1
|
Khalifa SAM, Shetaia AA, Eid N, Abd El-Wahed AA, Abolibda TZ, El Omri A, Yu Q, Shenashen MA, Hussain H, Salem MF, Guo Z, Alanazi AM, El-Seedi HR. Green Innovation and Synthesis of Honeybee Products-Mediated Nanoparticles: Potential Approaches and Wide Applications. Bioengineering (Basel) 2024; 11:829. [PMID: 39199787 PMCID: PMC11351265 DOI: 10.3390/bioengineering11080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Bee products, abundant in bioactive ingredients, have been utilized in both traditional and contemporary medicine. Their antioxidant, antimicrobial, and anti-inflammatory properties make them valuable for food, preservation, and cosmetics applications. Honeybees are a vast reservoir of potentially beneficial products such as honey, bee pollen, bee bread, beeswax, bee venom, and royal jelly. These products are rich in metabolites vital to human health, including proteins, amino acids, peptides, enzymes, sugars, vitamins, polyphenols, flavonoids, and minerals. The advancement of nanotechnology has led to a continuous search for new natural sources that can facilitate the easy, low-cost, and eco-friendly synthesis of nanomaterials. Nanoparticles (NPs) are actively synthesized using honeybee products, which serve dual purposes in preventive and interceptive treatment strategies due to their richness in essential metabolites. This review aims to highlight the potential role of bee products in this line and their applications as catalysts and food preservatives and to point out their anticancer, antibacterial, antifungal, and antioxidant underlying impacts. The research used several online databases, namely Google Scholar, Science Direct, and Sci Finder. The overall findings suggest that these bee-derived substances exhibit remarkable properties, making them promising candidates for the economical and eco-friendly production of NPs.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Aya A. Shetaia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Nehal Eid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar;
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Qiang Yu
- Polysaccharides of Jiangxi Province, Nanchang University College of Food Science and Technology, 235 Nanjing East Road, Nanchang 330047, China;
| | - Mohamed A. Shenashen
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-Shi 305-0047, Ibaraki-Ken, Japan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany;
| | - Mohamed F. Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, GEBRI, University of Sadat City, Sadat City P.O. Box 79, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Abdulaziz M. Alanazi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; (A.A.S.); (N.E.)
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; (M.A.S.); (A.M.A.)
| |
Collapse
|
2
|
Joseph S, Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Synthesis, characterization, and application of honey stabilized inulin nanoparticles as colon targeting drug delivery carrier. Int J Biol Macromol 2024; 263:130274. [PMID: 38373569 DOI: 10.1016/j.ijbiomac.2024.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Inulin (INU) is a versatile natural polysaccharide primarily derived from chicory roots. INU possesses the unique quality of evading digestion or fermentation in the early stages of the human digestive tract, instead reaching the lower colon directly. Exploiting on this distinctive attribute, INU finds application in the creation of targeted carrier systems for delivering drugs tailored to colon-related diseases. This study presents a novel method for synthesizing highly stable and non-aggregatory inulin nanoparticles (INU NPs) by ionotropic gelation method, using calcium chloride as crosslinker and natural honey as a stabilizing agent. Different formulation and process parameters were optimized for the synthesis of monodispersed INU NPs. These INU NPs efficiently encapsulated a hydrophilic drug irinotecan hydrochloride trihydrate (IHT) and drug loaded formulation (IINPs) demonstrated excellent colloidal and storage stabilities. Notably, these IINPs exhibited pH-dependent drug release, suggesting potential for colon-specific drug delivery. Anticancer activity of the NPs was found significantly higher in comparison to IHT through cytotoxicity and apoptosis studies against human colorectal carcinoma cells. Overall, this study revealed that the INU NPs synthesized by ionotropic gelation will be an efficient nanocarrier system for colon-targeted drug delivery due to their exceptional biocompatibility and stability in stomach and upper intestinal conditions.
Collapse
Affiliation(s)
- Subin Joseph
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
3
|
Rabbani S, Anvar SAA, Allahyaribeik S, Jannat B, Ahari H. Effect of ultrasound technique to improve quality of Iranian industrial honey by controlling crystallization process. Food Sci Nutr 2024; 12:2932-2946. [PMID: 38628199 PMCID: PMC11016448 DOI: 10.1002/fsn3.3974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 04/19/2024] Open
Abstract
This experiment aimed to assess the effects of ultrasound techniques on the quality of Iranian industrial honey. Honey samples were subjected to ultrasound waves at different frequencies and various parameters. The results showed that both ultrasound treatments (30 or 42 kHz) changed the physical, biochemical, antioxidant, and antibacterial characteristics of honey. Ultrasound treatments at 20 or 45°C for 1, 5, or 10 min reduced moisture, acidity, sugars, ABTS levels, 5-hydroxymethylfurfural content, clostridium, aerobic mesophilic bacteria count, and osmophile count while increasing diastase, phenol, and proline levels. Ultrasound treatment of honey samples at 30 and 42 kHz and different temperatures for varying durations led to a decrease in acidity after 90 and 180 days. Treating honey samples with 42 kHz ultrasound at 45°C for 10 min led to a significant reduction in the amount of reducing sugar. Ultrasonication at different frequencies and temperatures led to higher levels of phenol, ABTS, and proline production, along with a considerable decrease in the total count of aerobic mesophilic bacteria. Our study unveils the potential of ultrasonication to enhance honey quality through multifaceted improvements. Treatment significantly augmented phenolic content and antioxidant capacity, opening avenues for novel honey preservation and quality enhancement strategies. Additionally, ultrasonication effectively controlled honey crystallization while simultaneously improving biochemical, antioxidant, and antibacterial properties. This demonstrates its potential as a comprehensive strategy for honey quality improvement.
