1
|
Zhao T, Ren R, Qiao S, Tang X, Chi Z, Jiang F, Liu C. Multi-crosslinking nanoclay/oxidized cellulose hydrogel bandage with robust mechanical strength, antibacterial and adhesive properties for emergency hemostasis. J Colloid Interface Sci 2025; 683:828-844. [PMID: 39752932 DOI: 10.1016/j.jcis.2024.12.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method. The hydrogel was composed of kaolin, N-hydroxysuccinimide-grafted oxidized microcrystalline cellulose (OMCC-NHS), and polyacrylic acid (PAA). Featuring a multi-crosslinked network, it exhibited favorable elasticity (∼942 %), tensile strength (∼220 kPa), fatigue resistance, and robust tissue adhesion (∼55 kPa)-3.9 times stronger than commercial wound-closure strips, and it maintained adhesion even underwater. In addition to its mechanical properties, the hydrogel also exhibited satisfactory antibacterial activity, cytocompatibility, and histocompatibility. In vivo evaluations revealed an impressive hemostatic performance in rat models of liver bleeding, femoral artery bleeding, and tail amputation. Specifically, in the liver bleeding model, the hydrogel reduced blood loss to only 0.1 g, which is just 32 % of the blood loss seen with medical gauze. Notably, in New Zealand rabbit models with cardiac punctures and liver injuries, the hydrogel achieved rapid hemostasis and stopped the bleeding within seconds. The effective hemostatic ability of this hydrogel is primarily due to its ability to facilitate multistep hemostasis, which includes sealing the wound, rapidly absorbing blood, promoting RBC and platelets adhesion, and activating the intrinsic coagulation cascade. Therefore, this study provides a promising approach for developing gel-based hemostatic bandages, specifically tailored for emergency compressible bleeding scenarios.
Collapse
Affiliation(s)
- Tiange Zhao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Ruyi Ren
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Shiyue Qiao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Xinyi Tang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
| | - Fei Jiang
- Medical College, Linyi University, Shuangling Road, Linyi 276005, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
2
|
Ji M, Yuan Z, Ma H, Feng X, Ye C, Shi L, Chen X, Han F, Zhao C. Dandelion-shaped strontium-gallium microparticles for the hierarchical stimulation and comprehensive regulation of wound healing. Regen Biomater 2024; 11:rbae121. [PMID: 39544394 PMCID: PMC11561401 DOI: 10.1093/rb/rbae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 11/17/2024] Open
Abstract
The management of full-thickness skin injuries continues to pose significant challenges. Currently, there is a dearth of comprehensive dressings capable of integrating all stages of wound healing to spatiotemporally regulate biological processes following full-thickness skin injuries. In this study, we report the synthesis of a dandelion-shaped mesoporous strontium-gallium microparticle (GE@SrTPP) achieved through dopamine-mediated strontium ion biomineralization and self-assembly, followed by functionalization with gallium metal polyphenol networks. As a multifunctional wound dressing, GE@SrTPP can release bioactive ions in a spatiotemporal manner akin to dandelion seeds. During the early stages of wound healing, GE@SrTPP demonstrates rapid and effective hemostatic performance while also exhibiting antibacterial properties. In the inflammatory phase, GE@SrTPP promotes M2 polarization of macrophages, suppresses the expression of pro-inflammatory factors, and decreases oxidative stress in wounds. Subsequently, during the stages of proliferation and tissue remodeling, GE@SrTPP facilitates angiogenesis through the activation of the Hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway. Analogous to the dispersion and rooting of dandelion seeds, the root-like new blood vessels supply essential nutrients for wound healing. Ultimately, in a rat chronic wound model, GE@SrTPP achieved successful full-thickness wound repair. In summary, these dandelion-shaped GE@SrTPP microparticles demonstrate comprehensive regulatory effects in managing full-thickness wounds, making them highly promising materials for clinical applications.
