here, recent studies utilizing 3D printed systems for bone tissue regeneration are summarized and advances in 4D printed systems are highlighted. Challenges and perspectives for the future development of multi-dimensional printed systems toward personalized bone regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weizhe Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
25
|
Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021; 6:e10206. [PMID: 34027093 PMCID: PMC8126827 DOI: 10.1002/btm2.10206] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical terms, bone grafting currently involves the application of autogenous, allogeneic, or xenogeneic bone grafts, as well as natural or artificially synthesized materials, such as polymers, bioceramics, and other composites. Many of these are associated with limitations. The ideal scaffold for bone tissue engineering should provide mechanical support while promoting osteogenesis, osteoconduction, and even osteoinduction. There are various structural complications and engineering difficulties to be considered. Here, we describe the biomimetic possibilities of the modification of natural or synthetic materials through physical and chemical design to facilitate bone tissue repair. This review summarizes recent progresses in the strategies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, decellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic scaffold structures, as well as reactive scaffolds induced by physical factors, and other acellular scaffolds. The fabrication techniques for these scaffolds, along with current strategies in clinical bone repair, are described. The developments in each category are discussed in terms of the connection between the scaffold materials and tissue repair, as well as the interactions with endogenous cells. As the advances in bone tissue engineering move toward application in the clinical setting, the demonstration of the therapeutic efficacy of these novel scaffold designs is critical.
Collapse
Affiliation(s)
- Sijing Jiang
- Department of Plastic SurgeryFirst Affiliated Hospital of Anhui Medical University, Anhui Medical UniversityHefeiChina
| | - Mohan Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| |
Collapse
|
26
|
Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration-Resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 2021; 109:1909-1923. [PMID: 33871951 DOI: 10.1002/jbm.b.34835] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
As life expectancy and the age of the general population increases so does the need for improved implants. A major contributor to the failure of implants is poor osseointegration, which is typically described as the direct connection between bone and implant. This leads to unnecessary complications and an increased burden on the patient population. Modification of the implant surfaces through novel techniques, such as varying topography and/or applying coatings, has become a popular method to enhance the osseointegration capability of implants. Recent research has shown that particular surface features influence how bone cells interact with a material; however, it is unknown which exact features achieve optimal bone integration. In this review, current methods of modifying surfaces will be highlighted, and the resulting surface characteristics and biological responses are discussed. Review of the current strategies of surface modifications found that many coating types are more advantageous when used in combination; however, finding a surface modification that utilizes the mutual beneficial effects of important surface characteristics while still maintaining commercial viability is where future challenges exist.
Collapse
Affiliation(s)
- Kadie P Nobles
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Randall S Williamson
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
27
|
Fu Y, Cui S, Luo D, Liu Y. Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:789. [PMID: 33808788 PMCID: PMC8003392 DOI: 10.3390/nano11030789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022]
Abstract
Extensive bone defect repair remains a clinical challenge, since ideal implantable scaffolds require the integration of excellent biocompatibility, sufficient mechanical strength and high biological activity to support bone regeneration. The inorganic nanomaterial-based therapy is of great significance due to their excellent mechanical properties, adjustable biological interface and diversified functions. Calcium-phosphorus compounds, silica and metal-based materials are the most common categories of inorganic nanomaterials for bone defect repairing. Nano hydroxyapatites, similar to natural bone apatite minerals in terms of physiochemical and biological activities, are the most widely studied in the field of biomineralization. Nano silica could realize the bone-like hierarchical structure through biosilica mineralization process, and biomimetic silicifications could stimulate osteoblast activity for bone formation and also inhibit osteoclast differentiation. Novel metallic nanomaterials, including Ti, Mg, Zn and alloys, possess remarkable strength and stress absorption capacity, which could overcome the drawbacks of low mechanical properties of polymer-based materials and the brittleness of bioceramics. Moreover, the biodegradability, antibacterial activity and stem cell inducibility of metal nanomaterials can promote bone regeneration. In this review, the advantages of the novel inorganic nanomaterial-based therapy are summarized, laying the foundation for the development of novel bone regeneration strategies in future.