Collapse
Affiliation(s)
- Safa Rabbani
- Department of Food Hygiene, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Sara Allahyaribeik
- Department of Energy and Industry, Faculty of Natural Resources and Environment, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Behrooz Jannat
- Food and Drug DeputyMinistry of Health, and Medical EducationTehranIran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
4
|
Nayak MR, Kamble RR, Kodasi B, Metre TV, Nadoni VB, Shettar AK, Hoskeri JH, Keri RS. Succinct and Expeditious Synthesis of Cu 2O Nanoparticles by Using Liquid Jaggery: Anticancer and Wound Healing Activity Analyses. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/07/2024] [Indexed: 01/06/2025]
Abstract
AbstractNanotechnology has expanded substantially over the last several decades as an aftermath of its ubiquitous prevalence in scientific research and technology. The current study demonstrates the ecologically benign production of novel nanoparticles comprised of copper oxide (Cu2O NPs). Liquid jaggery played an eloquent role in the present endeavour perpetrating both as a reducing and capping agent. Energy‐Dispersive X‐ray spectroscopy (EDX), UV‐Visible Spectroscopy, Field emission‐scanning electron microscopy (FESEM), Fourier Transform Infrared (FTIR) spectroscopy, X‐ray diffraction (XRD) studies, Particle size and Zeta potential supported successful synthesis of Cu2O NPs. This study enumerated and assessed the cytotoxicity of Cu2O NPs on three cancer cell lines: HeLa (cervical cancer), MCF‐7 (breast cancer), and MDAMB‐231 (triple negative breast cancer). IC50 (μg/mL) for Cu2O NPs was recorded as 51.24, 59.24, 64.80 for HeLa, MCF‐7 and MDAMB‐231 cells respectively. The Cu2O NPs also exhibited excellent wound healing efficacy, increased cellular mobility including an elevated rate of closure of wounds (93.70 %).
Collapse
Affiliation(s)
- Manojna R. Nayak
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Ravindra R. Kamble
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Barnabas Kodasi
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Tukaram V Metre
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Vishwa B. Nadoni
- Department of Studies in Chemistry Karnatak University Dharwad 580003 India
| | - Arun K Shettar
- Division of Preclinical research and Drug Development Cytxon Biosolutions Pvt Ltd Hubli Hubballi 580031 India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology Karnataka State Akkamahadevi Women's University Vijayapura 586108 India
| | - Rangappa S. Keri
- Centre for Nano and Material Science Jain University Bengaluru 562112 India
| |
Collapse
|
5
|
Strapasson GB, de C Flach E, Assis M, Corrêa SA, Longo E, Machado G, Santos JFL, Weibel DE. Eco-friendly Synthesis of Silver Nanoparticles and its Application in Hydrogen Photogeneration and Nanoplasmonic Biosensing. Chemphyschem 2023; 24:e202300002. [PMID: 37535823 DOI: 10.1002/cphc.202300002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Environmentally friendly methods for silver nanoparticles (AgNPs) synthesis without the use of hazardous chemicals have recently drawn attention. In this work, AgNPs have been synthesized by microwave irradiation using only honey solutions or aqueous fresh pink radish extracts. The concentrations of honey, radish extract, AgNO3 and pH were varied. AgNPs presented mean sizes between 7.0 and 12.8 nm and were stable up to 120 days. The AgNPs were employed as co-catalyst (TiO2 @AgNPs) to increase the hydrogen photogeneration under UV-vis and only visible light irradiation, when compared to pristine TiO2 NPs. The prepared photocatalyst also showed hydrogen generation under visible light. Additionally, AgNPs were used to assemble a nanoplasmonic biosensor for the biodetection of extremely low concentrations of streptavidin, owing to its specific binding to biotin. It is shown here that green AgNPs are versatile nanomaterials, thus being potential candidates for hydrogen photogeneration and biosensing applications.