Collapse
Affiliation(s)
- Minrui Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zaixin Yuan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hongdong Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xian Feng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Ye
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Shi
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Fei Han
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Caichou Zhao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
3
|
Wang X, Yang Y, Yang F, Mu B, Wang A. Insight into hemostatic performance and mechanism of natural mixed-dimensional Attapulgite clay. BIOMATERIALS ADVANCES 2024; 162:213932. [PMID: 38917648 DOI: 10.1016/j.bioadv.2024.213932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Clay minerals have attracted wide attention as biomedical materials due to the unique crystal structure, abundant morphology and good biocompatibility. However, the relevant studies on the abundant natural mixed clay deposits were scarcely reported. Herein, the hemostatic performance of natural mixed-dimensional attapulgite clay (MDAPT) composed of one-dimensional attapulgite and multiple two-dimensional clay were systematically investigated based on the structural evolution using oxalic acid for different time. The results of hemostatic evaluation showed that MDAPT leached by oxalic acid with 1 h presented the shortest clotting time (134 ± 12.17 s), a 15.09 % and 41.74 % reduction of relative hemoglobin absorbance at 180 s and 120 s when compared with the control group, respectively, and an increase of 19.45 % of the blood clotting index in vitro, as well as MDAPT obtained the shortest bleeding time (158.5 ± 6.9 s), nearly 66 % and 31 % reduction blood loss as compared to the blank group and the YNBY group in vivo. This improvement was primarily ascribed to the synergistic effect of lamellar non-expandable illite, and nano rod-like attapulgite. Furthermore, the rapid hemostasis of MDAPT was also due to the joint effect of superhydrophobic property toward blood, minimizing blood loss, surface negative charge, metal ions from MDAPT structural skeleton, promoting an average increase of 21 % for platelet activation. The results suggested that MDAPT could be served as a promising efficient inorganic hemostatic materials, which provided a feasible strategy to realize the high-valued utilization of natural mixed clay resources.
Collapse
Affiliation(s)
- Xiaomei Wang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yinfeng Yang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, PR China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Bin Mu
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Research Center of Resource Chemistry and Energy Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Yang Y, Wang X, Li Y, Mu B, Yang F, Wang A, Liu X. The hemostatic performance and mechanism of palygorskite with structural regulate by oxalic acid gradient leaching. Biomed Mater 2024; 19:035045. [PMID: 38636501 DOI: 10.1088/1748-605x/ad407a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Palygorskite (Pal) is a naturally available one-dimensional clay mineral, featuring rod-shaped morphology, nanoporous structure, permanent negative charges as well as abundant surface hydroxyl groups, exhibiting promising potential as a natural hemostatic material. In this study, the hemostatic performance and mechanisms of Pal were systematically investigated based on the structural regulate induced by oxalic acid (OA) gradient leaching from perspectives of structure, surface attributes and ion release.In vitroandin vivohemostasis evaluation showed that Pal with OA leaching for 1 h exhibited a superior blood procoagulant effect compared with the raw Pal as well as the others leached for prolonging time. This phenomenon might be ascribed to the synergistic effect of the intact nanorod-like morphology, the increase in the surface negative charge, the release of metal ions (Fe3+and Mg2+), and the improved blood affinity, which promoted the intrinsic coagulation pathway, the fibrinogenesis and the adhesion of blood cells, thereby accelerating the formation of robust blood clots. This work is expected to provide experimental and theoretical basis for the construction of hemostatic biomaterials based on clay minerals.
Collapse
Affiliation(s)
- Yinfeng Yang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, People's Republic of China
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xiaomei Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yalong Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, People's Republic of China
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Bin Mu
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xinyue Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, People's Republic of China
| |
Collapse
|
5
|
Feng F, Zhang Y, Zhang X, Mu B, Qu W, Wang P. Natural Nano-Minerals (NNMs): Conception, Classification and Their Biomedical Composites. ACS OMEGA 2024; 9:17760-17783. [PMID: 38680370 PMCID: PMC11044256 DOI: 10.1021/acsomega.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Natural nano-minerals (NNMs) are minerals that are derived from nature with a size of less than 100 nm in at least one dimension in size. NNMs have a number of excellent properties due to their unique nanostructure and have been applied in various fields in recent years. They are rising stars in various disciplines, such as materials, biomedicine, and chemistry, taking advantage of their huge surface area, multiple active sites, excellent adsorption capacity, large quantity, low cost, and nontoxicity, etc. To provide a more comprehensive overview of NNMs and the biomedical applications of NNMs-based nanocomposites, this review classifies NNMs into three types by dimension, lists the structure and properties of typical NNMs, and illustrates their biomedical applications. Furthermore, a novel concept of natural nanomineral medical materials (NNMMs) is proposed, focusing on the medical value of NNMs. In addition, this review attempts to address the current challenges and delineate future directions for the advancement of NNMs. With the deepening of biomedical applications, it is believed that NNMMMs will inevitably play an important role in the field of human health and contribute to its promotion.