Collapse
Affiliation(s)
- Yu Fu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Shengjie Cui
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| |
Collapse
|
28
|
Synergistic Effect of rhBMP-2 Protein and Nanotextured Titanium Alloy Surface to Improve Osteogenic Implant Properties. METALS 2021. [DOI: 10.3390/met11030464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the major limitations during titanium (Ti) implant osseointegration is the poor cellular interactions at the biointerface. In the present study, the combined effect of recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) and nanopatterned Ti6Al4V fabricated with Directed irradiation synthesis (DIS) is investigated in vitro. This environmentally-friendly plasma uses ions to create self-organized nanostructures on the surfaces. Nanocones (≈36.7 nm in DIS 80°) and thinner nanowalls (≈16.5 nm in DIS 60°) were fabricated depending on DIS incidence angle and observed via scanning electron microscopy. All samples have a similar crystalline structure and wettability, except for sandblasted/acid-etched (SLA) and acid-etched/anodized (Anodized) samples which are more hydrophilic. Biological results revealed that the viability and adhesion properties (vinculin expression and cell spreading) of DIS 80° with BMP-2 were similar to those polished with BMP-2, yet we observed more filopodia on DIS 80° (≈39 filopodia/cell) compared to the other samples (<30 filopodia/cell). BMP-2 increased alkaline phosphatase activity in all samples, tending to be higher in DIS 80°. Moreover, in the mineralization studies, DIS 80° with BMP-2 and Anodized with BMP-2 increased the formation of calcium deposits (>3.3 fold) compared to polished with BMP-2. Hence, this study shows there is a synergistic effect of BMP-2 and DIS surface modification in improving Ti biological properties which could be applied to Ti bone implants to treat bone disease.
Collapse
|
29
|
Zhang C, Zhang T, Geng T, Wang X, Lin K, Wang P. Dental Implants Loaded With Bioactive Agents Promote Osseointegration in Osteoporosis: A Review. Front Bioeng Biotechnol 2021; 9:591796. [PMID: 33644012 PMCID: PMC7903335 DOI: 10.3389/fbioe.2021.591796] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Implant-supported dentures are widely used in patients with defect or loss of dentition because these have higher chewing efficiency and do not damage the adjacent teeth compared with fixed or removable denture. An implant-supported denture carries the risk of failure in some systemic diseases, including osteoporosis, because of a non-ideal local microenvironment. Clinically common physical and chemical modifications are used to change the roughness of the implant surface to promote osseointegration, but they have limitations in promoting osteoinduction and inhibiting bone resorption. Recently, many researchers have focused on the study of bioactive modification of implants and have achieved promising results. Herein we have summarized the progress in bioactive modification strategy to promote osseointegration by regulating the local osteoporotic microenvironment.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Tianjia Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tengyu Geng
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China.,Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Spece H, Basgul C, Andrews CE, MacDonald DW, Taheri ML, Kurtz SM. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures. J Biomed Mater Res B Appl Biomater 2021; 109:1436-1454. [PMID: 33484102 DOI: 10.1002/jbm.b.34803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/20/2020] [Accepted: 01/09/2021] [Indexed: 01/20/2023]
Abstract
For Ti6Al4V orthopedic and spinal implants, osseointegration is often achieved using complex porous geometries created via additive manufacturing (AM). While AM porous titanium (pTi) has shown clinical success, concerns regarding metallic implants have spurred interest in alternative AM biomaterials for osseointegration. Insights regarding the evaluation of these new materials may be supported by better understanding the role of preclinical testing for AM pTi. We therefore asked: (a) What animal models have been most commonly used to evaluate AM porous Ti6Al4V for orthopedic bone ingrowth; (b) What were the primary reported quantitative outcome measures for these models; and (c) What were the bone ingrowth outcomes associated with the most frequently used models? We performed a systematic literature search and identified 58 articles meeting our inclusion criteria. We found that AM pTi was evaluated most often using rabbit and sheep femoral condyle defect (FCD) models. Additional ingrowth models including transcortical and segmental defects, spinal fusions, and calvarial defects were also used with various animals based on the study goals. Quantitative outcome measures determined via histomorphometry including ''bone ingrowth'' (range: 3.92-53.4% for rabbit/sheep FCD) and bone-implant contact (range: 9.9-59.7% for rabbit/sheep FCD) were the most common. Studies also used 3D imaging to report outcomes such as bone volume fraction (BV/TV, range: 4.4-61.1% for rabbit/sheep FCD), and push-out testing for outcomes such as maximum removal force (range: 46.6-3092 N for rabbit/sheep FCD). Though there were many commonalities among the study methods, we also found significant heterogeneity in the outcome terms and definitions. The considerable diversity in testing and reporting may no longer be necessary considering the reported success of AM pTi across all model types and the ample literature supporting the rabbit and sheep as suitable small and large animal models, respectively. Ultimately, more standardized animal models and reporting of bone ingrowth for porous AM materials will be useful for future studies.