Collapse
Affiliation(s)
- Guilherme B Strapasson
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Eduarda de C Flach
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), Castelló, 12071, Spain
| | - Silma A Corrêa
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Elson Longo
- CDMF, Federal University of Sao Carlos - UFSCar, P.O. Box 676, 13565e905, São Carlos, São Paulo, Brazil
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Av. Prof. Luís Freire, n° 01 - CidadeUniversitária, Recife/PE, 50.740-545, Brazil
- Current Adress: Institute of Chemistry, University of Campinas, UNICAMP, Campinas, 13083-970, São Paulo, Brazil
| | - Jacqueline F L Santos
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Daniel E Weibel
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, P.O.Box 15003, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Paul D, Pandey A, Neogi S. Bacterial cell permeability study by metal oxide and mixed metal oxide nanoparticles: analysis of the factors contributing to the antibacterial activity of nanoparticles. World J Microbiol Biotechnol 2023; 39:281. [PMID: 37589765 DOI: 10.1007/s11274-023-03712-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
In this work, we investigate the nanoparticle-cell wall interaction by NiO and mixed metal oxide CuO-NiO nanoparticles. We have synthesized and characterized the nanoparticles using XRD, FESEM, EDS, UV vis. spectroscopy, FTIR, Zeta, and TEM analysis in our previous work. Furthermore, a preliminary antibacterial study showed that both the nanoparticles performed very well as antibacterial agents. In this extended work, we investigate the mechanism of interaction of NiO and CuO-NiO nanoparticles with S. aureus and E. coli cells as there are number of studies for antibacterial mechanism of CuO nanoparticles. The uptake of crystal violet dye in the outer bacterial membrane, the release of ß-galactosidase enzyme, and relative electric conductivity assay were used to investigate changes in the permeability and integrity of the cell membrane. Superoxide ions, which are produced intracellularly as ROS by nanoparticles, severely damage bacterial membranes. Zeta potential measurement, which resulted in surface charge neutralization, proved membrane instability. FTIR analysis was used to identify changes in the proteins, carbohydrates, and fatty acids that make up the chemical composition of cell surfaces. AFM imaging demonstrated extensive alteration of the nanomechanical and surface characteristics. Confocal microscopy examination supported the DNA fragmentation and nanoparticle-cell adhesion. Due to their enhanced antibacterial activity when compared to monometallic oxide nanoparticles, this study demonstrated that mixed metal oxides can be employed in the health and biomedical sectors.
Collapse
Affiliation(s)
- Debashri Paul
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ankur Pandey
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sudarsan Neogi
- Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
7
|
Mohamad Sukri SNA, Shameli K, Teow SY, Chew J, Ooi LT, Lee-Kiun Soon M, Ismail NA, Moeini H. Enhanced antibacterial and anticancer activities of plant extract mediated green synthesized zinc oxide-silver nanoparticles. Front Microbiol 2023; 14:1194292. [PMID: 37577438 PMCID: PMC10421725 DOI: 10.3389/fmicb.2023.1194292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
This study presents a green synthesis approach for the fabrication of zinc oxide-silver nanoparticles (ZnO-Ag-NPs) using Punica granatum fruit peels extract as a natural reducing and stabilizing agent. This eco-friendly method offers a sustainable alternative to conventional methods that often employ toxic or hazardous chemicals. Antibacterial and anti-cancer activities of the green synthesized nanoparticles were then assessed in vitro. X-ray diffraction confirmed the production of ZnO-Ag-NPs with increasing crystallinity in higher pH values. The ZnO-Ag-NPs were found to be agglomerated with spherical Ag-NPs. Fourier Transform Infrared (FTIR) spectra revealed a broad band in ZnO-Ag-NPs ranging from 400-1 to 530 cm-1 with reduced intensity as compared to ZnO-NPs, indicating the formation of Ag-NPs on the surface of ZnO-NPs. The synthesized ZnO-Ag-NPs exhibited potent antibacterial activity against a broad spectrum of bacterial strains, particularly Gram-positive bacteria, with superior inhibition activity compared to ZnO-NPs. Moreover, ZnO-Ag-NPs showed a dose-dependent anti-proliferative effect on colorectal-, lung-, and cervical cancer cells. ZnO-Ag-NPs showed significantly greater efficacy in inhibiting cancer cell growth at a lower concentration of 31.25 μg/mL, compared to ZnO-NPs which required over 500 μg/mL, possibly due to the presence of silver nanoparticles (Ag-NPs). The results obtained from this study demonstrate the potential of green synthesis approaches in the fabrication of therapeutic nanomaterials for cancer treatment, as well as other biomedical applications.
Collapse
Affiliation(s)
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Li-Ting Ooi
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Michiele Lee-Kiun Soon
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Nur Afini Ismail
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Hassan Moeini
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Bahari N, Hashim N, Abdan K, Md Akim A, Maringgal B, Al-Shdifat L. Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071244. [PMID: 37049336 PMCID: PMC10097146 DOI: 10.3390/nano13071244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023]
Abstract
The use of natural reducing and capping agents has gained importance as a way to synthesize nanoparticles (NPs) in an environmentally sustainable manner. Increasing numbers of studies have been published on the green synthesis of NPs using natural sources such as bacteria, fungi, and plants. In recent years, the use of honey in the synthesis of metal and metal oxide NPs has become a new and promising area of research. Honey acts as both a stabilizing and reducing agent in the NP synthesis process and serves as a precursor. This review focuses on the use of honey in the synthesis of silver NPs (Ag-NPs) and zinc oxide NPs (ZnO-NPs), emphasizing its role as a reducing and capping agent. Additionally, a comprehensive examination of the bio-based reducing and capping/stabilizing agents used in the honey-mediated biosynthesis mechanism is provided. Finally, the review looks forward to environmentally friendly methods for NP synthesis.