Collapse
Affiliation(s)
- Feng Feng
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Yihe Zhang
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Xiao Zhang
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Bin Mu
- Key
Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenjie Qu
- Engineering
Research Center of Ministry of Education for Geological Carbon Storage
and Low Carbon Utilization of Resources, Beijing Key Laboratory of
Materials Utilization of Nonmetallic Minerals and Solid Wastes, National
Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Peixia Wang
- National
Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China
- Beijing
Narcotics Control Technology Center, Beijing, 100164, China
| |
Collapse
|
6
|
Tian G, Wang Z, Huang Z, Xie Z, Xia L, Zhang Y. Clays and Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1691. [PMID: 38612205 PMCID: PMC11012786 DOI: 10.3390/ma17071691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Aluminosilicates, such as montmorillonite, kaolinite, halloysite, and diatomite, have a uniform bidimensional structure, a high surface-to-volume ratio, inherent stiffness, a dual charge distribution, chemical inertness, biocompatibility, abundant active groups on the surface, such as silanol (Si-OH) and/or aluminol (Al-OH) groups. These compounds are on the list of U.S. Food and Drug Administration-approved active compounds and excipients and are used for various medicinal products, such as wound healing agents, antidiarrheals, and cosmetics. This review summarizes the wound healing mechanisms related to the material characteristics and the chemical components. Numerous wound dressings with different active components and multiple forms have been studied. Then, medicinal mineral resources for use in hemostatic materials can be developed.
Collapse
Affiliation(s)
- Guangjian Tian
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (G.T.); (Z.W.); (Z.H.)
| | - Zhou Wang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (G.T.); (Z.W.); (Z.H.)
| | - Zongwang Huang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (G.T.); (Z.W.); (Z.H.)
| | - Zuyan Xie
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China;
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China;
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (G.T.); (Z.W.); (Z.H.)
| |
Collapse
|
7
|
Liu Y, Zhang Y, Yao W, Chen P, Cao Y, Shan M, Yu S, Zhang L, Bao B, Cheng FF. Recent Advances in Topical Hemostatic Materials. ACS APPLIED BIO MATERIALS 2024; 7:1362-1380. [PMID: 38373393 DOI: 10.1021/acsabm.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yi Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
8
|
Tan Y, Yang Q, Zheng M, Sarwar MT, Yang H. Multifunctional Nanoclay-Based Hemostatic Materials for Wound Healing: A Review. Adv Healthc Mater 2024; 13:e2302700. [PMID: 37816310 DOI: 10.1002/adhm.202302700] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/01/2023] [Indexed: 10/12/2023]
Abstract
Bleeding to death accounts for around 30-40% of all trauma-related fatalities. Current hemostatic materials are mainly mono-functional or have insufficient hemostatic capacity. Nanoclay has been recently shown to accelerate hemostasis, improve wound healing, and provide the resulting multifunctional hemostatic materials antibacterial, anti-inflammatory, and healing-promoting due to its distinctive morphological structure and physicochemical properties. Herein, the chemical design and action mechanism of nanoclay-based hemostatic, antibacterial, and pro-wound healing materials in the context of wound healing are discussed. The physiological processes of hemostasis and wound healing to elucidate the significance of nanoclay for functional wound hemostatic dressing design are outlined. A summary of the features of various nanoclay and product types used in wound hemostatic dressings is provided. Nanoclay can be antimicrobial due to the slow release of metal ions and has an abundant surface charge allowing for high affinity for proteins and cells, which can activate the coagulation reaction or facilitate tissue repair. Nanoclay with a microporous structure can be used as drug carriers to create composites critical for inhibiting bacterial growth on wounds or promoting the regeneration of vascular, muscle, and skin tissues. Directions for further research and innovation of nanoclay-based multifunctional materials for hemostasis and tissue regeneration are explored.