Collapse
Affiliation(s)
- Hannah Spece
- Implant Research Core, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Cemile Basgul
- Implant Research Core, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Daniel W MacDonald
- Implant Research Core, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Steven M Kurtz
- Implant Research Core, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.,Exponent, Inc., Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation. Acta Biomater 2021; 119:485-498. [PMID: 33130305 DOI: 10.1016/j.actbio.2020.10.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
Although various biodegradable materials have been investigated for ligament reconstruction fixation in the past decades, only few of them possess a combination of high mechanical properties, appropriate degradation rate, good biocompatibility, and osteogenic effect, thus limiting their clinical applications. A high-strength Zn-0.8Mn-0.4Mg alloy (i.e., Zn08Mn04Mg) with yield strength of 317 MPa was developed to address this issue. The alloy showed good biocompatibility and promising osteogenic effect in vitro. The degradation effects of Zn08Mn04Mg interference screws on the interface between soft tissue and bone were investigated in anterior cruciate ligament (ACL) reconstruction in rabbits. Compared to Ti6Al4V, the Zn alloy screws significantly accelerated the formation of new bone and further induced partial tendon mineralization, which promoted tendon-bone integration. The newly developed screws are believed to facilitate early joint function recovery and rehabilitation training and also avoid screw breakage during insertion, thereby contributing to an extensive clinical prospect.
Collapse
|
32
|
Liu C, Li P, Zhou W, Ma X, Wang X, Xu Y, Jiang N, Zhao M, Zhou T, Yin Y, Ren J, Huang R. Genome Data Uncover Conservation Status, Historical Relatedness and Candidate Genes Under Selection in Chinese Indigenous Pigs in the Taihu Lake Region. Front Genet 2020; 11:591. [PMID: 32582299 PMCID: PMC7296076 DOI: 10.3389/fgene.2020.00591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Chinese indigenous pig breeds in the Taihu Lake (TL) region of Eastern China are well documented by their exceptional prolificacy. There are seven breeds in this region including Meishan (MS), Erhualian (EHL), Jiaxing Black (JXB), Fengjing (FJ), Shawutou (SWT), Mi (MI), and Hongdenglong (HDL). At present, these breeds are facing a great threat of population decline, inbreeding depression and lineage admixture since Western commercial pigs have dominated in Chinese pig industry. To provide better conservation strategies and identify candidate genes under selection for these breeds, we explored genome-wide single nucleotide polymorphism (SNP) markers to uncover genetic variability and relatedness, population structure, historical admixture and genomic signature of selection of 440 pigs representing the most comprehensive lineages of these breeds in TL region in a context of 1228 pigs from 45 Eurasian breeds. We showed that these breeds were more closely related to each other as compared to other Eurasian breeds, defining one of the main ancestral lineages of Chinese indigenous pigs. These breeds can be divided into two subgroups, one including JXB and FJ, and the other comprising of EHL, MI, HDL, MS, and SWT. In addition, HDL was highly inbred whereas EHL and MS had more abundant genetic diversity owing to their multiple conservation populations. Moreover, we identified a list of candidate genes under selection for body size and prolificacy. Our results would benefit the conservation of these valuable breeds and improve our understanding of the genetic mechanisms of body size and fecundity in pigs.
Collapse
Affiliation(s)
- Chenxi Liu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Xiang Ma
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaopeng Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yan Xu
- Jiangsu Provincial Station of Animal Husbandry, Nanjing, China
| | - Nengjing Jiang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Moran Zhao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Tianwei Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Yanzhen Yin
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| |
Collapse
|
33
|
Lee S, Chang YY, Lee J, Madhurakkat Perikamana SK, Kim EM, Jung YH, Yun JH, Shin H. Surface engineering of titanium alloy using metal-polyphenol network coating with magnesium ions for improved osseointegration. Biomater Sci 2020; 8:3404-3417. [DOI: 10.1039/d0bm00566e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although titanium-based implants are widely used in orthopedic and dental clinics, improved osseointegration at the bone–implant interface is still required.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Yun-Young Chang
- Department of Dentistry
- Inha International Medical Center
- Incheon
- Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | | | - Eun Mi Kim
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Yang-Hun Jung
- Department of Periodontology
- College of Dentistry and Institute of Oral Bioscience
- Jeonbuk National University
- Jeonju
- Republic of Korea
| | - Jeong-Ho Yun
- Department of Periodontology
- College of Dentistry and Institute of Oral Bioscience
- Jeonbuk National University
- Jeonju
- Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| |
Collapse
|