Collapse
Affiliation(s)
- Norfarina Bahari
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khalina Abdan
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Tropical Forestry & Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Laith Al-Shdifat
- Faculty of Pharmacy, Applied Science Private University, Al Arab St, P.O. Box 166, Amman 11931, Jordan
| |
Collapse
|
9
|
Li S, Wu B, Chen T, Wu Y, Wang J, Zhang X, Lu Z, Wang L. Synthesis and characterization of Ag-decorated litchi-like porous Cu/Cu 2O micro/nanoparticles with antibacterial activity. ENVIRONMENTAL TECHNOLOGY 2023; 44:570-578. [PMID: 34714219 DOI: 10.1080/21622515.2021.1979106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Efficient and stable inorganic antibacterial material is highly spotted in antibacterial materials. However, the morphology and grain diameter of conventional inorganic compound antibacterial agent carrier are difficult to control and severely deteriorate antibacterial properties. In this research, using diethylene glycol monomer methyl ether as a pore-forming agent, litchi-like porous micro/nano Cu/Cu2O composite antibacterial carriers (Car-MNps) with good dispersion and high crystallinity are prepared by a liquid-phase chemical reduction process. Subsequently, we develop a synergistic system of inorganic composite antibacterial materials decorated with silver (Ag/Car-MNps). The microstructures of the antibacterial materials are characterized by means of various techniques, such as X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy, and nitrogen adsorption. The antibacterial activities are evaluated by methods of bacteriostatic zone and minimum inhibitory concentration (MIC). The results show that the micro- and nano-materials of Car-MNPs exhibit high specific surface area characteristics and show attractive bactericidal properties. The MIC values of Ag/Car-MNps against S. aureus and E. coli decrease from 1000 mg/L and 2000mg/L to 125 and 250 mg/L, respectively, in comparison with those of Car-MNps. Our experiments may show novel insights for the development of inorganic compound antibacterial agents.
Collapse
Affiliation(s)
- Shuo Li
- Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Monferrous Metal (Guilin) Geology and Mining Co., Ltd, Guilin, People's Republic of China
- School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Bojing Wu
- Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Monferrous Metal (Guilin) Geology and Mining Co., Ltd, Guilin, People's Republic of China
- School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Tongxiang Chen
- Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Monferrous Metal (Guilin) Geology and Mining Co., Ltd, Guilin, People's Republic of China
- School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Yinggang Wu
- Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Monferrous Metal (Guilin) Geology and Mining Co., Ltd, Guilin, People's Republic of China
| | - Jiaxing Wang
- Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Monferrous Metal (Guilin) Geology and Mining Co., Ltd, Guilin, People's Republic of China
- School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Xiaowen Zhang
- School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, People's Republic of China
| | - Zongliu Lu
- Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Monferrous Metal (Guilin) Geology and Mining Co., Ltd, Guilin, People's Republic of China
| | - Lihui Wang
- Guilin Key Laboratory of Microelectronic Electrode Materials and Biological Nanomaterials & National Special Mineral Materials Engineering Technology Research Center & Guangxi Key Laboratory of Superhard Materials, China Monferrous Metal (Guilin) Geology and Mining Co., Ltd, Guilin, People's Republic of China
| |
Collapse
|
10
|
Chen L, Wu Y, Shen Q, Zheng X, Chen Y. Enhancement of hexavalent chromium reduction by Shewanella oneidensis MR-1 in presence of copper nanoparticles via stimulating bacterial extracellular electron transfer and environmental adaptability. BIORESOURCE TECHNOLOGY 2022; 361:127686. [PMID: 35901865 DOI: 10.1016/j.biortech.2022.127686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The bioreduction of hexavalent chromium (Cr(VI)) depends highly on bacterial activity, while the release of copper nanoparticles (Cu NPs) poses threats to microorganisms in the environment. This work demonstrated that Cr(VI) reduction efficiency of Shewanella oneidensis MR-1 was remarkably enhanced by 83.7% under 20 mg/L Cu NPs exposure. Cu NPs improved the electron migration capacity of Shewanella oneidensis MR-1 by enhancing bioelectrochemical performance and flavin mononucleotide secretion. Moreover, key genes related to extracellular electron transfer pathways, including direct electron transfer through outer-membrane proteins, flavin-mediated electron transfer, and conductive flagella, were generally upregulated under Cu NPs exposure. In addition, environmental adaptability of Shewanella oneidensis MR-1 was enhanced under Cu NPs exposure by improving environmental information processing and energy and reducing power production, promoting Cr(VI) reduction by Shewanella oneidensis MR-1. This work indicated that Cu NPs could enhance Cr(VI) reduction by Shewanella oneidensis MR-1 through regulating extracellular electron transfer and environmental adaptability.