Collapse
Affiliation(s)
- Ya Tan
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Qian Yang
- Centre for Immune-Oncology, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7BN, UK
| | - Meng Zheng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
9
|
Huang X, Hu B, Zhang X, Fan P, Chen Z, Wang S. Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing. Expert Opin Drug Deliv 2024; 21:457-477. [PMID: 38467560 DOI: 10.1080/17425247.2024.2329641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
10
|
Li X, Han W, He G, Yang J, Li J, Ma H, Wang S. Hydrogel-Transformable Antioxidant Poly-γ-Glutamic Acid/Polyethyleneimine Hemostatic Powder for Efficient Wound Hemostasis. Gels 2024; 10:68. [PMID: 38247790 PMCID: PMC10815379 DOI: 10.3390/gels10010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Hemostatic powder, which can absorb large amounts of water and tends to produce repeated hydration with tissue, has been clinically proven as an ideal engineering material for treating wounds and tissues. We herein designed a polypeptide-based hemostatic powder. A water-soluble polypeptide, γ-polyglutamic acid (γ-PGA), was mixed with the polyethyleneimine (PEI), N-hydroxysuccinimide, and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide. The solution of these polymers was lyophilized to harvest the γ-PGA/PEI powder (PP hemostatic powder). When deposited on a bleeding wound, the PP hemostatic powder can quickly absorb a large amount of blood and interstitial fluid, concentrate coagulation factors, coagulate blood cells, and eventually form a stable mechanical hydrogel. The wound bleeding time of the PP hemostatic powder group was 1.8 ± 0.4 min, significantly lower than that of the commercial chitosan hemostatic powder group (2.8 ± 0.4 min). The PP hemostatic powder was endowed with antioxidant capacity by introducing protocatechuic aldehyde, which can effectively inhibit inflammation and promote wound healing. Therefore, via preparation through a facile lyophilization method, the PP hemostatic powder is expected to find a wide application prospect as a qualified hemostatic powder.
Collapse
Affiliation(s)
- Xiang Li
- School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211100, China
| | - Wenli Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Gao He
- School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211100, China
| | - Jiahao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Jing Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Hongxia Ma
- School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211100, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
11
|
Yin X, Hu Y, Kang M, Hu J, Wu B, Liu Y, Liu X, Bai M, Wei Y, Huang D. Cellulose based composite sponges with oriented porous structure and superabsorptive capacity for quick hemostasis. Int J Biol Macromol 2023; 253:127295. [PMID: 37806413 DOI: 10.1016/j.ijbiomac.2023.127295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Excessive bleeding is the leading cause of death in accidents and operations. Ca2+ crosslinked carboxyl nanocellulose (CN)/montmorillonite (MMT) composite (CaCNMMT) sponges were prepared by uniform mixing and directional freeze-drying methods which was inspired by the coordination mechanism of blood clot formation and coagulation cascade activation in natural hemostasis process. Carboxyl nanocellulose (CaCN) sponge has instantaneous water absorption capacity, and CaCNMMT sponges could further activate clotting factors. Therefore, CaCNMMT sponges achieved quick hemostasis by efficient concentrating blood, inducing hemocyte aggregation and stimulating coagulation cascade activation based on the synergistic effects of CN and MMT. Blood clotting index of CaCNMMT (15.90 ± 0.52 %) was significantly lower than CaCN (59.3 ± 1.43 %), and APTT time (22 ± 2 s) was almost equivalent to MMT (20 ± 2 s). CaCNMMT sponge showed good quick hemostatic effect on massive hemorrhage in both tail-breaking and liver injury model which provided a new strategy for the application of MMT in hemostatic and trauma treatment fields.
Collapse
Affiliation(s)
- Xiangfei Yin
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Min Kang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Junjie Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baogang Wu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yeying Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xuanyu Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Miaomiao Bai
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| |
Collapse
|
12
|
Yang Y, Wang X, Yang F, Mu B, Wang A. Progress and future prospects of hemostatic materials based on nanostructured clay minerals. Biomater Sci 2023; 11:7469-7488. [PMID: 37873611 DOI: 10.1039/d3bm01326j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The occurrence of uncontrolled hemorrhage is a significant threat to human life and health. Although hemostatic materials have made remarkable advances in the biomaterials field, it remains a challenge to develop safe and effective hemostatic materials for global medical use. Natural clay minerals (CMs) have long been used as traditional inorganic hemostatic agents due to their good hemostatic capability, biocompatibility and easy availability. With the advancement of science, technology and ideology, CM-based hemostatic materials have undergone continuous innovations by integrating new inspirations with conventional concepts. This review systematically summarizes the hemostatic mechanisms of different natural CMs based on their nanostructures. Moreover, it also comprehensively reviews the latest research progress for CM-based hemostatic hybrid and nanocomposite materials, and discusses the challenges and developments in this field.