Collapse
Affiliation(s)
- Lang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuting Shen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
11
|
Ismail NA, Shameli K, Mohamad Sukri SNA, Hara H, Teow SY, Moeini H. Sonochemical synthesis of a copper reduced graphene oxide nanocomposite using honey and evaluation of its antibacterial and cytotoxic activities. Front Mol Biosci 2022; 9:995853. [PMID: 36250022 PMCID: PMC9561822 DOI: 10.3389/fmolb.2022.995853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
The combination of graphene-based materials and inorganic nanoparticles for the enhancement of the nanomaterial properties is extensively explored nowadays. In the present work, we used a sonochemical method to synthesize a copper/reduced graphene oxide (Cu/RGO) nanocomposite using Australian honey and vitamin C as capping and reducing agents, respectively. The honey-mediated copper/reduced graphene oxide (H/Cu/RGO) nanocomposite was then characterized through UV-visible, XRD, HRTEM, and FTIR analysis. The copper nanoparticles (Cu-NPs) in the nanocomposite formed uniform spherical shapes with a size of 2.20 ± 0.70 nm, which attached to the reduced graphene oxide (RGO) layers. The nanocomposite could suppress bacterial growth in both types of bacteria strains. However, in this study, the nanocomposite exhibited good bactericidal activity toward the Gram-positive bacteria than the Gram-negative bacteria. It also showed a cytotoxic effect on the cancer colorectal cell line HCT11, even in low concentrations. These results suggested that the H/Cu/RGO nanocomposite can be a suitable component for biomedical applications.
Collapse
Affiliation(s)
- Nur Afini Ismail
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Siti Nur Amalina Mohamad Sukri
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Jalan Sultan Yahya Petra, Kuala Lumpur, Malaysia
| | - Hirofumi Hara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Sin-Yeang Teow
- School of Medical and Life Sciences (SMLS), Sunway University, Kuala Lumpur, Malaysia
| | - Hassan Moeini
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Bahari N, Hashim N, Md Akim A, Maringgal B. Recent Advances in Honey-Based Nanoparticles for Wound Dressing: A Review. NANOMATERIALS 2022; 12:nano12152560. [PMID: 35893528 PMCID: PMC9332021 DOI: 10.3390/nano12152560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022]
Abstract
Wounds with impaired healing, including delayed acute injuries and chronic injuries, generally fail to progress through normal healing stages. A deeper understanding of the biochemical processes involved in chronic wound cures is necessary to correct the microenvironmental imbalances in the wound treatment designs of products. The therapeutic benefits of honey, particularly its antimicrobial activity, make it a viable option for wound treatment in a variety of situations. Integration with nanotechnology has opened up new possibilities not only for wound healing but also for other medicinal applications. In this review, recent advances in honey-based nanoparticles for wound healing are discussed. This also covers the mechanism of the action of nanoparticles in the wound healing process and perspectives on the challenges and future trends of using honey-based nanoparticles. The underlying mechanisms of wound healing using honey are believed to be attributed to hydrogen peroxide, high osmolality, acidity, non-peroxide components, and phenols. Therefore, incorporating honey into various wound dressings has become a major trend due to the increasing demand for combination dressings in the global wound dressing market because these dressings contain two or more types of chemical and physical properties to ensure optimal functionality. At the same time, their multiple features (low cost, biocompatibility, and swelling index) and diverse fabrication methods (electrospun fibres, hydrogels, etc.) make them a popular choice among researchers.
Collapse
Affiliation(s)
- Norfarina Bahari
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang 43400, Selangor, Malaysia
| | - Norhashila Hashim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Bernard Maringgal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia;
| |
Collapse
|
13
|
Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. NANOMATERIALS 2022; 12:nano12142402. [PMID: 35889626 PMCID: PMC9319685 DOI: 10.3390/nano12142402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Silver and copper nanoparticles (AgNPs and CuNPs) coated with stabilizing moieties induce oxidative stress in both bacteria and mammalian cells. Effective antibacterial agents that can overcome existing mechanisms of antibacterial resistance will greatly improve biomedical interventions. In this study, we analyzed the effect of nanoparticle-induced stress. Escherichia coli and normal human bronchial epithelial (BEAS-2B) cells were selected for this study. The nanoparticle constructs tested showed low toxicity to mammalian cells except for the polyvinylpyrrolidone-surface-stabilized copper nanoparticles. In fact, both types of copper nanoparticles used in this study induced higher levels of reactive oxygen species than the surface-stabilized silver nanoparticles. In contrast to mammalian cells, the surface-stabilized silver and copper nanoparticles showed varying levels of toxicity to bacteria cells. These data are expected to aid in bridging the knowledge gap in differential toxicities of silver and copper nanoparticles against bacteria and mammalian cells and will also improve infection interventions.