Collapse
Affiliation(s)
- Yinfeng Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, P. R. China
| | - Xiaomei Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Fangfang Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
| |
Collapse
|
13
|
Yu X, Han F, Feng X, Wang X, Zhu Y, Ye C, Ji M, Chen Z, Tao R, Zhou Z, Wan F. Sea Cucumber-Inspired Aerogel for Ultrafast Hemostasis of Open Fracture. Adv Healthc Mater 2023; 12:e2300817. [PMID: 37340763 DOI: 10.1002/adhm.202300817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Indexed: 06/22/2023]
Abstract
The symptomatic management of hemorrhagic shock complicated by open fractures is a great challenge, because it is also complicated by complex wound bleeding, bacterial infection, and bone defects. Inspired by the water absorption and cross-sectional microstructure of sea cucumbers, in this study, a new sea cucumber-like aerogel (GCG) is proposed. Its aligned porous structure and composition can stop bleeding rapidly and effectively with a blood clotting index of 3.73 ± 1.8%. More importantly, the data of in vivo hemostasis test in an amputating rat tail hemostatic model (15.69 ± 2.45 s, 26.95 ± 8.43 mg) and liver puncture bleeding model (23.77 ± 2.68 s, 36.22 ± 16.92 mg) also indicate the excellent hemostatic performance of GCG. In addition, GCG also shows a significant inhibitory effect on S. aureus and E. coli, which can prevent the occurrence of postoperative osteomyelitis. Not only that, after filling in the bone defect, it is shown that this GCG aerogel completely degrades eight weeks after surgery and induces new bone ingrowth, achieving functional regeneration after hemostasis of an open fracture defect. Generally, because of its combination of hemostatic, antibacterial, and osteogenic activities, this new aerogel is a promising option for open fractures treatment.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fei Han
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xian Feng
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yang Zhu
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Cong Ye
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Minrui Ji
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhichao Chen
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ran Tao
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhenyu Zhou
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fuyin Wan
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
14
|
Wu Q, Liao J, Yang H. Recent Advances in Kaolinite Nanoclay as Drug Carrier for Bioapplications: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300672. [PMID: 37344357 PMCID: PMC10477907 DOI: 10.1002/advs.202300672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Advanced functional two-dimensional (2D) nanomaterials offer unique advantages in drug delivery systems for disease treatment. Kaolinite (Kaol), a nanoclay mineral, is a natural 2D nanomaterial because of its layered silicate structure with nanoscale layer spacing. Recently, Kaol nanoclay is used as a carrier for controlled drug release and improved drug dissolution owing to its advantageous properties such as surface charge, strong biocompatibility, and naturally layered structure, making it an essential development direction for nanoclay-based drug carriers. This review outlines the main physicochemical characteristics of Kaol and the modification methods used for its application in biomedicine. The safety and biocompatibility of Kaol are addressed, and details of the application of Kaol as a drug delivery nanomaterial in antibacterial, anti-inflammatory, and anticancer treatment are discussed. Furthermore, the challenges and prospects of Kaol-based drug delivery nanomaterials in biomedicine are discussed. This review recommends directions for the further development of Kaol nanocarriers by improving their physicochemical properties and expanding the bioapplication range of Kaol.