Collapse
|
14
|
A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. NANOMATERIALS 2022; 12:nano12101629. [PMID: 35630851 PMCID: PMC9146518 DOI: 10.3390/nano12101629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023]
Abstract
In the past few decades, nanotechnology has been receiving significant attention globally and is being continuously developed in various innovations for diverse applications, such as tissue engineering, biotechnology, biomedicine, textile, and food technology. Nanotechnological materials reportedly lack cell-interactive properties and are easily degraded into unfavourable products due to the presence of synthetic polymers in their structures. This is a major drawback of nanomaterials and is a cause of concern in the biomedicine field. Meanwhile, particulate systems, such as metallic nanoparticles (NPs), have captured the interest of the medical field due to their potential to inhibit the growth of microorganisms (bacteria, fungi, and viruses). Lately, researchers have shown a great interest in hydrogels in the biomedicine field due to their ability to retain and release drugs as well as to offer a moist environment. Hence, the development and innovation of hydrogel-incorporated metallic NPs from natural sources has become one of the alternative pathways for elevating the efficiency of therapeutic systems to make them highly effective and with fewer undesirable side effects. The objective of this review article is to provide insights into the latest fabricated metallic nanocomposite hydrogels and their current applications in the biomedicine field using nanotechnology and to discuss the limitations of this technology for future exploration. This article gives an overview of recent metallic nanocomposite hydrogels fabricated from bioresources, and it reviews their antimicrobial activities in facilitating the demands for their application in biomedicine. The work underlines the fabrication of various metallic nanocomposite hydrogels through the utilization of natural sources in the production of biomedical innovations, including wound healing treatment, drug delivery, scaffolds, etc. The potential of these nanocomposites in relation to their mechanical strength, antimicrobial activities, cytotoxicity, and optical properties has brought this technology into a new dimension in the biomedicine field. Finally, the limitations of metallic nanocomposite hydrogels in terms of their methods of synthesis, properties, and outlook for biomedical applications are further discussed.
Collapse
|
15
|
Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties. NANOMATERIALS 2022; 12:nano12050732. [PMID: 35269220 PMCID: PMC8911740 DOI: 10.3390/nano12050732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023]
Abstract
Cemented arthroplasty is a common process to fix prostheses when a patient becomes older and his/her bone quality deteriorates. The applied cements are biocompatible, can transfer loads, and dampen vibrations, but do not provide antibacterial protection. The present work is aimed at the development of cement with antibacterial effectivity achieved with the implementation of nanoparticles of different metals. The powders of Ag, Cu with particles size in a range of 10–30 nm (Cu10) and 70–100 nm (Cu70), AgCu, and Ni were added to PMMA cement. Their influence on compression strength, wettability, and antibacterial properties of cement was assessed. The surface topography of samples was examined with biological and scanning electron microscopy. The mechanical properties were determined by compression tests. A contact angle was observed with a goniometer. The biological tests included an assessment of cytotoxicity (XTT test on human cells Saos-2 line) and bacteria viability exposure (6 months). The cements with Ag and Cu nanopowders were free of bacteria. For AgCu and Ni nanoparticles, the bacterial solution became denser over time and, after 6 months, the bacteria clustered into conglomerates, creating a biofilm. All metal powders in their native form in direct contact reduce the number of eukaryotic cells. Cell viability is the least limited by Ag and Cu particles of smaller size. All samples demonstrated hydrophobic nature in the wettability test. The mechanical strength was not significantly affected by the additions of metal powders. The nanometal particles incorporated in PMMA-based bone cement can introduce long-term resistance against bacteria, not resulting in any serious deterioration of compression strength.
Collapse
|
16
|
Bonsignore G, Patrone M, Martinotti S, Ranzato E. "Green" Biomaterials: The Promising Role of Honey. J Funct Biomater 2021; 12:jfb12040072. [PMID: 34940551 PMCID: PMC8708775 DOI: 10.3390/jfb12040072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The development of nanotechnology has allowed us to better exploit the potential of many natural compounds. However, the classic nanotechnology approach often uses both dangerous and environmentally harmful chemical compounds and drastic conditions for synthesis. Nevertheless, “green chemistry” techniques are revolutionizing the possibility of making technology, also for tissue engineering, environmentally friendly and cost-effective. Among the many approaches proposed and among several natural compounds proposed, honey seems to be a very promising way to realize this new “green” approach.
Collapse
|
17
|
5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment. Carbohydr Polym 2021; 273:118523. [PMID: 34560940 DOI: 10.1016/j.carbpol.2021.118523] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 01/10/2023]
Abstract
Magnetic polymer nanocomposites are inherently multifunctional and harbor assorted physiochemical actions for applications thereof as novel drug nanocarriers. Herein, Fe3O4-nanoparticles were supported on rice straw cellulose for 5-fluorouracil carrier abbreviated as MC/5-FU for potential colorectal cancer treatments. Several analyses indicated the multifunctional properties of MC/5-FU bionanocomposites. Transmission and scanning electron microscopy study demonstrated that Fe3O4 nanofillers covered the cellulose matrix. The drug release from MC/5-FU was evaluated under various pH and temperature conditions, showing the maximum release at pH 7.4 and 44.2 °C. In in vitro anticancer assay, MC/5-FU exhibited enhanced selectivity and anticancer actions against 2D monolayer and 3D tumour spheroid models colorectal cancer cells. The anticancer effects of MC/5-FU with magnetic targeting and heat induction were also examined. This easily synthesized MC/5-FU indicated the potential in application as a low-cost drug formulation for colorectal cancer treatments.