Collapse
Affiliation(s)
- Qianwen Wu
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Juan Liao
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
15
|
Feng Y, He Y, Lin X, Xie M, Liu M, Lvov Y. Assembly of Clay Nanotubes on Cotton Fibers Mediated by Biopolymer for Robust and High-Performance Hemostatic Dressing. Adv Healthc Mater 2023; 12:e2202265. [PMID: 36314398 DOI: 10.1002/adhm.202202265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Indexed: 02/03/2023]
Abstract
Uncontrollable bleeding from military conflicts, accidents, and surgical procedures is a major life-threatening factor. Rapid, safe, and convenient hemostasis is critical to the survival of bleeding patients in prehospital care. However, the peel-off of hemostats such as kaolinite sheets from the cotton fibers often poses a risk of distal thrombosis. Here, an efficient clay hemostat of halloysite nanotubes is tightly bound onto commercial cotton fibers, which is capillary mediated by biopolymer alginate with Ca2+ crosslinking. The robust clay nanotube dressing materials maintain high procoagulant activity after harsh water treatment, and only a few residuals of halloysite exist in the wound area. Compared with commercial hemostat QuikClot Combat gauze, halloysite-alginate-cotton composite dressing exhibits hemostatic properties both in vivo and in vitro with high safety. The hemostatic mechanism of the dressing is attributed to activating platelets, locally concentrating clotting components in the nanoclay, halloysite coagulation factors, and alginate cross-linked with Ca2+ . This work inspires robust self-assembly of clay nanotubes on textile fibers and offers a hemostatic material with balanced high hemostatic activity, minimal ingredient loss, and biocompatibility. The robust dressing based on halloysite tightly bounded cotton shows great potential for military, medical, and civil bleeding control with low health risks.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Xiaoying Lin
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Mingyang Xie
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| |
Collapse
|
16
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
17
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Sun X, Li N, Wang X, Mu Y, Su C, Cong X, Wang X, Wu F, Wu G, Chen X, Feng C. PEG-mediated hybrid hemostatic gauze with in-situ growth and tightly-bound mesoporous silicon. BIOMATERIALS ADVANCES 2022; 143:213179. [PMID: 36395624 DOI: 10.1016/j.bioadv.2022.213179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Pre-hospital control of bleeding is critical to save lives, however the development of hemostatic agents with efficient and safe performance is still a challenge. In this study, a hybrid hemostatic gauze (MG-PEG) with in-situ growth and tightly bound mesoporous silicon (MSN) was prepared by template method for hemorrhage control. This material integrated meso-porosity, blood coagulation and stability into flexible gauze fiber. The PEG in MG-PEG was not only used as template for the in-suit MSN growth, but also acted as joint connection between the gauze fibers and MSN. The MSN particles were firmly bound to the surface of gauze fibers with extremely low leakage after 3 min of sonication and displayed a comparable coagulant activity to untreated sample. The results of animal experiments confirmed that MG-PEG possessed superior hemostatic performance over silicates-based inorganic hemostasis-Combat Gauze, in terms of higher coagulant activity (in vivo clotting time <200 s), minimized loss of active components (liquids OD was only 3 % of CG), well biocompatibility (hemolysis ratio < 5 %, no cytotoxicity) and wider indications range for practical application.
Collapse
Affiliation(s)
- Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Na Li
- Department of Intensive Care Medicine, Qingdao Fifth People's Hospital, 3# Jiaxiang Road, Qingdao 266002, Shandong Province, China
| | - Xiaolei Wang
- Department of Stomatology, Qingdao Special Servicemen Recuperation Center of PLA Navy, No. 18 Yueyang Road, Qingdao 266071, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xin Cong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoye Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Feifei Wu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Guangsheng Wu
- Department of Stomatology, Qingdao Special Servicemen Recuperation Center of PLA Navy, No. 18 Yueyang Road, Qingdao 266071, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Qingdao National Laboratory for Marine Science and Technology, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
19
|
Li S, Gu B, Li X, Tang S, Zheng L, Ruiz‐Hitzky E, Sun Z, Xu C, Wang X. MXene-Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing. Adv Healthc Mater 2022; 11:e2102367. [PMID: 35285165 DOI: 10.1002/adhm.202102367] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/02/2022] [Indexed: 12/13/2022]
Abstract
This study shows the effective use of MXene-based nanomaterials to improve the performance of biocomposite sponges in wound healing. In this way, diverse chitin/MXene composite sponges are fabricated by incorporating MXene-based nanomaterials with various morphology (accordion-shaped, intercalated, single-layer, gold nanoparticles (AuNPs)-loaded single-layer) into the network of chitin sponge (CH), which can prevent massive blood losses and promote the healing process of bacterial-infected wounds. With the addition of MXene-based nanomaterials, the hemostatic efficacy of CH is enhanced due to the improved hemophilicity and accelerated blood coagulation kinetics. Furthermore, the composite sponges show a predominant antibacterial activity through the synergy between the capture and the photothermal effects. Importantly, the addition of AuNPs to composite sponges further improves hemostatic performance and promotes normal skin cell migration to heal the infected wound, achieving wound closure rates of 84% on day 9. These initial studies expand the applications of MXene-based nanomaterials in biomedical fields.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Bin Gu