Collapse
|
18
|
Abstract
The innovation and development of water purification methods have been at the center of extensive research for several decades. Many nanoparticles are frequently seen in industrial waste water. In this research, zinc oxide nanoparticles (ZnO) were synthesized following an autocombustion method with and without honey capping. Structural crystallinity and bonding structure were examined via X-ray diffraction (XRD) analysis and Fourier transform infrared (FTIR) spectroscopy. Optical behavior was analyzed using ultraviolet–visible (UV–Vis) spectroscopy and photoluminescence (PL). Size estimation and surface morphology were studied using scanning electron microscopy (SEM), while energy-dispersive spectroscopy (EDS) was performed to analyze the sample purity and elemental composition. The photocatalytic degradation of methylene blue (MB) by ZnO was assessed as it is an efficient water treatment process with high potential. The biological activity of ZnO nanoparticles was also investigated in terms of antibacterial and antifungal activities against different bacterial and fungal species. Surprisingly, the as-synthesized ZnO nanoparticles were found to be substantially bioactive compared to conventional drugs. Honey-mediated nanoparticles displayed 86% dye degradation efficiency, and that of bare ZnO was 60%. Therefore, the involvement of honey in the synthesis of ZnO nanoparticles has great potential due to its dual applicability in both biological and environmental remediation processes.
Collapse
|
19
|
Development of Polymer-Assisted Nanoparticles and Nanogels for Cancer Therapy: An Update. Gels 2021; 7:gels7020060. [PMID: 34067587 PMCID: PMC8162331 DOI: 10.3390/gels7020060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
With cancer remaining as one of the main causes of deaths worldwide, many studies are undergoing the effort to look for a novel and potent anticancer drug. Nanoparticles (NPs) are one of the rising fields in research for anticancer drug development. One of the key advantages of using NPs for cancer therapy is its high flexibility for modification, hence additional properties can be added to the NPs in order to improve its anticancer action. Polymer has attracted considerable attention to be used as a material to enhance the bioactivity of the NPs. Nanogels, which are NPs cross-linked with hydrophilic polymer network have also exhibited benefits in anticancer application. The characteristics of these nanomaterials include non-toxic, environment-friendly, and variable physiochemical properties. Some other unique properties of polymers are also attributed by diverse methods of polymer synthesis. This then contributes to the unique properties of the nanodrugs. This review article provides an in-depth update on the development of polymer-assisted NPs and nanogels for cancer therapy. Topics such as the synthesis, usage, and properties of the nanomaterials are discussed along with their mechanisms and functions in anticancer application. The advantages and limitations are also discussed in this article.
Collapse
|
20
|
Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Taherzadeh Soureshjani P, Shadi A, Mohammadsaleh F. Algae-mediated route to biogenic cuprous oxide nanoparticles and spindle-like CaCO 3: a comparative study, facile synthesis, and biological properties. RSC Adv 2021; 11:10599-10609. [PMID: 35423598 PMCID: PMC8695648 DOI: 10.1039/d1ra00187f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023] Open
Abstract
Biocompatible syntheses of Cu2O nanoparticles are relatively low compared to some other reported metal oxides due to their low stability and requiring more carefully controlled synthetic conditions. In the present study, the efficiency of three brown algae (Cystoseira myrica, Sargassum latifolium and Padina australis) extracts collected from the Persian Gulf was evaluated in the biosynthesis of Cu2O nanoparticles. A fast and simplified synthesis of Cu2O nanoparticles with average size between 12 and 26 nm was successfully achieved through an eco-friendly method using the aqueous extracts of Sargassum latifolium and Cystoseira myrica. Whereas, under the same reaction conditions using Padina australis extract no Cu2O nanoparticles were produced, and unexpectedly, the results approved the formation of spindle shaped CaCO3 with average sizes of 1-2 μm in length and 300-500 nm in width. Structure, morphology and composition of the as-prepared products were characterized by XRD, FT-IR, UV-vis, TEM and FESEM analysis. This work confirms that the biomolecules present in algae have the ability to affect particle size, morphology, composition, and physicochemical properties of the synthesized particles. The Cu2O nanoparticles prepared in this study were stable and exhibited efficient antibacterial and anticancer activity. This biosynthesis technique can be valuable in environmental, biotechnological, pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Parisa Taherzadeh Soureshjani
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr 7516913817 Iran +98-077-31223350
| | - Ahmad Shadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr 7516913817 Iran +98-077-31223350
| | - Fatemeh Mohammadsaleh
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr 7516913817 Iran +98-077-31223350
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr Iran
| |
Collapse
|
22
|
Green synthesis of Fe3O4 nanoparticles for hyperthermia, magnetic resonance imaging and 5-fluorouracil carrier in potential colorectal cancer treatment. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04388-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
|
24
|