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Shuwei Tang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Lu Zheng
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Eduardo Ruiz‐Hitzky
- Materials Science Institute of Madrid CSIC Calle Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | - Zeyu Sun
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor Nanjing University of Chinese Medicine Jiangsu 210023 China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
20
|
|
21
|
Goncharuk O, Korotych O, Samchenko Y, Kernosenko L, Kravchenko A, Shtanova L, Tsуmbalуuk O, Poltoratska T, Pasmurtseva N, Mamyshev I, Pakhlov E, Siryk O. Hemostatic dressings based on poly(vinyl formal) sponges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112363. [PMID: 34579882 DOI: 10.1016/j.msec.2021.112363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The development of novel hemostatic agents is related to the fact that severe blood loss due to hemorrhage continues to be the leading cause of preventable death of patients with military trauma and the second leading cause of death of civilian patients with injuries. Herein we assessed the hemostatic properties of porous sponges based on biocompatible hydrophilic polymer, poly(vinyl formal) (PVF), which meets the main requirements for the development of hemostatic materials. A series of composite hemostatic materials based on PVF sponges with different porosities and fillers were synthesized by acetalization of poly(vinyl alcohol) with formaldehyde. Nano-sized aminopropyl silica, micro-sized calcium carbonate, and chitosan hydrogel were used to modify PVF matrixes. The physicochemical properties (pore size, elemental composition, functional groups, hydrophilicity, and acetalization degree) of the synthesized composite sponges were studied by gravimetrical analysis, optical microscopy, scanning electron microscopy combined with energy dispersive x-ray spectroscopy, infrared spectroscopy, and nuclear magnetic resonance. Hemostatic properties of the materials were assessed using a model of parenchymal bleeding from the liver of white male Wistar rat with a gauze bandage as a control. All investigated PVF-based porous sponges showed high hemostatic activity: upon the application of PVF-samples the bleeding decreased within 3 min by 68.4-94.4% (р < 0.001). The bleeding time upon the application of PVF-based composites decreased by 78.3-90.4% (p < 0.001) compared to the application of well-known commercial product Celox™.
Collapse
Affiliation(s)
- O Goncharuk
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine; Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - O Korotych
- University of Florida, Chemical Engineering Department, Gainesville, United States of America; University of Tennessee, Department of Biochemistry and Cellular and Molecular Biology, Knoxville, TN, United States of America.
| | - Yu Samchenko
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - L Kernosenko
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - A Kravchenko
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - L Shtanova
- Biology and Medicine Institute Science Educational Center of Taras, Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - O Tsуmbalуuk
- Biology and Medicine Institute Science Educational Center of Taras, Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - T Poltoratska
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - N Pasmurtseva
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Mamyshev
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - E Pakhlov
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Siryk
- Ovcharenko Institute of Biocolloidal Chemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
22
|
Wang L, You X, Dai C, Tong T, Wu J. Hemostatic nanotechnologies for external and internal hemorrhage management. Biomater Sci 2020; 8:4396-4412. [PMID: 32658944 DOI: 10.1039/d0bm00781a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An uncontrolled hemorrhage can easily lead to death during surgery and military operations. Despite the significant advances in hemostatic research, there is still an urgent and increasing need for safer and more effective hemostatic materials. Recently, nanotechnologies have been receiving increasing interest owing to their unique advantages and have been propelling the developement of hemostatic materials. This review summarizes the fundamentals of hemostasis and emphasizes the recent developments regarding hemorrhage-related hemostatic nanotechnologies. In terms of external accessible hemorrhage management, natural and synthetic polymers and inorganic components that have been used in traditional hemostats provide novel nanoscale solutions. Regarding internal noncompressible hemorrhage management, current research endeavors are dedicated to the development of substitutes for blood components, and nanoformulated hemostatic drugs. This review also briefly discusses the main and persistent problems of hemostatic nanomaterials, including safety concerns and clinical translation challenges. This review is hoped to provide critical insight into hemostatic nanomaterial development.
Collapse
Affiliation(s)
- Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, PR China.
| | | | | | | | | |
Collapse
|
23
|
Shen YF, Huang JH, Wu ZE, Wang KY, Zheng J, Cai L, Li XL, Gao H, Jin XY, Li JF. Cationic superabsorbent hydrogel composed of mesoporous silica as a potential haemostatic material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110841. [PMID: 32279816 DOI: 10.1016/j.msec.2020.110841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/06/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
|
24
|
Anju P, Prasad VS. Functionalization-Induced Self-Assembly of Polystyrene/Kaolinite in Situ Nanocomposites into Giant Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1761-1767. [PMID: 32030983 DOI: 10.1021/acs.langmuir.9b03996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile functionalization strategy for fabrication of giant, inorganic-polymer hybrid vesicles by controlled aminosilyl/vinylsilyl functionalization (AS/VS) of the aluminol layer in kaolinite (Kaol) by intercalation and subsequent polymerization of styrene with the in situ polystyrene clay nanocomposite (PCN), followed by self-assembly in solvents. The synergistic effect of the AS/VS ratio on functionalization-assisted intercalation of Kaol was established in 1:3AS/VS-Kaol by the greater extent of formation of higher interlayer spacing corresponding to 1.12 nm compared to 1:1AS/VS-Kaol. As the AS/VS ratio was increased, the PCN synthesized showed an increase in molecular weight attributed to higher vinyl functionalization of Kaol. The PCN, 1:3AS/VS-Kaol/PS, showed self-assembly in tetrahydrofuran at 2.5 mg mL-1 into giant vesicles of 2-6 μm diameter with a wall thickness of 300-400 nm. This result is attributed to the functionalization-induced molecular mass-directed bilayer assembly of the delaminated, Janus-type, modified Kaol in a polar aprotic solvent by end-to-end hydrogen bonding involving terminal -OH groups along the wall and -NH2 groups laterally and further stabilized by the π-π interactions of the phenyl moiety along the periphery. Rhodamine-loaded vesicles showed a controlled release in buffer solutions of pH 7.0 and 9.0, attributed to the amino group-assisted pore formation. In a buffer solution of pH 4.0, rapid release of the dye was observed because of the collapse of the vesicle directed by protonation of the amino group. This study forms the first report on a novel method for the synthesis of rigid vesicles by functionalization-induced self-assembly of Kaol-based in situ PCN for possible applications in the cost-effective controlled delivery of drugs or cosmetics for topical applications.
Collapse
Affiliation(s)
- Padinjareveetil Anju
- Functional Materials, Materials Science and Technology Division , Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram 695019 , India
| | - Vadakkethonippurathu Sivankuttynair Prasad
- Functional Materials, Materials Science and Technology Division , Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram 695019 , India
| |
Collapse
|
25
|
Liao J, Peng S, Long M, Zhang Y, Yang H, Zhang Y, Huang J. Nano-Bio interactions of clay nanotubes with colon cancer cells. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Wang X, Liu Q, Sui J, Ramakrishna S, Yu M, Zhou Y, Jiang X, Long Y. Recent Advances in Hemostasis at the Nanoscale. Adv Healthc Mater 2019; 8:e1900823. [PMID: 31697456 DOI: 10.1002/adhm.201900823] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/17/2019] [Indexed: 01/13/2023]
Abstract
Rapid and effective hemostatic materials have received wide attention not only in the battlefield but also in hospitals and clinics. Traditional hemostasis relies on materials with little designability which has many limitations. Nanohemostasis has been proposed since the use of peptides in hemostasis. Nanomaterials exhibit excellent adhesion, versatility, and designability compared to traditional materials, laying a good foundation for future hemostatic materials. This review first summarizes current hemostatic methods and materials, and then introduces several cutting-edge designs and applications of nanohemostatic materials such as polypeptide assembly, electrospinning of cyanoacrylate, and nanochitosan. Particularly, their advantages and working mechanisms are introduced. Finally, the challenges and prospects of nanohemostasis are discussed.
Collapse
Affiliation(s)
- Xiao‐Xiong Wang
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Qi Liu
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Jin‐Xia Sui
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Seeram Ramakrishna
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
- Center for Nanofibers & NanotechnologyNational University of Singapore Singapore 119077 Singapore
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
- Department of Mechanical EngineeringColumbia University New York NY 10027 USA
| | - Yu Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesQingdao University Qingdao 266071 China
| | - Xing‐Yu Jiang
- Laboratory for Biological Effects of Nanomaterials & NanosafetyNational Center for Nanoscience & Technology Beijing 100190 China
| | - Yun‐Ze Long
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| |
Collapse
|