Chen P, Zhu L, Chang Z, Gao H, Chen D, Qiu M. Spherical Cu2O Assembled by Small Nanoparticles and Its High Efficiency in Photodegradations of Methylene Blue Under Different Light Sources. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0309-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Umakoshi H, Saleh B, Rafiee-Moghaddam R, Webster TJ. The Potential Anticancer Activity of 5-Fluorouracil Loaded in Cellulose Fibers Isolated from Rice Straw. Int J Nanomedicine 2020; 15:5417-5432. [PMID: 32801697 PMCID: PMC7406330 DOI: 10.2147/ijn.s250047] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Green-based materials have been increasingly studied to circumvent off-target cytotoxicity and other side-effects from conventional chemotherapy. MATERIALS AND METHODS Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment. RESULTS XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively. DISCUSSION This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur54100, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur54100, Malaysia
| | - Hossein Jahangirian
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Selangor Darul Ehsan47500, Malaysia
| | - Hiroshi Umakoshi
- Bio-Inspired Chemical Engineering Laboratory, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka560-8531, Japan
| | - Bahram Saleh
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| | - Roshanak Rafiee-Moghaddam
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA02115, USA
| |
Collapse
|
26
|
Green Synthesized Montmorillonite/Carrageenan/Fe 3O 4 Nanocomposites for pH-Responsive Release of Protocatechuic Acid and Its Anticancer Activity. Int J Mol Sci 2020; 21:ijms21144851. [PMID: 32659939 PMCID: PMC7402292 DOI: 10.3390/ijms21144851] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50–0.734 mg/mL) compared to the unloaded NCs (IC50–1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
Collapse
|
27
|
Chandra C, Khan F. Nano-scale zerovalent copper: green synthesis, characterization and efficient removal of uranium. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07080-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Yusefi M, Shameli K, Ali RR, Pang SW, Teow SY. Evaluating Anticancer Activity of Plant-Mediated Synthesized Iron Oxide Nanoparticles Using Punica Granatum Fruit Peel Extract. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127539] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Lv P, Zhu L, Yu Y, Wang W, Liu G, Lu H. Effect of NaOH concentration on antibacterial activities of Cu nanoparticles and the antibacterial mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110669. [PMID: 32204097 DOI: 10.1016/j.msec.2020.110669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
A series of Cu nanoparticles (NPs) have been prepared by a facile hydrothermal method at 180 °C using different concentrations of NaOH solutions and characterized by XRD, SEM, TEM and FT-IR spectra. Their antibacterial activities were assessed by means of Gram-positive S. aureus and Gram-negative E. coli bacteria, where various dosages (3, 5, 7, 10 mg) of the antibacterial agents were applied, and compared with that of the commercial CuSO4 salt. The antibacterial mechanism was explored based on series of control experiments. The results show that the NaOH concentration affects the crystallinity, crystal size and surface hydroxyl content of the Cu NPs, which significantly influence the antibacterial activities. Compared to the commercial CuSO4 salt, the four Cu samples prepared using no <4 mol L-1 of NaOH display excellent antibacterial activities with low concentrations of copper leachates, which is great beneficial to the practical applications. The experimental results support that the highly reactive and soluble copper species in the antibacterial system of the Cu NPs is a Cu (II)-peptide complex, but not free Cu2+ ions.
Collapse
Affiliation(s)
- Pengzhao Lv
- School of Chemistry & Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Lianjie Zhu
- School of Chemistry & Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Yanmiao Yu
- School of Chemistry & Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Wenwen Wang
- School of Chemistry & Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Guokai Liu
- School of Chemistry & Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Hongguang Lu
- School of Chemistry & Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
30
|
Bio-Mediated Synthesis and Characterisation of Silver Nanocarrier, and Its Potent Anticancer Action. NANOMATERIALS 2019; 9:nano9101423. [PMID: 31597260 PMCID: PMC6835987 DOI: 10.3390/nano9101423] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 12/17/2022]
Abstract
Discovery of a potent drug nanocarrier is crucial for cancer therapy in which drugs often face challenges in penetrating efficiently into solid tumours. Here, biosynthesis of silver nanoparticles (AgNPs) using a waste material, Garcinia mangostana (GM) fruit peel extract is demonstrated. The best condition for AgNPs synthesis was with 0.5 g of peel extract, 7.5 mM silver nitrate at 45 °C, ~pH 4 for 16 h. The synthesized AgNPs were spherical and 32.7 ± 5.7 nm in size. To test its efficiency to be used as drug carrier, plant-based drug, protocatechuic acid (PCA) was used as a test drug. AgNPs loaded with PCA (AgPCA) resulted in 80% of inhibition at 15.6 µg/mL as compared to AgNPs which only killed 5% of HCT116 colorectal cells at same concentration. The IC50 of AgNPs and AgPCA for HCT116 were 40.2 and 10.7 µg/mL, respectively. At 15.6 µg/mL, AgPCA was not toxic to the tested colon normal cells, CCD112. Ag-based drug carrier could also potentially reduce the toxicity of loaded drug as the IC50 of PCA alone (148.1 µg/mL) was higher than IC50 of AgPCA (10.7 µg/mL) against HCT116. Further, 24-h treatment of 15.6 µg/mL AgPCA resulted in loss of membrane potential in the mitochondria of HCT116 cells and increased level of reaction oxygen species (ROS). These could be the cellular killing mechanisms of AgPCA. Collectively, our findings show the synergistic anticancer activity of AgNPs and PCA, and its potential to be used as a potent anticancer drug nanocarrier.
Collapse
|